COURSENUMBER:APSTA-GE.2352 CourseTitle:PracticuminStatisticalComputing NumberofCredits:1-2(2creditversioninvolvesadditionalsupportforintermediateprogramming) MeetingPattern:1hourperweek,14weeks. Coursetime:Tuesdays,9:15-10:15am(1or2creditversion);Anadditional50minutesessionwillbe arrangedforthosetakingthecoursefor2credits.Intermediateprogrammingconceptsarediscussed inthissession,andonlineresourceswillbeutilizedpriortoeachclass. Instructor:MarcScott CourseDescription(~250wordsorless): Thiscoursewillintroducethestudenttomodernstatisticalprogrammingandsimulationusingthe languageR.Thecoreskillsareorientedaroundfirstunderstandingvariables,datastructures,program flow(e.g.,conditionalexecution,looping)andfunctionalprogramming,thenapplyingtheseskillsto answerinterestingstatisticalquestionsinvolvingthecomparisonofgroups,whichiscoretostatistical practice.Moststatisticalanalysiswillbemotivatedviasimulations,ratherthanmathematicaltheory. Thecoursecontent(programminganddataanalysis)requiressignificantoutsidereadingand programming. CourseNotes: • • • • Classsessionswillconsistroughlyoffourdistinctparts:1)Introductionofaprogramming concept;2)Relatingthatconcepttosolvingastatisticalquestion;3)Exerciseinclass;4) QuestionandAnswerregardingtheexerciseandbriefdiscussionofhomeworkassignment. Startingwiththethirdclass,studentswillbeexpectedtomakeshortpresentationsofhowthey “solved”thehomeworkexercise.Thesepresentationswillbeassignedonarandombasis (anyonecouldbeaskedtopresentonanyclass). WerequirethiscourseforMS-A3SRstudentswhohavenothadformalinstructionina computersciencecoursesuchas“IntroductiontoProgramminginJavaorC”orwhohaveno experiencewiththeprogramlanguageR. AnaturalsequeltothiscourseisAPSTA-GE2017,EducationalDataSciencePracticum. CourseCo-requisites/Expectations: • • • Ifthestudenthaslittlepriorexperiencewithstatistics,theymusttakeAPSTA-GE2003 concurrently. AnonlineRcourseintroducingthekeyconceptsisREQUIREDBEFORETHEFIRSTCLASS.Goto https://www.datacamp.com/courses/free-introduction-to-randaftercompletingthecourse, generateaPDFofcertificationtobeHANDEDIN. Programming,andparticularlydebugging,requiressubstantialpersistenceandcreative explorationandproblemsolvingskills.Forthestudentwhoisnewtothistypeofwork,we suggestspendingsometimepriortothefirstclassexploringbasicprogramming(anylanguage) withonlinetutorialssuchasthosedevelopedbytheKhanAcademy. LearningObjectives: Bytheendofthecourse,studentswillbeableto: 1. Analyzeastatisticalquestioninvolvingthecomparisonofgroupsusingmodernstatisticalsimulation tools. 2. BuildasmalllibraryofinterrelatedfunctionsinRthatcombinetoperformtheanalysisandpresent theresultsinagraphicalortabularmanner. 3. Usemodern,structuredprogrammingtechniques,aswellasself-documentingcode. 4. Debugsmalllibrariesoffunctions CourseFormat:(Lecture,lab,seminar,recitationorcombination);Falloffering 1ptversion:onecombinedlectureandlabsessioneachweek 2ptversion:sameas1ptversion,withanadditionalhourscheduledforquestionsregardingweb-based instructioninintermediateprogramming:https://www.datacamp.com/courses/intermediate-rand https://www.datacamp.com/courses/writing-functions-in-r(thefeesforusingtheseresourcesare currentlybeingnegotiated,butareexpectedtobeunder$25fortheterm). CourseOutline(listoflectures/topicseachsession) Week Topics LabActivity 1 Rasamathematicalscratchpad: Quickarithmeticusingvectors Scalars,vectors,matrices andmatrices(e.g.,sweeping) 2 3 Basicdatastructures(e.g.,data frame);transformingvariables; missingdata FunctionalProgramming;loops andconditionaloperations 4 DensityEstimation(statistical concepts) 5 6 7 Scatterplotsmoothing (statisticalconcepts) 8 Comparingtwogroups 9 Comparisonofhomebrewed scatterplotsmoothers Comparingmorethantwo groups Randomizationtests(intro) Bootstrap(parametric& nonparametric) NOCLASS–READINGWEEK 10 11 12 13 14 15 Preparation Chapter1ANDBring alaptoptothisand everyclass! Chapter2 Assignment HWDUE: https://www.datacamp.com/courses/freeintroduction-to-r Chapter2 HWDUEProb2.2(ab;c;de) Chapter3 HWDUEProb3.2abc;3.3(ab;cd) Chapter4 HWDUE:Prob3.1(regular;compareto homebrewedboxcarandpolygon.freq[in agricolaelib]) PROJ1DUE:variantonprob4.2 Chapter5 HWDUE:5.2(split) Chapter6 Chapter7 HWDUE:6.1(team);6.2(team) PROJ2DUE:poweranalysis(sim&AUC) HWDUE:Prob7.1usingparametrict-test &7.2usingLeveneTest[inlibrarycar] PROJ3DUE:problems7.1,7.2,7.3,7.4 Descriptivestatistics(means, variances,boxplots,histograms, scatterplots) Extendingtheplotfunctionwith auser-defined“wrapper”plot function. Writeyourown“rough”density estimationroutineusingboxcar weights. ProgramRunningmeans& medianstosmooth. Simplelinearregression (programviaoptim&minimize SSRratherthanmath); Programlinearfitthat minimizesMADnotSSR. CourseRequirements Therewillbe3shortprojects,allinvolvingwritingRcode.Studentsareencouragedtoworktogetherto learnconcepts. Evaluationforthiscoursewillbeweightedasfollows: • • • Threeprojects(equallywtd.) Classpresentation Classparticipation 60% 20% 20% ASSIGNMENTANDGRADINGDETAILS Projects: Thethreeprojectswillbeassessedforexcellencein:qualityofthecode(well-commented;functional); organizationofthecode/writing;andreproducibility/flexibility/extendibilityofthecode(howmodularis thedesign?Couldthestructurebereusedforaslightlydifferentproblem?).Toreceivemaximumcredit foreachproject,satisfactionofallthreerequirementsisrequired. ClassParticipation: Thiscourseishighlyinteractive,bothintermsofworkingandlearninginteamsandasaclassroom. However,interactiontakesavarietyofforms,rangingfromone-on-onediscussionstogroup presentations,sothatdifferentskillsareemphasizedatdifferenttimes.Theevaluationofclass participationusesaflexiblescalesothateveryonecanachievethehighestmeasure.Foreachclass meeting,1=present,2=responsive,3=active,andtheoverallparticipationgradeisobtainedbysumming overtheclasssessions. Thefollowingsystemcanbeusedtoconvertevaluationscalesusedinthiscoursetolettergrades: Lettergrade A gradegrade B C D Projects Strong Moderate Weak Inadequate Df Classpresentation Exemplary Useful Inadequate Classparticipation Active Responsive Present RequiredReadingsand/orText(apartialreadinglistisacceptable) Zieffler,Harring,Long(2011).ComparingGroups:RandomizationandBootstrapMethodsUsingR. Wiley. Therewillbeanumberofreadings–particularlyusermanualsandtutorialsavailablefromtheweb. AcademicIntegrity: AllstudentsareresponsibleforunderstandingandcomplyingwiththeNYUSteinhardtStatement onAcademicIntegrity.Acopyisavailableat:http://steinhardt.nyu.edu/policies/academic_integrity. StudentswithDisabilities: StudentswithphysicalorlearningdisabilitiesarerequiredtoregisterwiththeMosesCenterfor StudentswithDisabilities,726Broadway,2ndFloor,(212-998-4980andonlineat http://www.nyu.edu/csd)andarerequiredtopresentaletterfromtheCentertotheinstructoratthe startofthesemesterinordertobeconsideredforappropriateaccommodation.
© Copyright 2026 Paperzz