toc.pdf

CONTENTS
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Symposium Organizing Committee, Acknowledgement of Support and Sponsorship,
and Session Chairmen and Paper Reviewers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
International Advisory Committee and Symposia Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
Harold Grad Lecture: Some Solved and Unsolved Problems in Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . 1
M. N. Kogan (invited)
Lloyd Thomas Lecture: Microscale Molecular Tennis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
L. J. F. Hermans (invited)
CHAPTER 1
KINETIC THEORY AND THE BOLTZMANN EQUATION
Eternal Solutions of the Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A. V. Bobylev and C. Cercignani
A New Renormalized Form of the Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
V. L. Saveliev and K. Nanbu
Exact Evaluation of Collision Integrals for the Nonlinear Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . 35
K. Kabin and B. D. Shizgal
A Variable Multigroup Approach to the Nonlinear Boltzmann Equation Based on the Method
of Weighted Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
M. Galler, A. Rossani, and F. Schürrer
On Stationary and Time-Dependent Solutions to the Linear Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . 51
R. Pettersson
An Accurate Kinetic Scheme for 3D Solution of the Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A. J. Christlieb and W. N. G. Hitchon
Numerical Solution of One-Dimensional Problems in Binary Gas Mixture on the Basis of the
Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A. A. Raines
CHAPTER 2
TRANSPORT PHENOMENA
Non-Equilibrium Kinetics and Transport Properties in Reacting Flows in Nozzles . . . . . . . . . . . . . . . . . . . . 77
T. Y. Alexandrova, A. Chikhaoui, E. V. Kustova, and E. A. Nagnibeda
Investigation of Thermal Conductivity in High-Temperature Nitrogen Using
the DSMC Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
N. Alves and J. Stark
Numerical and Analytical Applications of Multiband Transport in Semiconductors. . . . . . . . . . . . . . . . . . . . 92
L. Demeio, P. Bordone, and C. Jacoboni
Heat Transfer and Diffusion in Mixtures Containing CO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
E. V. Kustova, E. A. Nagnibeda, and A. Chikhaoui
Various Transport Coefficients Occurring in Binary Gas Mixtures and Their Database . . . . . . . . . . . . . . . 106
S. Takata, S. Yasuda, K. Aoki, and T. Shibata
Constitutive Relations for Stresses and Heat Flux. Non-Newtonian Gasdynamics. . . . . . . . . . . . . . . . . . . . . 114
A. I. Erofeev, O. G. Friedlander, and A. V. Kozlov
CHAPTER 3
RAREFIED FLOW STUDIES
Modeling Expansions of Nitrogen–Xe Gas Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A. E. Beylich
v
DSMC Study of Three-Dimensional Forced Chaotic Flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
G. A. Bird
Variational Approach to Plane Poiseuille Flow with General Boundary Conditions . . . . . . . . . . . . . . . . . . . 141
C. Cercignani, M. Lampis, and S. Lorenzani
Comparison of Kinetic Theory and Hydrodynamics for Poiseuille Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Y. Zheng, A. L. Garcia, and B. J. Alder
Supersonic Flow Through a Permeable Obstacle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
M. Y. Plotnikov and A. K. Rebrov
Slip Coefficients for Gaseous Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
F. Sharipov and D. Kalempa
Spectroscopy of H2- ¿ N2- Mixture in Rarefied Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
H. Mori and C. Dankert
Particle Simulation of Detonation Waves in Rarefied Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
D. Bruno and S. Longo
Direct Simulation of Pathological Detonations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
J. B. Anderson and L. N. Long
The Attractors of the Rayleigh–Bénard Flow of a Rarefied Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
S. Stefanov, V. Roussinov, and C. Cercignani
Direct Simulation of a Flow Produced by a Plane Wall Oscillating in Its Normal Direction. . . . . . . . . . . . 202
T. Ohwada and M. Kunihisa
On the Numerical Simulation of Rotating Rarefied Flow in the Cylinder with Smooth Surface. . . . . . . . . 210
T. Soga and K. Ooue
Rarefied Aerothermodynamics of Mars Odyssey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
N. Takashima and R. G. Wilmoth
Aerodynamics of Fragment in Spacecraft Wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
P. Vashchenkov, A. Kashkovsky, and M. Ivanov
Thermophoresis in Rarefied Gas Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
D. J. Rader, M. A. Gallis, and J. R. Torczynski
Phoresis in a Shearing Gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
L. H. Söderholm and K. I. Borg
Numerical and Experimental Investigations of Thermal Stress Effect on Nonlinear
Thermomolecular Pressure Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
V. Y. Alexandrov, O. G. Friedlander, and Y. V. Nikolsky
Kinetic Effects in Spherical Expanding Flows of Binary-Gas Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
V. V. Riabov
Vibrational Relaxation of Diatomic Molecules in Rarefied Gas Flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
H. Yamaguchi, S. Takagi, and Y. Matsumoto
Vibrational Population Depletion in Thermal Dissociation for Nonequilibrium
Energy Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
E. Josyula and W. F. Bailey
CHAPTER 4
NUMERICAL METHODS
On Vlasov–Fokker–Planck Type Kinetic Models for Multilane Traffic Flow . . . . . . . . . . . . . . . . . . . . . . . . 283
R. Illner, A. Klar, and T. Materne (invited)
Models of Collisional Dissociation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
R. G. Lord
Comprehensive Kinetic Model for Weakly Rarefied Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
H. Oguchi
Multi-Scale Analysis for Rarefied Gas Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Y. Sakiyama, S. Takagi, and Y. Matsumoto
Dynamic Molecular Collision „DMC… Model for General Diatomic Rarefied Gas Flows . . . . . . . . . . . . . . . 312
T. Tokumasu, Y. Matsumoto, and K. Kamijo
Numerical Solutions for the BGK-Model with Velocity-Dependent Collision Frequency . . . . . . . . . . . . . . . 320
L. Mieussens and H. Struchtrup
vi
Numerical Computations of Nonequilibrium Diatomic Gas Flows Using Eu’s Generalized
Hydrodynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
R. S. Myong and J. E. Kim
CHAPTER 5
DSMC DEVELOPMENT
Current Status and Prospects of the DSMC Modeling of Near-Continuum Flows of
Non-Reacting and Reacting Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
M. S. Ivanov and S. F. Gimelshein (invited)
Reconsideration of DSMC Models for Internal Energy Transfer and Chemical Reactions . . . . . . . . . . . . . 349
N. E. Gimelshein, S. F. Gimelshein, D. A. Levin, M. S. Ivanov, and I. J. Wysong
Variable Sphere Molecular Model in the Monte Carlo Simulation of Rarefied Gas Flow . . . . . . . . . . . . . . 358
H. Matsumoto
A Generalized Soft-Sphere Model for Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
J. Fan
Intermolecular Collision Scheme of DSMC Taking Molecular Locations within a Cell
into Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
M. Usami and T. Nakayama
Validation of a Hybrid Grid Scheme of DSMC in Simulating Three-Dimensional Rarefied
Gas Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
H. Liu, J. Fan, and C. Shen
On the Time Step Error of the DSMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
T. Hokazono, S. Kobayashi, T. Ohsawa, and T. Ohwada
Numerical Study of a Direct Simulation Monte Carlo Method for the Uehling–Uhlenbeck–
Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
A. L. Garcia and W. Wagner
Concurrent DSMC Method Using Dynamic Domain Decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
J.-S. Wu and K.-C. Tseng
CHAPTER 6
HYPERSONICS AND SHOCK WAVES
Validation of DSMCÕNavier–Stokes Computations for Laminar Shock WaveÕBoundary Layer
Interactions in Hypersonic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
J. K. Harvey, M. S. Holden, and G. V. Candler
Hypersonic Shock Interactions about a 25°Õ65° Sharp Double Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
J. N. Moss, G. J. LeBeau, and C. E. Glass
Simulation of Hypersonic Laminar Flow Validation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
M. A. Gallis, C. J. Roy, T. J. Bartel, and J. L. Payne
Comparison of a 3-D CFD-DSMC Solution Methodology with a Wind Tunnel Experiment . . . . . . . . . . . . 441
C. E. Glass and T. J. Horvath
New Test Cases in Low Density Hypersonic Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
B. Chanetz, T. Pot, R. Benay, and J. Moss
Statistical Simulation of Near-Continuum Flows with Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
G. N. Markelov, M. S. Ivanov, S. F. Gimelshein, and D. A. Levin
Numerical Study of Comprehensive Kinetic Model in Plane Shock Wave Problem . . . . . . . . . . . . . . . . . . . 465
R. Nagai, K. Maeno, and H. Honma
A Moment Solution of Comprehensive Kinetic Model Equation for Shock Wave Structure . . . . . . . . . . . . 473
K. Maeno, R. Nagai, H. Honma, T. Arai, and A. Sakurai
Study of the Shock Wave Structure about a Body Entering the Martian Atmosphere . . . . . . . . . . . . . . . . . 481
M. S. Ivanov, Y. A. Bondar, G. N. Markelov, S. F. Gimelshein, and J.-P. Taran
Aerodynamics of Two Interfering Simple-Shape Bodies in Hypersonic Rarefied-Gas Flows . . . . . . . . . . . . 489
V. V. Riabov
vii
Non-Equilibrium Distributions and Heat Transfer Near a Catalytic Surface
of Re-Entering Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
E. V. Kustova, E. A. Nagnibeda, I. Armenise, and M. Capitelli
Mass and Heat Transfer in the Problem of a Finite Thickness Ablating Piston. . . . . . . . . . . . . . . . . . . . . . . 505
L. M. de Socio and L. Marino
Low Reynolds Number Effects on Hypersonic Blunt Body Shock Standoff . . . . . . . . . . . . . . . . . . . . . . . . . . 514
G. R. Inger
CHAPTER 7
PROPULSION, PLUMES, AND JETS
Ion Thruster Modeling: Particle Simulations and Experimental Validations . . . . . . . . . . . . . . . . . . . . . . . . . 525
J. Wang, J. Polk, and D. Brinza (invited)
What We Have Learned by Studying the P5 Hall Thruster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
A. D. Gallimore (invited)
Computation of Neutral Gas Flow from a Hall Thruster into a Vacuum Chamber . . . . . . . . . . . . . . . . . . . 541
I. D. Boyd, C. Cai, M. L. R. Walker, and A. D. Gallimore
Modeling of the Hall-Effect Thruster Plume by Combined PIC-MCCÕDSMC Method . . . . . . . . . . . . . . . . 549
Y. A. Bondar, V. A. Schweigert, and M. S. Ivanov
Low Reynolds Number Performance Comparison of an Underexpanded Orifice
and a DeLaval Nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
A. J. Jamison and A. D. Ketsdever
Study of Orifice Flow in the Transitional Regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
A. A. Alexeenko, S. F. Gimelshein, D. A. Levin, A. D. Ketsdever, and M. S. Ivanov
Experimental and Numerical Investigation of Rarefied Interacting Plumes . . . . . . . . . . . . . . . . . . . . . . . . . . 572
I. A. Chirokov, T. G. Elizarova, J.-C. Lengrand, I. Gibek, and I. A. Graur
DSMC Study of Flowfield and Kinetic Effects on Vibrational Excitations
in Jet–Freestream Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
D. H. Campbell and I. J. Wysong
Further Studies Using a Novel Free Molecule Rocket Plume Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
M. Woronowicz
A Theoretical Study of Vapor Phase Nucleation of the Rocket Propellant N2O4 . . . . . . . . . . . . . . . . . . . . . . 596
P. Pal
Numerical Simulation of Rarefied Plume Flow Exhausting from a Small Nozzle . . . . . . . . . . . . . . . . . . . . . 604
T. Hyakutake and K. Yamamoto
Spectroscopic Study of Rotational Nonequilibrium in Supersonic Free Molecular Flows . . . . . . . . . . . . . . 612
H. Mori, A. Takasu, K. Niwa, T. Ishida, and T. Niimi
CHAPTER 8
MULTIPHASE FLOWS
Evaporation and Condensation on a Plane Condensed Phase in the Basis of Discrete
Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
I. Nicodin and R. Gatignol
Evaporation and Condensation from or onto the Condensed Phase with an Internal Structure. . . . . . . . . 630
Y. Onishi and K. Yamada
Numerical Simulation of a Vapor Flow with Evaporation and Condensation in the Presence
of a Small Amount of Noncondensable Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638
K. Aoki, S. Takata, and K. Suzuki
Bifurcation of a Flow of a Gas between Rotating Coaxial Circular Cylinders with Evaporation
and Condensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
Y. Sone and T. Doi
Simulation of Evaporation Flows from the Condensed Phase with an Internal Structure Based
on the Fluid Dynamic Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
Y. Onishi, K. Yamada, and S. Nakajima
viii
Using DSMC to Compute the Force on a Particle in a Rarefied Gas Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 662
J. R. Torczynski, M. A. Gallis, and D. J. Rader
The Effect of Nozzle Geometry on Cluster Formation in Molecular Beam Sources . . . . . . . . . . . . . . . . . . . 670
J. T. McDaniels, R. E. Continetti, and D. R. Miller
Spectroscopic Investigation of Polycyclic Aromatic Hydrocarbons Trapped in Liquid
Helium Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
F. Huisken and S. Krasnokutski
CHAPTER 9
TOPICS IN ASTROPHYSICS
The Role of Solar Wind Heavy Ions in the Space Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687
D. E. Shemansky 共invited兲
DSMC Simulation of the Cometary Coma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696
V. M. Tenishev and M. R. Combi
DSMC Modeling of Gasdynamics, Radiation, and Fine Particulates in Ionian Volcanic Jets . . . . . . . . . . . 704
J. Zhang, D. B. Goldstein, P. L. Varghese, N. E. Gimelshein, S. F. Gimelshein, D. A. Levin,
and L. Trafton
Rarefied Gas Dynamics of Water Vapor on the Moon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
D. B. Goldstein
The Boltzmann Equation to Study the Escape of Light Atoms from Planetary Atmospheres . . . . . . . . . . . 720
V. Pierrard
On the Coefficients in Meteor Physics Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726
D. Y. Khanukaeva
CHAPTER 10
MICRO- AND NANO-SCALE FLOWS
Molecular Transport in Sub-Nano-Scale Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735
S. Y. Krylov (invited)
Thermal Transpiration in Microsphere Membranes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743
M. Young, Y. L. Han, E. P. Muntz, G. Shiflett, A. Ketsdever, and A. Green
A Hybrid ContinuumÕParticle Approach for Micro-Scale Gas Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752
Q. Sun, I. D. Boyd, and G. V. Candler
Numerical Investigation of Physical Processes in High-Temperature MEMS-Based
Nozzle Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760
A. A. Alexeenko, D. A. Levin, S. F. Gimelshein, and B. D. Reed
Application of the Transition Probability Matrix Method to High Knudsen Number Flow
Past a Micro-Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
A. J. Christlieb, W. N. G. Hitchon, Q. Sun, and I. D. Boyd
Motion of a Spherical Aerosol Particle in a Micro-Pipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
M. Ota, K. Kuwahara, and S. Stefanov
Statistical Simulation of Micro-Cavity Flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
J.-Z. Jiang, J. Fan, and C. Shen
Grad’s Moment Equations for Microscale Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
H. Struchtrup
Rarefied Gas Flows in Micro-Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800
C. Xie, J. Fan, and C. Shen
Numerical Simulation of Low Reynolds Number Slip Flow Past a Confined Microsphere . . . . . . . . . . . . . 808
R. W. Barber and D. R. Emerson
The Effect of Thermal Accommodation on Unsteady Microscale Heat Transfer . . . . . . . . . . . . . . . . . . . . . . 816
J. H. Park and S. W. Baek
A Coupled DSMCÕNavier–Stokes Method for Multiscale Analysis of Gas Flow
in Microfluidic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824
O. Aktas, U. Ravaioli, and N. Aluru
DSMC Simulations of Low-Density Choked Flows in Parallel-Plate Channels . . . . . . . . . . . . . . . . . . . . . . . 831
M. Ilgaz and M. C. Çelenligil
ix
CHAPTER 11
PLASMA FLOWS
Kinetic Modeling of Rarefied Plasmas and Gases in Materials Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 841
K. Nanbu and M. Shiozawa (invited)
Modelling Neutral and Plasma Chemistry with DSMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849
T. J. Bartel (invited)
The Kinetic Treatment of Space Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
J. F. Lemaire and V. Pierrard (invited)
Numerical Analysis of RF Magnetron Discharges of OxygenÕArgon Mixture . . . . . . . . . . . . . . . . . . . . . . . . 865
S. Yonemura and K. Nanbu
Numerical Study of Flow and Plasma in an Inductive Chlorine Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . 873
M. Shiozawa and K. Nanbu
PIC-MC Simulation of Charge Accumulation Process inside Teflon Film. . . . . . . . . . . . . . . . . . . . . . . . . . . . 881
R. Watanabe, N. A. Gatsonis, and N. Tomita
Electron Thermalization in Molecular Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888
T. Nishigori
CHAPTER 12
HYBRID MODELING METHODS
Predicting Breakdown of the Continuum Equations under Rarefied Flow Conditions . . . . . . . . . . . . . . . . . 899
I. D. Boyd (invited)
A Hybrid Continuum–Atomistic Scheme for Viscous, Incompressible Gas Flow . . . . . . . . . . . . . . . . . . . . . 907
H. S. Wijesinghe and N. G. Hadjiconstantinou
Algorithm Refinement for Stochastic Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915
F. J. Alexander, A. L. Garcia, and D. M. Tartakovsky
Assessment of a Hybrid Method for Hypersonic Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923
W.-L. Wang, Q. Sun, and I. D. Boyd
Deterministic Hybrid Computation of Rarefied Gas Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931
T. Ohsawa and T. Ohwada
A Hybrid MD-DSMC Model of Picosecond Laser Ablation and Desorption . . . . . . . . . . . . . . . . . . . . . . . . . 939
M. I. Zeifman, B. J. Garrison, and L. V. Zhigilei
Kinetic–Fluid Coupling in the Field of the Atomic Vapor Laser Isotopic Separation:
Numerical Results in the Case of a Monospecies Perfect Gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947
S. Dellacherie
CHAPTER 13
GAS-SURFACE INTERACTIONS
Numerical Study of Molecular Scattering on the Thermal Equilibrium Surface
with Adsorbates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957
J. Matsui
Gas–Surface Interaction Model Evaluation for DSMC Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965
D. C. Wadsworth, D. B. VanGilder, and V. K. Dogra
Dynamical Monte-Carlo Simulation on Surface Kinetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973
V. Guerra and J. Loureiro
A Kinetic Model for Equilibrium and Non-Equilibrium Structure
of the Vapor–Liquid Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980
A. Frezzotti and L. Gibelli
Molecular Boundary Conditions and Temperature Jump at Liquid–Vapor Interface . . . . . . . . . . . . . . . . . 988
T. Tsuruta
Scattering of Rarefied Gas Atoms from Rough Surface Simulated with Fractals . . . . . . . . . . . . . . . . . . . . . 996
O. A. Aksenova
Effect of Physical Adsorption on Heat Fluxes to Catalytic Surfaces in Carbon Dioxide . . . . . . . . . . . . . . 1001
V. Kovalev, N. Afonina, and V. Gromov
x
Effect of Wall Characteristics on the Behaviors of Reflected Gas Molecules
in a Thermal Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008
K. Yamamoto, H. Takeuchi, and T. Hyakutake
Using a Thin Wire in a Free-Molecular Flow for Determination of Accommodation
Coefficients of Translational and Internal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016
A. K. Rebrov, A. A. Morozov, M. Y. Plotnikov, N. I. Timoshenko, and A. V. Shishkin
CHAPTER 14
APPLICATIONS OF RGD
Optical Diagnostics of Nonequilibrium Phenomena in Highly Rarefied Gas Flows. . . . . . . . . . . . . . . . . . . 1025
T. Niimi (invited)
Analysis of a Two Wrap Meso Scale Scroll Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
E. J. Moore, E. P. Muntz, F. Erye, N. Myung, O. Orient, K. Shcheglov, and D. Wiberg
Vacuum Pump without a Moving Part and Its Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1041
Y. Sone and H. Sugimoto
Rarefied Gas Flow through an Orifice at Finite Pressure Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049
F. Sharipov
Thrust Measurements of an Underexpanded Orifice in the Transitional Regime . . . . . . . . . . . . . . . . . . . . 1057
A. D. Ketsdever
Laminar Hypersonic Separated Flows Modeled with the DSMC Method . . . . . . . . . . . . . . . . . . . . . . . . . . 1065
S. F. Gimelshein, G. N. Markelov, M. S. Ivanov, and D. A. Levin
Comparison of Navier–Stokes and DSMC Gas Flow Models in Semiconductor
Process Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073
L. A. Gochberg
Velocity Distribution of Ions Incident on a Wafer in Two Frequency
Capacitively-Coupled Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079
G. Wakayama and K. Nanbu
Photos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087
Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091
APPENDIX ON CD-ROM ONLY
Influence of Rotational Relaxation on the Effects of Translational Nonequilibrium of Gas
Mixture in the Shock Wave Front
S. V. Koulikov
Regularization of the Chapman–Enskog Expansion and the Shock Structure Calculation
K. Xu
Angle of Attack Effect on Rarefied Hypersonic Flow over Power Law Shaped Leading Edges
W. F. N. Santos and M. J. Lewis
Rarefied Flow Heat Transfer Model for Slender Bodies at Large Angle of Attack
G. T. Chrusciel
DSMC Calculations of Shock Structure with Various Viscosity Laws
C. R. Lilley and M. N. Macrossan
New Thermal Conditions at the Wall in High Speed Flows
J. G. Meolans and I. Graur
A Java-Based Direct Monte Carlo Simulation of a Nano-Scale Pulse Detonation Engine
D. J. Genovesi and L. N. Long
A Continuum Model for the Transitional Regime: Solutions of Instationary Problems by the
Moment Method
M. Torrilhon
A Multigroup M1 Model for Radiation Hydrodynamics and Applications
R. Turpault
Skeleton Notation for Reciprocity Modelling of Rarefied Gas Processes
A. A. Agbormbai
xi
Energy Exchange Modelling of Internally Excited Gas Surface Interactions
A. A. Agbormbai
Grain-Boundary Diffusion of Helium in Palladium with Submicron-Grained Structure
A. N. Zhiganov and A. Y. Kupryazhkin
Joint Determination of Several Interaction Potentials for Gas–Ion Pairs from Measurements
of the Gas Diffusion and Solubility in Ionic Crystals
K. A. Nekrassov and A. Y. Kupryazhkin
Asymptotic and Numerical Analysis of Charged Particle Beams
M. Asadzadeh
Determination of Potentials of Interaction between Rare Gases and Multiply Charged Ions
A. Y. Kupryazhkin, K. A. Nekrassov, M. V. Ryzhkov, and B. Delley
Density Evolution of Atoms and Atomic Radicals in Plasma Expansions
R. Engeln, S. Mazouffre, P. Vankan, and D. C. Schram
Evaluating Test Parameters in an Arc Wind Tunnel
G. Zuppardi and D. Paterna
Simulations of Gas Film Lubrication in Magnetic Disc Storage: DSMC Method Coupled with
a Continuum Solution
S. V. Denisikhin, V. P. Memnonov, and S. E. Zhuravleva
Hierarchy of Vortexes in 3-D Confined Flow
A. Malahov, Y. Vorobyov, V. Demidenko, and A. Kaluev
Minimal Boltzmann Models for Flows at Low Knudsen Number
S. Ansumali and I. V. Karlin
Unsteady Computations of Rarefied Gas Flows Induced by a Rotor–Stator Interaction in a
Disk-Type Drag Pump
Y.-K. Hwang, J.-S. Heo, and M.-K. Kwon
Non-Maxwellian and Multi-Stream Flows in a Two-Level Gas
A. Muriel and L. Boot
A Nonlinear Transport Problem of Monochromatic Photons in Resonance with a Gas
G. Lauro, R. Monaco, and M. P. Bianchi
The Transversal Force on a Spinning Sphere Moving in a Rarefied Gas
K. I. Borg, L. H. Söderholm, and H. Essén
Non-Steady Behavior of Vapor between Heater and Liquid Surfaces
A. P. Kryukov and A. K. Yastrebov
Strong Evaporation–Condensation in Gas–Dust Mixture
A. P. Kryukov, V. Y. Levashov, and I. N. Shishkova
3D Unstructured Couette Flow Simulation in Transition Region
H. F. Liu
xii