1
Robust Subspace Clustering in High Dimension:
A Deterministic Result
Guangcan Liu
2
Problem Definition (Robust Subspace Clustering)
Survey
input
๐น
๐
Applications
Computer Vision
Image Processing
Biometric
Physics
System theoryoutput
โฆโฆ
Methods
RANSAC (1981) -- LD
SIM (1998) -- HD
MSL (2004) -- HD
LSA (2006) -- HD
LLMC (2007) -- HD
Errors
ALC (2007) -- HD
white noise GPCA (2008) -- LD
SC (2009) -- HD
outliers
SSC (2009) -- HD
SCC (2009) -- HD
missing entries LRR (2010) -- HD
LBF (2011) -- HD
corruptions
SLBF (2011) โ HD
โฆโฆ
โฆโฆ
People
Rene Vidal
Takeo Kanade
Ali Skemen
Gilad Lerman
David Donoho
Emmaunuel Candes
Anna Little
Laura Balzano
Jerome Baudry
Robert Nowark
Alexander Powell
Elad Admir
Ehsan Elhamifar
Don Hong
Yi Ma
Teng Zhang
Shuicheng Yan
Huan Xu
Zhouchen Lin
Guangcan Liu
โฆโฆ
3
In general case, the problem is ill-posed
Unidentifiability
Example 1
Example 2
2D
Question: Under which conditions, it is possible to EXACTLY solve the
robust subspace clustering problem
4
A Special Case
๏ฐ
๏ฐ
Let ๐ = ๐1 + ๐2 โฆ + ๐๐ be the sum of all ๐ subspaces.
High Dimension Assumption:
๏ฎ
The ambient data dimension m is so high such that
๐ โซ ๐ซ๐๐ ๐บ
This special case is indeed significant !
Hopkins155 (widely used in research):
๏ฌ
Ambient data dimension, m = 100 ± 20
๏ฌ
Number of subspaces, ๐ = 2 or 3
๏ฌ
Dimension of each subspace โค 4
๐11
๐11
โฎ
๐๐น1
๐๐น1
๐
๐ท๐๐ ๐ โค
๐12
๐12
โฎ
๐๐น2
๐๐น2
โฏ
โฏ
โฑ
โฏ
โฏ
๐น๐๐ญ×๐
๐1๐
๐1๐
๐ด1
โฎ = โฎ
๐๐น๐
๐ด๐น
๐๐น๐
๐น๐๐ญ×๐
๐ท๐๐ ๐๐ โค 3 × 4 = 12 โช ๐
๐
โ11
โ21
โ31
1
โฏ
โฏ
โฏ
โฏ
๐น๐×๐
โ1๐
โ2๐
โ3๐
1
5
A Special Case
๏ฐ
๏ฐ
Let ๐ = ๐1 + ๐2 โฆ + ๐๐ be the sum of all ๐ subspaces.
High Dimension Assumption:
๏ฎ
The ambient data dimension m is so high such that
๐ โซ ๐ซ๐๐ ๐บ
This special case is indeed significant !
Face Images:
๏ฐ
Consider ๐ = 10,000
๏ฐ
The dimension of each (front) face subspace is about 5
๏ฐ
Blessing of Dimensionality
๏ฎ
10 × 10 face images ( m = 100)
โข
๐ท๐๐ ๐ โค 5๐ = 50,000 > ๐
๏ฎ
100 × 100 face images ( m = 10,000)
โข
๐ท๐๐ ๐ โค 5๐ = 50,000 > ๐
๏ฎ
1000 × 1000 face images (m = 1,000,000)
โข
๐ท๐๐ ๐ โค 5๐ = 50,000 โช ๐
6
Problem Formulation (Robust Subspace Clustering)
What is the difference with PCA ?
๏ฐ
Input: ๐ = [๐ฅ1 , ๐ฅ2 , โฆ , ๐ฅ๐ ], a given data matrix each column in which is an mdimensional data point approximately drawn from some subspace.
๏ฌ
๐ = ๐ฟ0 + ๐ธ0
๐ณ๐ (authentic)
๐ฌ๐ (errors)
๐ฟ (observed)
๏ฐ
PCA
๐น๐
=
๏ฐ
๏ฐ
linear
+
Output:
๏ฌ
Correct subspace membership
๏ฐ
Robust subspace clustering (High Dimension)
Low-Rankness Assumption:
๏ฌ
๐ = ๐1 + ๐2 โฆ + ๐๐ .
nonlinear in linear
โข
โข
min(๐, ๐)
๐0 โ ๐๐๐๐ ๐ฟ0 = ๐ท๐๐ ๐ โค
log max(๐, ๐)
i.e., High Dimension Assumption + ๐ is also sufficiently large
i.e., the sum of multiple subspaces together is a subspace
7
A Baseline Idea
white noise:
Comments
PCA (principal component analysis)
๐ฟ0 = ๐๐๐ ๐๐๐๐ฟ ๐ฟ โ + ๐ ๐ โ ๐ฟ 2๐น
spare corruptions:
Positive
โข PCP (principal component pursuit)
๏ฎ
Provided that
๐ฟ0et al.,
is NIPSโ09;
low-rank,
it etisal.,possible
[Wright
Candes
JACMโ11] for (robust) PCA
methods to recover
๐ฟ0 ๐๐๐
from๐ฟ ๐ฟ๐ โ without
multiple
๐ฟ0 = ๐๐๐
+ ๐ ๐ โconsidering
๐ฟ1
subspaces.
โข OP (outlier pursuit) [Xu et al., NIPSโ10]
โข
1
Error Correction๏ฐ
X
๐ณ๐
โข
โข
Candes et al. Robust Principal Component Analysis ? JACMโ11.
๐ฟ0 = ๐๐๐ ๐๐๐๐ฟ ๐ฟ โ + ๐ ๐ โ ๐ฟ 2,1
Candes and Recht.
Exact Matrix Completion via Convex Optimization. FMCโ09.
Negativemissing entries:
[Candes et al., Fund. Math. Comp.โ09]
๏ฎ
In โขthematrix
case ofcompletion
multiple subspaces,
the success condition for
๐๐๐๐ฟvery
๐ฟ โ restrictive:
+ ๐ ๐ฮฉ ๐ โ ๐ฟ 2๐น
recovering๐ฟ๐ฟ0 0=is๐๐๐
actually
2
The incoherent condition requried by (robust) PCA
Standard Subspace Clustering โข
Step 1: compute an affinity matrix
๐ณ๐
methods is inconsistent with multiple subspaces.
โข SIM(shape interaction matrix)[Costeira et al., IJCVโ98]
Guangcan Liu and Ping Li. Recovery of coherent data via low-rank dictionary
โ  NIPSโ14
Perform SVD: ๐ณ0 = ๐ผ๐บ๐ฝ๐
pursuit,
๏ฎ
The styleโกof two
steps
not easy
to use
Form
an is
affinity
matrix
byin๐practice.
= |๐ฝ๐ฝ๐ |
โข SSC (sparse subspace clustering)[Rene et al., CVPRโ09]
๐ = ๐๐๐ ๐๐๐๐ ๐ 1 ๐ . ๐ก. ๐ฟ0 = ๐ฟ0 ๐
Overall Grade: D (grading system A-F)
โข โฆโฆ
Step 2: spectral clustering
๏ฐ
โข
8
Preliminary : Shape Interaction Matrix (SIM)
Definition
For a data matrix ๐ each column in which is a data point, its shape interaction
matrix (SIM) is
๐๐ ๐ , (row projector)
where ๐ฮฃ๐ ๐ is the skinny SVD of ๐.
The SIM of ๐ณ๐ , ๐ฝ๐ ๐ฝ๐ป๐ โ ๐น๐×๐ , identifies
the true
However,
โฆ subspace membership
The following had been
proved (Kanatani, ECCVโ11; Vidal
et al., IJCVโ08; Liu et al., TPMAIโ13; Xu
et al., ICMLโ13):
๏ฌ
๏ฌ
for ๐ฅ๐ and ๐ฅ๐ from
different subspaces,
[๐0 ๐0๐ ]๐๐ = 0
for ๐ฅ๐ and ๐ฅ๐ from the
same subspace,
[๐0 ๐0๐ ]๐๐ โ  0 with high
probability
๐ฝ๐ ๐ฝ๐ป๐
๐ = ๐๐ ฮฃ๐ ๐๐๐
independent
๐ฝ๐ ๐ฝ๐ป๐
๐๐ ๐๐๐
intersection
SNRdB = 23
9
Our Method
Given ๐ฟ, ๐ฟ = ๐ณ๐ + ๐ฌ๐ , recover ๐ฝ๐ ๐ฝ๐ป๐ (the SIM of ๐ณ๐ ) using a single convex procedure.
A Basic Theory[Liu et al., TPAMIโ13]:
๐0 ๐0๐ = arg ๐๐๐๐ ๐
โ
๐ . ๐ก. ๐ฟ0 = ๐ฟ0 ๐
About the nuclear norm, | โ
 |โ :
๏ฌ
Let {๐1 , ๐2 , โฆ } be the singular values of a matrix ๐. Then ๐ โ = ๐ ๐๐
๏ฌ
Nuclear norm is the closest convex approximation to the rank function
๐1
๐2
.
.
๐=
, rank M = ๐ 0 , M โ = ๐
.
.
.
.
1
10
Our Method
Given ๐ฟ, ๐ฟ = ๐ณ๐ + ๐ฌ๐ , recover ๐ฝ๐ ๐ฝ๐ป๐ (the SIM of ๐ณ๐ ) using a single convex procedure.
A Basic Theory[Liu et al., TPAMIโ13]:
๐0 ๐0๐ = arg ๐๐๐๐ ๐
๐,๐
๐ . ๐ก. ๐ฟ0 = ๐ฟ0 ๐
๐ โ ๐ธ0 = ๐ โ ๐ธ0 ๐
To recover ๐ฝ๐ ๐ฝ๐ป๐ , one may try:
min ๐ โ + ๐ ๐ธ
โ
โ
๐ . ๐ก. , ๐ โ ๐ธ = ๐ โ ๐ธ ๐
๐ธ 2๐น : white noise
๐ธ 1 : randomly sparse errors
๐ธ 2,1 : column-wisely sparse errors
๏ฌ
๏ฌ
not convex !
Paolo, Rene, and Avinash, โA Closed Form Solution to Robust Subspace
Estimation and Clusteringโ, CVPRโ11:
๐ธ0
min ๐ โ + ๐ ๐ธ 1 ๐ . ๐ก. , ๐ โ ๐ธ = ๐ โ ๐ธ ๐
๐,๐
randomly
sparse
11
Our Method
Given ๐ฟ, ๐ฟ = ๐ณ๐ + ๐ฌ๐ , recover ๐ฝ๐ ๐ฝ๐ป๐ (the SIM of ๐ณ๐ ) using a single convex procedure.
A Basic Theory[Liu et al., TPAMIโ13]:
๐0 ๐0๐ = arg ๐๐๐๐ ๐
A Convex Approximation Scheme:
๏ฌ
An observation:
๐ธ0 ๐0 ๐0๐ โ 0
๐ฌ๐
๏ฌ
๏ฌ
โ
๐ . ๐ก. ๐ฟ0 = ๐ฟ0 ๐
๐ฌ๐ ๐ฝ๐ ๐ฝ๐ป๐
We remove ๐ธ๐ in ๐ โ ๐ธ = ๐ โ ๐ธ ๐:
๐ = ๐๐ + ๐ธ โ ๐ธ๐
Convex formulation:
๐๐๐ ๐ โ + ๐ ๐ฌ
๐,๐บ
โ
๐. ๐. , ๐ฟ = ๐ฟ๐ + ๐ฌ
Question: What is lost ?
12
Our Method
Given ๐ฟ, ๐ฟ = ๐ณ๐ + ๐ฌ๐ , recover ๐ฝ๐ ๐ฝ๐ป๐ (the SIM of ๐ณ๐ ) using a single convex procedure.
A Basic Theory[Liu et al., TPAMIโ13]:
๐0 ๐0๐ = arg ๐๐๐๐ ๐
๐ . ๐ก. ๐ฟ0 = ๐ฟ0 ๐
โ
Rather surprisingly, in some cases, nothing is lost!
under certain conditions, the convex procedure below can EXACTLY recover ๐ฝ๐ ๐ฝ๐ป๐
๐๐๐ ๐ โ + ๐ ๐ฌ
๐,๐บ
๏ฌ
โ
๐. ๐. , ๐ฟ = ๐ฟ๐ + ๐ฌ
Setting: sample-specific errors
column-wisely
Sparse
(group sparsity)
๐ธ0
Low-Rank Representation (LRR)
(LRR) ๐ฆ๐ข๐ง ๐ โ + ๐ ๐ฌ
๐,๐บ
[Liu et al., ICMLโ10, TPAMIโ13]
๐,๐
๐. ๐. ๐ฟ = ๐ฟ๐ + ๐ฌ
13
Our Method
Given ๐ฟ, ๐ฟ = ๐ณ๐ + ๐ฌ๐ , recover ๐ฝ๐ ๐ฝ๐ป๐ (the SIM of ๐ณ๐ ) using a single convex procedure.
LRR:
๐โ , ๐ฌโ = ๐๐๐ ๐ฆ๐ข๐ง ๐ โ + ๐ ๐ฌ
๐,๐บ
๐,๐
๐. ๐. ๐ฟ = ๐ฟ๐ + ๐ฌ
A Deterministic Result
Assumption:
Notes
๐ โซ ๐ซ๐๐ ๐บ โ ๐ ๐๐๐ ๐ฟ0 โฉ ๐ ๐๐๐ ๐ธ0 = 0 (avoid unidentifiability)
Theorem
LRR also depends on the incoherent
3
There exists ๐พ โ > 0, such that LRR with condition
parameter
๐
=
strictly
7 ๐ ๐พโ ๐
๏ฌ
๐ โ โ  ๐0 ๐0๐ (๐ โ is asymmetric)
๏ฌ
โ1 regularization:
succeeds as long as ๐พ โค ๐พ โ (๐พ is the fraction
of nonzero columns of ๐ธ0 ):
๐ โโ+, ๐ ๐ธ 1 , ๐ . ๐ก. ๐ = ๐๐ + ๐ธ
๐ โ ๐ โ ๐ = ๐0 ๐0๐ andmin
โโ =
0
โข
near
recovery
to ๐0 ๐0๐ , but not
โ
โ
โ
where ๐ is the left singular vectors of ๐ , and
โ is the column
exact.
๏ฌ
Provided that ๐:,๐ 2 = 1, โ๐ = 1, โฏ ๐,
support of ๐ธ โ .
1
๐0 --- right singular vectors of ๐ฟ0
๐=
log ๐
โ --- column support of ๐ธ
0
๏ฌ
0
14
Results on Randomly Generated Data
ambient dimension ๐ = 300
๐0 โComparison
๐๐๐๐ ๐ฟ0 = 5,10, โฆ , 150
Experimental Settings
#subspace ๐ = 5
๐พ = 1.7%, 3.4%, โฆ , 50%
#data points ๐ = 300
#trials = 100
๐ = 1/ log ๐
LRR ๐ฝ ๐ฝ๐ป
Recovering
๐ ๐
min ๐ โ + ๐ ๐ธ
๐,๐
2,1
๐ . ๐ก. ๐ = ๐๐ + ๐ธ
corruption percentage ๐ธ
corruption percentage ๐ธ
Outlier
Pursuit (OP):
Recovering
colu_supp(๐ฌ๐ )
min ๐ฟ โ + ๐ ๐ธ
๐ฟ,๐
2,1
๐ . ๐ก. ๐ = ๐ฟ + ๐ธ
corruption
percentage
๐ธ
corruption
percentage
๐ธ
15
Results on Motion Sequences
Experimental Settings
Dataset: Hopkins155 (+ synthetic corruptions)
Baseline: Outlier Pursuit (OP) + SIM
16
Results on Face Images
input
······
๐ฟ=
๐โ , ๐ฌโ = ๐๐๐ ๐ฆ๐ข๐ง ๐ โ + ๐ ๐ฌ
๐,๐บ
๐,๐
๐. ๐. ๐ฟ = ๐ฟ๐ + ๐ฌ
output
๐ฟ๐โ =
······
17
Some Comments for LRR
Positive:
๏ฎ
๏ฎ
๏ฎ
Subspace clustering + error correction
Computationally stable (convex)
The model is flexible and can easily adapt to various problems:
Image segmentation, ICCVโ11
Saliency Detection, TIPโ11
Negative:
๏ฎ
LRR still partially depends on the incoherent condition !
โข
LRR has NOT fully captured the structure of multiple subspaces
Overall Grade: D+ (grading system A-F)
18
Conclusion & Future Work
Conclusion
๏ฌ
Figuring out a significant and โeasyโ case for the robust subspace
clustering problem (blessing of dimensionality)
๏ฌ
Suggesting a convex formula termed LRR to resolve the problem under
certain conditions
Future Work
๏ฌ
Fast algorithms (curse of dimensionality)
๏ฌ
Completely removing the dependence on the incoherent condition
References
[1] Liu et al. Robust Subspace Segmentation by Low-Rank Representation , ICMLโ10.
[2] Liu et al. Robust Recovery of Subspaces Structures by Low-Rank Representation, TPAMIโ13
[3] Liu et al. Recovery of Coherent Data via Low-Rank Dictionary Pursuit, NIPSโ14
[4] Liu et al. A Deterministic Analysis for LRR, TPAMI (under revision)
19
Questions ?
Welcome to email me:
[email protected]
                
    
            
    
                © Copyright 2025 Paperzz