Tennessee State University College of Engineering, Technology, Computer and Mathematical Sciences Department of Mathematical Sciences Basic Calculus – Math 1830 – Final Exam Review Package 1. Find an equation of the tangent line to the parabola y = x2 + 7x at the point (2, 18). (a) y = 11x − 4 (b) y = −11x + 4 (c) y = −13x − 4 price at which the supplier will make 3 units of the commodity available in the market. (d) y = 11x − 6 (a) p = $99 (b) p = $93 (c) p = $63 (e) y = 12x + 4 2. Find the domain of the function f (x) = x2 − x − 7. (a) (−∞, −7) ∪ (−7, 7) ∪ (7, ∞) (b) [−7, 7] (c) (−∞, 7) ∪ (7, ∞) (d) p = $9 (e) p = $45 8. For the supply equations p = x3 + 2x2 + 2 where x is the quantity supplied in units of a thousand and p is the unit price in dollars, determine the price at which the supplier will make 2 units of the commodity available in the market. (d) (−7, 7) (a) p = $16 (b) p = $18 (c) p = $12 (e) (−∞, ∞) 3. Find the range of the function f (x) = 2x2 + 2. (a) [−2, 2] (b) (−2, 2) (c) (2, ∞) (d) [2, ∞) (d) p = $10 (e) p = $14 9. Use the graph of the given function f to determine lim f (x) at the indicated value of a, if it exists. (e) (−∞, ∞) x→a 4. Let f (x) = x3 + 9, g(x) = x2 − 3. Find the rule for the function f + g. (a) f + g = 2x3 + 15 (b) f + g = x3 + 9 (c) f + g = 2x2 + 6 (d) f + g = x2 − 3 (e) f + g = x3 + x2 + 6 5. Evaluate h(3), where h = g ◦ f , 1 ; g(x) = x2 + 8 f (x) = x−1 (a) 14 1 (b) 17 (c) 8 41 (d) 1 8 (e) 1 16 (a) lim f (x) = 1 (c) lim f (x) = 3 (b) lim f (x) = −2 (d) The limit does not exist. x→−2 6. Find f (a+h)−f (a) for the function f (x) = 9x+7. Simplify your answer. x→−2 (a) 9h + 7 (b) 9h (c) 9a − 9h (d) 7a + 9h x→−2 10. Select the correct graph of the function f and evaluate lim f (x), if it exists. (e) 7h + 9 x→2 7. For the supply equations p = x2 + 18x + 36 where x is the quantity supplied in units of a thousand and p is the unit price in dollars, determine the Page 1 of 15 x 0 f (x) = −x + 4 if x < 2 if x = 2 if x > 2 (1) Review Package · Basic Calculus Department of Mathematical Sciences (a) (d) the limit does not exist lim f (x) = 0 x→a 11. Find the limit. lim (7s2 )(6s + 1) s→0 (d) −4 (a) −7 (b) −8 (c) −2 (b) (e) the limit does not exist 12. Find the limit. lim √ x→78 (d) 9 (a) 2 (b) 16 (c) 11 lim f (x) = −2 x→a x+3 (e) the limit does not exist 13. Find the limit if it exists. lim x→8 (a) 87 (b) 8 (c) 81 x x−8 (d) the limit does not exist x6 − x3 + x − 4 x→∞ x7 + 2x4 + 4 14. Find the limit if it exists. lim (c) (a) − 16 (b) −5 (c) −∞ (d) ∞ (e) 0 15. Use the graph of the function f to find lim f (x), x→1− lim f (x) = 2 x→a lim f (x) and lim f (x), if the limit exists. x→1+ Page 2 of 15 x→1 Review Package · Basic Calculus Department of Mathematical Sciences x2 − 25 18. Find the one-sided limit, if it exists. lim x→5− x − 5 (a) 2 (b) −5 (c) 10 (a) lim f (x) = 1; lim f (x) = 3; lim f (x) = 2 x→1− x→1+ x→1 (b) lim f (x) = 3; lim f (x) = 1; lim f (x) = 2 x→1− x→1+ x→1 (c) lim f (x) = 3; lim f (x) = 1; lim f (x) does x→1− x→1+ x→1 not exist (d) lim f (x) = 1; lim f (x) = 3; lim f (x) does x→1− x→1+ (d) −4 (e) The limit does not exist 19. Continuity at a Point. A function f is continuous at the point x = a if the following conditions are satisfied. 1. f (a) is defined 2.limx→a f (x) exists 3.limx→a f (x) = f (a) Determine the values of x, if any, at which the function is discontinuous. At each point of discontinuity, state the condition(s) for continuity that are violated. 2x − 4, if x ≤ 1 f (x) = 3, if x<1 x→1 not exist 16. Refer to the graph of the function f and determine whether the statement below is true or false. lim f (x) = 1 x→2− (a) x = 3; conditions 1, 2 (b) x = 1; conditions 2, 3 (c) x = 3; conditions 1, 2, 3 (d) x = 5; condition 2 (a) true (b) false 17. Find the one-sided limit, if it exists. lim x→3− (a) −9 (b) − 12 (c) −3 x−6 x+3 20. Find the values of x for which the function is con4 tinuous. f (x) = 4x − 1 (a) x ∈ (−∞, 5) ∪ (8, ∞) (d) 6 (b) x ∈ (−∞, 4) ∪ (4, ∞) (e) The limit does not exist (d) x ∈ (−∞, ∞) Page 3 of 15 (c) x ∈ (−∞, 14 ) ∪ ( 41 , ∞) Review Package · Basic Calculus 21. The function P, whose graph follows, gives the prime rate (the interest rate banks charge their best corporate customers) as a function of time for the first 32 wk during a year. Determine the values of t for which P is discontinuous. Department of Mathematical Sciences 1 16 1 (d) f ′ (x) = x 7 − x 4 + 2x − 9 7 26. If f (t) = 9 5 2 − 3 + find f ′ (t). 4 t t t (a) f ′ (t) = 3t3 (b) f ′ (t) = 3t3 + 2t5 + 8 16 1 (c) f ′ (t) = t 7 + 2t + 1 7 1 1 16 (d) f ′ (t) = t 7 − t 4 + 2t − 9 7 27. Let f (x) = 5x3 − 6x. Find f ′ (4) (a) f ′ (4) = −87 (b) f ′ (4) = −356 (c) f ′ (4) = 97 (d) f ′ (4) = 234 28. If f (x) = (x + 2)(5x2 − 8x + 1). Find f ′ (x) (a) t = 9 (c) t = 20, 11, 15 (b) t = 12, 16, 28 (d) t = 12, 11, 15 22. Find the slope of the tangent line to the graph of f (x) = 14x − 10 (a) f ′ (x) = 7x2 − 4x + 9 (b) f ′ (x) = 9x2 + 19x − 2 (c) f ′ (x) = 2x2 + 3x + 7 (d) f ′ (x) = 15x2 + 4x − 15 29. If f (x) = (x3 − 3)(x + 8). Find f ′ (x) (a) 14 (c) 0 (a) f ′ (x) = 6x2 + 7x + 5 (b) 7x2 − 10x (d) 14x (b) f ′ (x) = 5x2 + 7 (c) f ′ (x) = 7x3 − 15x − 6 23. Find the slope and equation of the tangent given: f (x) = 5x + 9 (3, 24) (d) f ′ (x) = 4x3 + 24x2 − 3 30. If f (x) = (a) 15; y = 15x (c) 5; y = 5x (b) 5; y = 5x + 9 (d) 15; y = 15x + 9 24. Let f (x) = 3x2 + 2. Find the tangent line at the point (−1, 5). 8 4 5 25. If f (x) = 2x 7 − x 4 + x2 − 9x + 1 find f ′ (x). 5 (a) f ′ (x) = 1 16 1 x 8 − x 7 + 2x − 2 7 9 1 (c) f ′ (x) = (x − 5)2 (b) f ′ (x) = − (d) f ′ (x) = − 1 (x − 5)2 1 x−5 x−7 . Find f ′ (x) 7x + 2 51 (c) f ′ (x) = 7x + 2 (a) f ′ (x) = 2 (7x + 2) 1 (7x + 2)2 (b) f ′ (x) = − (d) f ′ (x) = − 7x + 2 51 (d) y = −12x − 1 (b) y = −12x − 6 (a) f ′ (x) = x − 5 31. If f (x) = (c) y = −6x − 1 (a) y = −6x − 6 1 . Find f ′ (x) x−5 32. If f (x) = (3x − 4)3 . Find f ′ (x) (b) f ′ (x) = x 8 − x 4 − 9 16 1 (c) f ′ (x) = x 7 + 2x + 1 7 (a) 3x(3x − 4)3 (b) 9(3x − 4)3 Page 4 of 15 (c) 9(3x − 4)2 (d) 3(3x − 4)2 Review Package · Basic Calculus 33. If f (x) = 4(x3 − x)7 . Find f ′ (x) (a) 28(3x2 −1)(x3 −x)6 (b) 4(3x2 − 1)(x3 − x)7 (c) 28(3x2 −x)(x3 −1)7 (d) 28(x3 − x)6 7 34. If f (x) = (x2 − 3) 2 . Find f ′ (x) Department of Mathematical Sciences 40. The management of ThermoMaster Company, whose Mexican subsidiary manufactures an indoor-outdoor thermometer, has estimated that the total weekly cost (in dollars) for producing x thermometers is C(x) = 3000 + 7x dollars/year. Find the average cost function C. (a) C = 7 5 7 7 (c) 7x(x2 − 3) 2 x(x2 − 3) 2 2 5 5 7 2 7 (b) (x − 3) 2 (d) (2x) 2 2 2 √ 35. If f (x) = 6x2 − 2x + 7. Find f ′ (x) (a) 6x − 1 6x2 − 2x + 7 1 (b) √ 2 12x − 2 (a) √ (b) C = 1 √ 2 2 6x − 2x + 7 12x − 2 (d) √ 6x2 − 2x + 7 (c) 36. If f (u) = (u−5 + 4u−2 )6 . Find f ′ (u) (a) −6(u−5 + 4u−2 )5 (5u−6 + 8u−3 ) (d) 6(u−5 + 4u−2 )5 42. Williams Commuter Air Service realizes a monthly revenue of R(x) = 18000x−100x2 dollars when the price charged per passenger is x dollars. Find the marginal revenue R’ 37. If f (x) = 6x2 (9 − 8x)4 . Find f ′ (x) (a) (−36x)(9 − 8x)3 (8x − 3) (b) (−18x2 )(9 − 8x)2 (8x − 9) (a) 18000 − 100x 8x)3 (b) −100x2 (d) (−12x)(9 − 8x)3 (6x − 9) 38. Find an equation of the tangent line to the graph of the function at the point (−1, 3). f (x) = (2 − x)(x2 − 2)2 (b) y = 11x + 15 (c) y = 11x + 14 39. The total weekly cost (in dollars) incurred by a company in pressing x compact discs is C(x) where C(x) = 4000 + 5x − 0.0001x2 for 0 ≤ x ≤ 9000. What is the marginal cost when x = 2000 and x = 3000? (c) $5.00, $2.70 (b) $4.60, $4.40 (d) $1.30, $4.90 200 x (d) 18000 − 200x (c) 18000 − 5 43. The demand equation is x = − p + 10. Compute 6 the elasticity of demand and determine whether the demand is elastic, unitary, or inelastic at the p = 40. 5 ; inelastic 6 1 (b) ; inelastic 4 (d) y = −11x + 15 (a) $4.70, $3.90 3000 x2 (c) C = 2 − 0.0001x, C’ = 0.0001 2000 2000 (d) C = +2−0.0001x, C’ = − 2 −0.0001 x x (c) 6(5u−6 + 8u−3 )5 (a) y = −11x + 14 (d) C = − 7 x 41. Custom Office makes a line of executive desks. It is estimated that the total cost for making x units of their Senior Executive model is C(x) = 3000 + 2x − 0.0001x2 0 ≤ x ≤ 8000 dollars/year. Find the average cost function C. Find the marginal average cost function C’. 3000 3000 +2−0.0001x, C’ = − 2 −0.0001 (a) C = x x (b) C = 2 − 0.0002x, C’ = 0.0001 (b) −6(u−5 + 4u−2 )(5u−6 + 8u−3 ) (c) 48x(9 − 3000 +7 x (c) C = 3000 + (a) (c) 1; unitary (d) 10 ; elastic 7 44. Find the second derivatives of the function: f (x) = 2x3 − 5x2 + 1 (a) f ′′ (x) = 12 (b) f ′′ (x) = 16x − 10 (c) f ′′ (x) = 16x Page 5 of 15 (d) f ′′ (x) = 2x − 5 (e) f ′′ (x) = 12x − 10 Review Package · Basic Calculus 45. Find the first and second derivatives of the funcs−8 tion: f (s) = s+8 (a) f ′ (s) = (b) f ′ (s) = (c) f ′ (s) = (d) f ′ (s) = (e) f ′ (s) = 16 32 , f ”(s) = − (s + 8) (s + 8)2 32 12 , f ”(s) = − 2 (S + 8) (s + 8)3 24 12 , f ”(s) = − 2 (s + 8) (s + 8)3 32 16 , f ”(s) = − 2 (s + 8) (s + 8)3 16 24 , f ”(s) = − 2 (s + 8) (s + 8)3 Department of Mathematical Sciences 51. Find an equation of the tangent line to the graph of the function f defined by the given equation at the point (0, 4). 7x2 + 3y 2 = 26 (a) y = x (c) y = 4x (b) y = 4 (d) y = 0 52. You are given the graph of a function f. Determine the intervals where f is increasing, constant, or de- 46. Find the third derivative of the function: f (x) = 5x4 − 7x3 (a) 60x − 7 (b) 15x − 42 (c) 120x − 42 (d) 5x − 7 creasing. (e) x − 7 47. Find the third derivative of the function: 3 f (x) = 4 x 540 120 (a) 7 (d) − 7 x x 3 360 (b) − 7 (e) − 7 x x 720 (c) 7 x 48. Find the derivative (a) − 1 7 1 (b) 7 49. Find the derivative 2 x2 (b) 2 (a) dy from x + 7y = 4 dx 7 (c) − 4 4 (d) 7 (a) Decreasing on (0, ∞) and increasing on (−∞, 0) (b) Decreasing on (−∞, 0) and increasing on (0, ∞) (c) Decreasing on (−∞, −5)∪(5, ∞) and increasing on (−5, 5) 53. You are given the graph of a function f. Determine the intervals where f is increasing, constant, or de- dy from xy = 2 dx (c) 2x (d) − 2 x2 creasing. dy 50. Find from x5 + y 5 = 9 dx y4 y4 (c) − 4 (a) 4 x x 4 4 x x (b) − 4 (d) 4 y y Page 6 of 15 Review Package · Basic Calculus (a) Decreasing on (−∞, −2), increasing on (2, ∞), and constant on (−2, 2) Department of Mathematical Sciences √ 59. Find the domain of the function f (x) = x + 3. (c) Decreasing on (2, ∞), increasing (−∞, −2), and constant on (2, −2) on 54. Find the interval(s) where the function is increasing and the interval(s) where it is decreasing. g(x) = x3 + 6x2 + 12 3x − 6 x2 − 3 3x + 6 (b) 2 x −3 (c) (x3 + 6x2 − 3) (a) (b) Increasing on (−∞, 0), decreasing on (0, ∞) (c) Increasing on (−∞, −4), and (0, ∞), decreasing on (−4, 0) decreasing on 55. Find the relative maxima and relative minima, if any, of the function. f (x) = x2 − 10x 61. Let f (x) = x − 8, g(x) = for the function f − g. (d) No relative maxima or minima. (e) f − g = x − 8 + (a) 29 (b) 20 (c) 36 (c) x ∈ (−∞, 0) (d) x ∈ φ (a) 6a2 − 6h2 (b) 5 − 6(a − h)2 (c) −6h(2a + h) (a) x ∈ (−∞, 3) (b) x ∈ (0, 3) (c) x ∈ (−∞, 0) ∪ (3, ∞) √ x + 8. Find the rule √ x+8 (d) 215 (e) 225 (d) 5 − 6h2 (e) −6(a2 − h2 ) f (a + h) − f (a) (h 6= 0) for the function: h f (x) = 20 − 6x2 . 64. Find (d) x ∈ (−3, 3) 58. Find the inflection points, if any, of the function. f (x) = 3x3 − 9x2 + 14x − 20 (b) (0, −20) x3 + 6 x2 − 3 63. Find f (a+h)−f (a) for the function f (x) = 5−6x2 . 57. Determine where the function is concave upward. f (x) = x4 − 6x3 + 4x + 5 (a) (1, −12) (e) 62. Evaluate h(2), where h = f ◦ g given: f (x) = x2 + x + 9; g(x) = x2 56. Determine where the function is concave upward. f (x) = −3x2 − 8x + 4 (b) x ∈ (−4, 4) 3x − 6 x2 + 3 √ (d) f − g = x − 8 (b) No relative maximum; Relative minimum f (5) = −25 (c) Relative maximum: f (5) = 25; Relative minimum f (0) = −5 (d) x+8 √ (b) f − g = x − 8 − x + 8 √ (c) f − g = x + 8 − x + 8 (a) f − g = x − (a) Relative maximum: f (5) = −25; No relative minumum (a) x ∈ (−∞, ∞) (e) (−∞, ∞) 60. Let f (x) = x3 + 6, g(x) = x2 − 3. Find the rule f for the function . g (a) Increasing on (−∞, ∞) (d) Increasing on (−4, 0), (−∞, −4, and (0, ∞) (d) [−3, ∞) (a) (−3, 3) (b) (−∞, 3] (c) [−3, 3] (b) Decreasing on (−∞, −2)∪(2, ∞) and increasing on (−2, 2) (c) (8, −12) (d) none Page 7 of 15 (a) 6a − 6h (b) 20 − 6h (c) −6(a − h) (d) −6(2a + h) (e) 20 − 6(a − h) Review Package · Basic Calculus 65. Find the limit: lim 2 Department of Mathematical Sciences 72. Find the derivative of: f (x) = −x3 + 5x2 − 9 x→7 (a) 7 (b) 8 (c) 2 (a) f ′ (x) = −3x2 +10x (d) the limit does not exist x2 − 1 x→1 x − 1 (d) 6 (e) the limit does not exist 67. Find the limit if it exists. x−4 lim 3 x→4 x − 2x2 − 8x 1 (c) 24 (a) 24 (d) the limit does not (b) 0 exist 68. Determine all values of x at which f (x) = is discontinuous. (a) −9 and 9 (b) −4 and 4 (d) 4 70. Find the slope of the tangent line to the graph of: f (x) = −11x2 − 9x (a) −11x (b) −22x (b) 4; y = 4x − 4 3 √ 2 x (d) f ′ (x) = 5 − 6x m = 20; m = 10; m = 44; m = 13; = 20x + 44 = 10x = 44x + 10 = 13x − 23 y y y y 75. Find the derivative of: f (x) = 2x + 7)2 2 (b) f ′ (x) = − 2 x +7 (a) f ′ (x) = − (x2 x2 1 +7 (c) f ′ (x) = (x2 + 7)2 x 3 (a) f ′ (x) = x 2 (x2 + 5)2 5 − 3x2 (b) f ′ (x) = √ 2 x(x2 + 5)2 (x2 + 5)2 (c) f ′ (x) = 5−x √ 2 x ′ (d) f (x) = − 2 x +5 77. Find the derivative and f ′ (5) given: f (x) = (3x − 5)(x2 + 5); x = 5 (c) −22x − 9 (a) f ′ (x) = 5x + 36; 17 (b) f ′ (x) = 38x2 − 5x; −36 (c) f ′ (x) = 9x2 −10x+ (d) −11x − 9 71. Find the slope of the tangent line to the graph of the function at the given point and determine an equation of the tangent line. f (x) = 4x2 at (1, 4) (a) 5; y = 5x + 5 (c) f ′ (x) = 4 − (a) (b) (c) (d) 69. Determine all values of x at which the function is discontinuous. x2 − 4x f (x) = 2 x − 9x + 20 (b) −4 and −5 (a) f ′ (x) = 4 − 3x √ (b) f ′ (x) = 4 − 3 x (d) f ′ (x) = (x2 + 7)2 √ x 76. Find the derivative of: f (x) = 2 x +5 (d) −2 (c) 4 and 5 (d) f ′ (x) = 3x2 + 18x 74. Find the slope m and the equation of the tangent line to the graph of the function f (x) = 2x2 − 3x + 9 at the point (4, 29). 4x x2 − 81 (c) 3 (a) 5 (b) f ′ (x) = −x2 + 6x √ 73. Find the derivative of: f (x) = 4x − 3 x 66. Find the limit if it exists: lim (a) 11 (b) 3 (c) 2 (c) f ′ (x) = −3x2 − 9 (c) 8; y = 8x − 4 15; 190 (d) f ′ (x) = 3x2 − 17; −38 78. Find the derivative and f ′ (5) given: 3x + 1 ;x=5 3x − 1 (d) 10; y = 10x + 5 Page 8 of 15 (a) f ′ (x) = − 10 3x ; (3x + 1)2 11 f (x) = Review Package · Basic Calculus 6 1 (b) f ′ (x) = ; 3x − 1 39 18 (c) f ′ (x) = −3(3x − 1)2 ; − 10 3 6 ;− (d) f ′ (x) = − 2 (3x − 1) 98 79. Find the derivative: f (x) = (7x2 Department of Mathematical Sciences 83. Find the first and second derivatives of: f (x) = 5x2 − 4x + 10 (a) f ′ (x) = 10x − 4, f ”(x) = 10 (b) f ′ (x) = 5x − 4, f ”(x) = 5 + 2x + (c) f ′ (x) = 8x − 7, f ”(x) = 8 6)−5 (d) f ′ (x) = x − 4, f ”(x) = 1 (a) −10(7x + 1)(7x2 + 2x + 6)−4 (e) f ′ (x) = 3, f ”(x) = 0 (b) −5(7x2 + 2x + 6)−6 84. Find the second derivative of: h(t) = t4 − 2t3 + 6t2 − 3t + 4 (c) −5(14x + 2)−6 (d) −10(7x + 1)(7x2 + 2x + 6)−6 80. The management of Acrosonic plans to market the ElectroStat, an electrostatic speaker system. The marketing department has determined that the demand for these speaker is, p = −0.04x + 600 0 ≤ x ≤ 30000, where p denotes the speaker’s unit price (in dollars) and x denotes the quantity demanded. Find the marginal revenue function R′ (x). (a) −0.08x + 600 (b) 0.04 − 600x (a) 2t2 − 4t + 12 (b) 12t2 − 12t + 12 (c) 12t2 + 12t + 12 (a) 7(x2 + 2)5 (13x2 + 2) (b) 14(x2 + 2)5 (13x2 + 2) 600 x (d) −0.04x + 600 (a) 0.000002x2 − 0.06x + 560 80000 (b) 0.000006x2 − 0.06x + x 80000 2 (c) 0.000004x − 0.03 + x 80000 (d) 0.000004x − 0.03 − x2 (c) 3(x2 + 3)5 (13x + 2) (d) 7(x2 + 2)5 (5x2 + 2) (e) 7(x2 + 2)5 (5x + 2) 86. Find the second derivative of: g(t) = (2t2 −1)2 (5t2) (a) 10(10t4 − 5t2 + 5) (b) 10(72t4 − 10t2 + 1) (c) 5(60t4 − 24t2 + 1) (b) 3; elastic (d) 5(60t4 − 24t2 + 1) (e) 10(60t4 − 24t2 + 1) 87. Find the first and second derivatives of: f (x) = x 9x + 1 (a) f ′ (x) = 1 82. Where the demand equation is x + p − 20 = 8 0, compute elasticity of demand and determine whether the demand is elastic, unitary, or inelastic at p = 70. 5 (a) ; inelastic 8 (e) t2 − 2t + 6 85. Find the second derivative of: f (x) = x2 + 2)7 (c) −0.04 + 81. The weekly total cost function associated with manufacturing the Pulsar 25 color console television is given by C(x) = 0.000002x3 − 0.03x2 + 560x + 80000 What is the marginal average cost function C’ ? (d) 2t2 + 4t + 12 (b) f ′ (x) = (c) f ′ (x) = (d) f ′ (x) = 1 (c) ; inelastic 7 7 (d) ; inelastic 9 (e) f ′ (x) = Page 9 of 15 18 2 , f ”(x) = − 2 9x + 1) (9x + 1)3 2 8 , f ”(x) = − 2 (9x + 1) (9x + 1)3 1 8 , f ”(x) = (9x + 1)2 (9x + 1)3 18 1 , f ”(x) = − 2 (9x + 1) (9x + 1)3 1 18 , f ”(x) = − (9x + 1) (9x + 1)2 Review Package · Basic Calculus 88. √ Find the first derivative of the function: f (u) = 3 − 7u (a) f ′ (u) = − (b) f ′ (u) = − (c) f ′ (u) = 9 2(3 − 7u) 1 1 (3 − 7u) 2 7 2(3 − 7u) 1 2 (d) f ′ (u) = − (e) f ′ (u) = 7 2(3 − 7u) 7 9(3 − 7u) (c) Relative maximum: g(2) = −5 No relative minima 1 2 (d) No relative maxima or minima 1 2 1 2 92. Find the relative extrema for: f (x) = 7x3 + 2 (a) Relative maximum: f (0) = 2 89. Find the third derivative of: f (x) = 2x5 − 7x4 + 6x2 − 12x + 16 (a) 10x2 − 168x (b) 60x2 − 140x (c) 120x2 − 168x Department of Mathematical Sciences (b) No relative maxima Relative minimum g(2) = −5 (b) Relative minimum: f (0) = 2 (d) 2x2 − 7x (c) Relative maximum: f (1) = 9 (d) Relative minimum: f (1) = 9 (e) 80x2 − 7x (e) none 90. The graph of the function f shown in the accompanying figure gives the elevation of that part of the Boston Marathon course that includes the notorious Heartbreak Hill. Determine the intervals (stretches of the course) where the function f is increasing (the runner is laboring), where it is constant (the runner is taking a breather), and where it is decreasing (the runner is coasting). 93. Find the absolute maximum value and the absolute minimum value for: f (x) = 4x2 + 9x − 1 97 ; absolute min(a) Absolute maximum value: 16 imum value: none 97 (b) Absolute maximum value: − ; absolute 16 minimum value: none (c) Absolute maximum value: none; absolute 97 minimum value: − 16 (d) No absolute extrema (a) Decreasing on (15.7, 16.1) and (17.2, 17.3), increasing on (15.1, 15.7) and (16.1, 16.6), and constant on (16.6, 17.2) and (17.3, 18.2) (b) Decreasing on (16.6, 17.2) and (17.3, 18.2), increasing on (15.7, 16.1) and (17.2, 17.3), and constant on (15.1, 15.7) and (16.1, 16.6) (c) Decreasing on (15.1, 15.7) and (16.1, 16.6), increasing on (16.6, 17.2) and (17.3, 18.2), and constant on (15.7, 16.1) and (17.2, 17.3) 91. Find the relative maxima and relative minima for: g(x) = x3 − 3x2 + 5. (a) Relative minimum: g(2) = 1 Relative maximum g(0) = 5 94. Find the absolute maximum value and the absolute minimum value for: f (x) = x3 + 6x2 − 8 on [−7, 3] (a) Absolute maximum value: 73; absolute minimum value: −57 (b) Absolute maximum value: 24; absolute minimum value: −8 (c) Absolute maximum value: 24; absolute minimum value: −57 (d) Absolute maximum value: 73; absolute minimum value: −8 Page 10 of 15 (e) No absolute extrema Review Package · Basic Calculus 95. Find the absolute maximum value and the absolute minimum value for: 1 2 f (x) = x4 − x3 − 2x2 + 2 on [−3, 3] 2 3 13 ; absolute min(a) Absolute maximum value: 2 10 imum value: − 3 85 (b) Absolute maximum value: ; absolute min2 10 imum value: − 3 10 (c) Absolute maximum value: ; absolute min3 85 imum value: − 2 (d) No absolute extrema Department of Mathematical Sciences 100. Find the present value of $55561 due in 4 yr at an interest rate of 7%/year compounded continuously. 101. Find the derivative of: f (x) = x6 ex (a) x5 ex (x + 1) (c) 6x5 ex (b) x5 ex (x + 6) (d) x5 e6x (x + 6) 5ex x2 x 5e (x − 1) (b) x2 (a) − 103. Find the derivative of: f (x) = 5(ex + e−x ) (a) 5(ex + e−x ) 96. The estimated monthly profit (in dollars) realizable by Cannon Precision Instruments for manufacturing and selling x units of its model M1 camera is P (x) = −0.05x2 + 490x − 8000 To maximize its profits, how many cameras should Cannon produce each month? (a) 4875 cameras (c) 5000 cameras (b) 4900 cameras (d) 4950 cameras 97. Simplify: log x(x + 5)7 5e x 5ex (c) 2 x 5ex (x − 1) (d) − x2 102. Find the derivative of: f (x) = (b) 5(e−x − ex ) (c) 5(ex − e−x ) (d) 10ex 104. Find the derivative of: f (x) = 9e3x−7 (a) 9(3x − 7)e3x−7 (b) 3e3x−7 (c) 27e3x−7 (d) 27e3x 105. Find the derivative of: f (x) = (ex + 1)19 (a) 19ex (ex + 1)18 (c) 19(ex + 1)19 (b) 19(ex + 1)18 (d) 19ex (ex + 1)19 106. Find the derivative of: f (x) = (x − 1)e9x+8 (a) log x + 7 log(x + 5) (c) log x7 + log(x + 5) (a) e9x+8 (9x + 8) (b) log x + log(x + 5)7 (d) 7 log x − log(x + 5) (b) e9x+8 (9x − 8)(9x + 8) (c) 9e9x+8 (x − 1) (d) e9x+8 (9x − 8) 98. Simplify: ln x(x + 1)(x + 7) 107. Find the second derivative of: f (x) = e−9x + 3e4x (a) 7 ln x − ln(x + 1) + ln(x + 7) (b) − ln x + ln(x + 1) + ln(x + 7) (c) ln x + ln(x + 1) + ln(x + 7) (a) 9e−9x + 16e4x (c) 9e−9x + 12e4x (b) −81e−9x + 16e4x (d) 81e−9x + 48e4x 108. Find the derivative of: f (x) = 5 ln x (d) ln 1x + ln(x + 1) − ln(x + 7) 99. Find the interest rate needed for an investment of $5000 to grow to an amount of $8500 in 4 yr if interest is compounded monthly. 4 x 5 (b) x (a) Page 11 of 15 (c) 1 x5 (d) − 1 x4 Review Package · Basic Calculus 109. Find the derivative of: h(t) = 6 ln t7 (a) 42 ln t6 (b) 42 t Department of Mathematical Sciences 117. Find the derivative of: f (t) = e6t ln (t + 9) 13 t 13 (d) 7 t (c) √ 110. Find the derivative of: f (x) = ln ( x + 1) √ 1 x (a) √ √ (c) √ 2 x( x + 1) x+1 3 √ √ (b) √ √ (d) x ln ( x + 1) x( x + 1) 1 7x6 42 (c) x 1 (d) − 7 x 111. Find the derivative of: f (x) = ln 7 x6 6 (b) − x (a) (b) x+4 9x 2x (x + 4)2 1 (b) − x+4 (d) 18x − 8 (c) 2 9x − 8x + 3 1 (d) 16x − 8 9x x+4 4 (c) 9x(x + 4) 4 (d) x(x + 4) (c) (x + 4)2 (6x + 20)(x + 5) (d) (x + 4)2 (6x + 22)(x + 5)2 Z 120. Find the indefinite integral. 4x7 dx 1 7 x +C 7 1 (d) x7 + C 2 Z 1 121. Find the indefinite integral. 7x− 2 dx 1 8 x +C 2 4 (b) x8 + C 7 (c) (a) (c) 3x(2 ln 2x + 1) (d) 6 ln 2x + 3x 115. Find the derivative of: f (x) = (a) 6(x8 − 8)5 1 (b) (x8 − 8)6 6(ln x)5 x (b) 4x(ln x)5 − 8x7 −8 48x7 (d) 8 x −8 (c) 116. Find the derivative of: f (x) = (a) ln (x8 x8 (ln x)6 (c) 6(ln x)5 (d) x2 (x + 4)3 (b) (x + 4)(5x + 22)(x + 5)2 1 (b) 3x(ln 2x + 2) 1 (x + 4)2 (a) (x + 4)(5x + 20)(x + 5) 114. Find the derivative of: f (x) = 3x2 ln 2x (a) 6x (c) − 119. Find the derivative of: y = (x + 4)2 (x + 5)3 113. Find the derivative of: f (x) = ln 4 (a) x+4 118. Find the second derivative of: f (x) = ln (x + 4) (a) − 112. Find the derivative of the function: f (x) = ln (9x2 − 8x + 3) 16x3 − 8 (a) 9x2 − 8x + 3 1 (b) 2 9x − 8x + 3 e6t [6(t + 9) ln (t + 9) + 1] t+9 6t e [9 ln (t + 9) + 6] (b) t+9 6t e [9(t + 9) + ln (t + 9)] (c) t+9 e6t (d) t+9 (a) (ln x)5 x5 8)6 1 (a) 12x 2 + C (c) 14x 2 + C (b) 12x1 + C (d) 14x 2 + C 1 122. Find the indefinite integral. (a) 7x − 4x2 + C (b) 7x − 8x2 +C Z (c) 7 − 4x + C (d) 7 − 4x2 + C 123. Find the indefinite integral. Z 1 7 (a) 2 + x2 + x8 + xex + C 2 8 1 8 (b) 2x + x2 + x8 + ex + C 2 7 Page 12 of 15 (7 − 8x)dx (2 + x + 7x7 + ex )dx Review Package · Basic Calculus 1 7 (c) 2x + x2 + x8 + ex + C 2 8 7 (d) 2x + x2 + x8 + ex + C 8 Z 1 1 3 124. Find the indefinite integral. (t 2 + 8t 8 − 4t− 2 )dt 2 5 t2 5 2 5 (b) t 2 5 2 5 (c) t 2 5 2 5 (d) t 2 5 (a) 1 (2x − 7)3 + C 2 (b) (2x + 7)3 + C (a) (c) x + C 1 (d) (2x + 7)3 + C 3 129. Find the indefinite integral. Z (3x2 − 2x + 1)(x3 − x2 + x)6 dx 1 8 9 + t 8 − 8t 2 + C 9 1 64 9 + t 8 − 4t 2 + C 9 1 8 8 + t 9 − 8t 2 + C 9 1 64 9 + t 8 − 8t 2 + C 9 125. Find the indefinite integral. Department of Mathematical Sciences Z 128. Find the indefinite integral. 2(2x + 7)2 dx 1 3 (x − x2 + x)7 + C 7 (b) (x3 − x2 + x)7 + C (a) Z √ 3 ( 3 x + − 6ex )dx x 3 4 3 x 3 + 2 − 6xex + C 4 x 3 3 4 (b) x 3 + 2 − 6ex + C 4 x 3 4 (c) x 3 + 3 ln |x| − 6ex + C 4 3 4 (d) x 3 + 3 ln |x| − 6xex + C 4 126. Lorimar Watch Company manufactures travel clocks. The daily marginal cost function associated with producing these clocks is C(x) = 0.000003x2 − 0.007x + 5 where C ′ (x) is measured in dollars/unit and x denotes the number of units produced. Management has determined that the daily fixed cost incurred in producing these clocks is $150. Find the total cost incurred by Lorimar in producing the first 600 travel clocks/day. (a) 127. Cannon Precision Instruments makes an automatic electronic flash with Thyrister circuitry. The estimated marginal profit associated with producing and selling these electronic flashes is −0.004x+ 20 dollars/unit/month when the production level is x units per month. Cannon’s fixed cost for producing and selling these electronic flashes is $20,000/month. What is the maximum monthly profit? 1 3 (x + x2 + x) + C 7 (d) x + C (c) 130. Find the indefinite integral. 3 2 3 (t + 9) 2 + C 3 (b) (t3 + 9) + C (a) (b) x + C x5 dx 1 − x6 1 (c) − +C ln |1 + 6x6 | 1 (ln 6|x|)2 + C 6 (b) 6x2 + C e2x dx 4 + e2x 1 (c) ln (4 + e2x ) + C 2 (d) x + C 1 (ln |u|)6 + C 6 1 (b) u6 + C 6 Page 13 of 15 Z ln 6x dx x 1 (c) (ln 6|x|)2 + C 2 (d) (ln 6|x|)2 + C Z (ln u)5 du u 1 (c) ln 6|u| + C 6 134. Find the indefinite integral. (a) Z (d) − ln |1 − x6 | + C 133. Find the indefinite integral. (a) p t3 + 9dt 2 3 3 (t + 9) 3 + C 2 (d) t + C 132. Find the indefinite integral. (a) ln (4 + e2x ) + C 1 (b) ln (x) + C 2 3t2 (c) 131. Find the indefinite integral. 1 (a) − ln |1 − x6 | + C 6 Z Z (d) 6(ln |u|)6 + C Review Package · Basic Calculus Department of Mathematical Sciences Answer Key Problem Answer Problem Answer Problem Answer Problem Answer Problem Answer 1 A 28 D 55 B 82 D 109 B 2 E 29 D 56 A 83 A 110 A 3 D 30 B 57 C 84 B 111 B 4 E 31 A 58 A 85 B 112 C 5 C 32 D 59 D 86 E 113 C 6 B 33 A 60 E 87 D 114 C 7 A 34 C 61 B 88 C 115 8 B 35 62 A 89 C 116 9 C 36 63 C 90 B 117 10 C 37 64 D 91 A 118 11 C 38 65 C 92 B 119 12 D 39 66 C 93 C 120 13 D 40 67 A 94 B 121 C 14 E 41 A 68 A 95 D 122 A 15 C 42 D 69 A 96 B 123 C 16 A 43 D 70 C 97 A 124 D 17 B 44 E 71 C 98 C 125 C 18 C 45 D 72 A 99 126 19 B 46 C 73 C 100 127 20 C 47 E 74 D 101 B 128 D 21 B 48 A 75 102 B 129 C 22 A 49 D 76 103 C 130 A Page 14 of 15 Review Package · Basic Calculus Department of Mathematical Sciences Problem Answer Problem Answer Problem 23 B 50 B 24 C 51 25 D 26 27 Answer Problem Answer Problem Answer 77 104 C 131 A B 78 105 A 132 A 52 B 79 106 D 133 C D 53 A 80 107 C 134 C D 54 C 81 108 B D Last Version: November 20, 2013 Page 15 of 15
© Copyright 2026 Paperzz