Tennessee State University College of Engineering Department of Mathematical Sciences Pre Calculus II Final Exam Review Package In order to watch the videos with the solutions of the problems, make sure to complete the following steps (If you are already using Moodle in your course then you can start in Step 5) : 1. Write down your student email address that looks like [email protected]. 2. Write down your username. For example if your student email address is [email protected] then your username is johndaw5. 3. Create an Account in www.moodle2.tnstate.edu by using the SAME username of step 2 and the SAME e-mail address of step 1. 4. Verify your identity by confirming an email send to your MyTSU e-mail address 5. Once you verify your identity in Step 4 (or if you already have an account in Moodle), you can click in any video icon of this sample package. However, after login into Moodle for the first time, you must answer Yes to the question: You are about to enroll yourself as a member of this course. Are you sure you wish to do this? 6. Finally, you have to allow pop-ups for www.moodle2.tnstate.edu in your browser (Explorer, Firefox, or Safari). If you have problems login into the system, please drop by 315B-Boswell Science Hall during Office Hours Final Exam Review Package 1. If the angle 15◦ is in standard position, find two positive coterminal angles and two negative coterminal angles. 1 1 1 (a) sin θ = , cos θ = , tan θ 5 12 13 cot θ = 5, sec θ = 12, csc θ = 13 (a) 375◦ , 735◦ , −345◦ , −705◦ (b) 285◦ , 555◦ , −255◦ , −525◦ (d) 105◦ , 195◦ , −75◦ , −165◦ 2. 12 , cos θ = 13 12 cot θ = , sec θ = 5 5 12 , tan θ = 13 5 5 12 , csc θ = 13 13 12 , cos θ = 13 5 cot θ = , sec θ = 12 5 12 , tan θ = 13 5 13 13 , csc θ = 5 2 (b) sin θ = (c) 195◦ , 375◦ , −165◦ , −345◦ Find the values of the six trigonometric functions for the angle θ. (c) sin θ = (d) sin θ = 5, cos θ = 12, tan θ = 13 cot θ = 13, sec θ = 12, csc θ = 5 Page 1 of 11 Review Package · Pre-Calculus II 3. Find the exact values of x and y. Department of Mathematical Sciences 6. Find y by referring to the graph of the trigonometric function. As x → π − , cot x → y (a) 2 (b) −∞ (c) 1 7. (a) (b) (c) (d) 4. (a) x = π, x = 4π √ √ x = 6 3, y = 12 3 √ √ x = 12 3, y = 6 3 √ x = 12, y = 6 3 √ x = 12 3, y = 6 (b) x = π, x = 8. Find the exact values of the trigonometric functions for the acute angle θ. 15 sin θ = 17 1 1 15 (a) sin θ = , cos θ = , tan θ = 17 17 8 cot θ = 15, sec θ = 17, csc θ = 8 17 1 15 (b) sin θ = , cos θ = , tan θ = 17 15 8 8 cot θ = 15, sec θ = 17, csc θ = 15 17 1 15 (c) sin θ = , cos θ = , tan θ = 17 8 15 17 cot θ = 15, sec θ = , csc θ = 8 17 15 8 15 (d) sin θ = , cos θ = , tan θ = 17 17 8 17 17 8 cot θ = , sec θ = , csc θ = 15 8 15 5. Refer to the graph of y = cos x to find the exact values of x in the interval [π, 4π] that satisfy the equation. cos x = 1 (a) III (c) I (b) IV (d) II π 2 (d) x = 2π, x = 4π Refer to the graph of y = cos x to find the exact values of x in the interval [0, 4π] that satisfy the equation. 1 cos x = − 2 4π 10π 7π π ,x= ,x= ,x= 3 3 3 2 2π 4π 10π 8π (b) x = ,x= ,x= ,x= 3 3 3 3 2π 4π 11π 7π ,x= ,x= ,x= (c) x = 3 3 3 2 2π 7π 10π 8π (d) x = ,x= ,x= ,x= 3 3 3 3 (a) x = 9. Find the reference angle θR if θ equal π 3 π (b) θR = 2 (a) θR = Find the quadrant containing θ if the given conditions are true. csc θ > 0 and sec θ < 0 π 2 (c) x = 2π, x = 10. Page 2 of 11 2π 3 π (d) θR = 6 (c) θR = Find the period. y = sin 8x π 8 (b) 8π (c) 8 (a) (d) 4π (e) π 4 2π . 3 Review Package · Pre-Calculus II 11. Sketch the graph of the equation. y = 4sin(x − π ) 3 Department of Mathematical Sciences Find the exact value. tan 45◦ + tan 210◦ 13. 1 (a) 1 + √ 3 1 1 + √3 (b) 2 14. (a) 15. (a) cos (−7) (c) sin (3) (b) cos (−3) (d) sin (−7) 13 If α and β are acute angles such that csc α = 12 4 and cot β = , find: 3 tan (α + β) (b) 16. 63 16 6 7 44 125 13 (b) − 44 (c) 7 16 63 (d) − 2 (c) 7 3 If tan α = − and cot β = for a second24 4 quadrant angle α and a third-quadrant angle β, find: cos (α − β) (a) 17. 2 (d) 1 + √ 3 Express as a trigonometric function of one angle. cos(2) sin(−5) − cos(5) sin(2) (a) − (b) (c) 1 13 125 4 (d) − 13 (c) Tell whether the following equation is an identity. cos (u + v) · cos (u − v) = 2 cos u cos v (a) The equation is an identity (b) The equation is not an identity 18. 12. π π + cos 3 4 √ √ (c) 5 − 2 √ 1+ 2 (d) 2 Find the exact value. cos (a) 4 √ (b) 5 3 If the following expression is equated to one of the expressions below, the resulting equation is an identity. x x 6 cos sin 2 2 Select the correct expression. (a) −3 cos x (b) 6 sin x Page 3 of 11 (c) 6 cos x (d) 3 sin x Review Package · Pre-Calculus II 19. Find the solutions of the equation that are in 2π the interval [0, ). 7 cos 7u + cos 14u = 0 π π 5π , , 7 21 21 π 4π 8π (b) 0, , , 7 21 21 (a) 20. π 2π 4π , , 7 21 21 2π 4π (d) 0, , 21 21 (c) Department of Mathematical Sciences 25. Find the exact value of the expression. 1 cos−1 (− ) 2 2π 2π (a) − (c) − 5 3 2π 2π (b) (d) 5 3 26. Find the exact value of the expression. 1 arctan √ 3 π π (a) (c) 4 3 π (b) 6 27. Find the exact value of the expression. 3 sin [arcsin (− )] 10 3 3 (c) − (a) − 8 10 7 (b) − 8 28. Find the exact value of the expression. 1 cos [cos−1 (− )] 8 1 1 (a) − (c) 6 2 1 1 (b) − (d) 8 10 29. Find the exact value of the expression. 5π cos−1 [cos ( )] 6 π 5π (c) − (a) 6 6 π (b) 3 30. Find the exact value of the expression. 2 sin [cos−1 (− )] 3 √ √ 10 13 (c) (a) 3 3 √ √ 5 11 (b) (d) 3 3 Express as a sum or difference. sin 6t sin 3t 1 1 cos (4t) − cos (8t) 2 2 (b) cos (3t) − cos (9t) 1 1 (c) cos (3t) − cos (9t) 2 2 1 1 (d) sin (3t) − sin (9t) 2 2 (a) 21. Express as a sum or difference. 2 sin 7θ cos 4θ (a) cos (11θ) + cos (3θ) 1 1 (b) sin (11θ) + sin (3θ) 2 2 (c) cos (10θ) + cos (4θ) (d) sin (11θ) + sin (3θ) 22. Express as a sum or difference. 3 cos 4x sin 6x 3 3 sin (10x) + cos (2x) 2 2 3 3 (b) sin (2x) − sin (10x) 2 2 (c) cos (2x) + cos (10x) 1 1 (d) cos (3x) − cos (11x) 2 2 (a) 23. 24. Express as a product. sin 11θ + sin 3θ (a) 2 cos (7θ) cos (4θ) (c) 2 sin (7θ) cos (4θ) (b) 2 sin (8θ) sin (3θ) (d) 2 cos (8θ) sin (3θ) 31. Express as a product. sin 3t − sin 15t (a) 2 cos (9t) cos (6t) (b) 2 sin (10t) sin (5t) (c) −2 sin (10t) cos (5t) (d) −2 cos (9t) sin (6t) Page 4 of 11 Complete the statement. As x → 1− , cos−1 x → (a) − (b) 0 π 2 (c) − π 6 Review Package · Pre-Calculus II 32. Find the solutions of the equation that are in the given interval. π π 6 sin3 θ + 18 sin2 θ − 5 sin θ − 15 = 0; (− , ) 2 2 Department of Mathematical Sciences (a) θ = 0.9503, θ = −1.3503 (b) θ = 1.0503, θ = −1.2503 (c) θ = 0.8503, θ = −1.4503 (d) θ = 1.1503, θ = −1.1503 33. Find the solutions of the equation that are in the given interval. sin 2x = −1.5 cos x; [0, 2π) 37. (a) x = 1.8708, x = 5.0124 x = 5.7351, x = 3.6897 (c) x = 1.7708, x = 4.9124 x = 5.2351, x = 3.7897 38. 34. (a) β = 64◦ , b ≈ 11.4, c ≈ 12.4 39. (c) β = 63◦ , b ≈ 11.4, c ≈ 12.5 (d) β = 63◦ , b ≈ 11.3, c ≈ 12.5 35. (a) no triangle exists 40. (c) α = 40◦ , β = 55◦ , a = 10 (d) α = 40◦ , β = 55◦ , a = 8 36. A straight road makes an angle of 15◦ with the horizontal. When the angle of elevation of the sun is 57◦ , a vertical pole at the side of the road casts a shadow d = 87 feet long directly down the road, as shown in the figure. Approximate the length of the pole. (d) 106.79ft (a) 29◦ , 104◦ , 46◦ (c) 35◦ , 101◦ , 44◦ (b) 29◦ , 101◦ , 44◦ (d) 35◦ , 104◦ , 46◦ (a) 26◦ (c) 25◦ (b) 23◦ (d) 29◦ Approximate the area of a parallelogram that has sides of lengths a and b if one angle at a vertex has measure θ a = 9.0, b = 16.0, θ = 40◦ Solve △ABC. y = 85◦ , c = 11, b = 12 (b) α = 38◦ , β = 57◦ , a = 10 (b) 106.89ft A triangular plot of land has sides of lengths 420 feet, 310 feet, and 180 feet. Approximate the smallest angle between the sides. Solve △ABC. α = 39◦ , y = 78◦ , a = 8.1 (b) β = 63◦ , b ≈ 11.5, c ≈ 12.6 (c) 107.19ft Solve △ABC. a = 10.0, b = 17.0, c = 12.0 (b) x = 1.5708, x = 4.7124 x = 5.4351, x = 3.9897 (d) x = 1.6708, x = 4.8124 x = 5.3351, x = 3.8897 (a) 106.69ft 41. Page 5 of 11 (a) 89.3 (c) 92.6 (b) 95.2 (d) 96.8 Find 3a + 5b. a = (6, −2), b = (3, 3) (a) 3a + 5b = (33, 9) (c) 3a + 5b = (27, 15) (b) 3a + 5b = (39, 12) (d) 3a + 5b = (15, 15) Find ||a||. a = (−5, −2) (a) ||a|| = (b) ||a|| = √ √ 26 29 (c) ||a|| = (d) ||a|| = √ √ 30 27 Review Package · Pre-Calculus II 42. Sketch the vector corresponding to a + b. a = (−2, 4), b = (−4, 2) Department of Mathematical Sciences 7π 5π (a) θ = (c) θ = 4 4 3π (b) θ = 4 44. Find the magnitude of the vector a. −6i + 7j √ √ (a) 86 (c) 87 √ √ (b) 88 (d) 85 a = 45. Find a unit vector that has the same direction as the vector a. a = (0, 3) (a) 46. (a) (1, 0) (c) (0, 1) (b) (1, 1) (d) (0, −3) Find a vector that has the opposite direction of 6i − 2j and two times the magnitude. (a) −12i + 4j (b) −10i + 2j 47. (b) (b) 54 49. (c) −10 (d) 46 Find the dot product of the two vectors 4i and 2i + 10j. (a) 8 (c) 18 (b) 24 (d) 0 Given that a = (5, −3), b = (1, 4), and c = (−1, 3), find the number a · (b + c). (c) 50. (a) 21 (c) 31 (b) −11 (d) −21 Find the absolute value |9 − 12i| (a) 15 (b) −15 51. 43. (d) −13i + 5j Find the dot product of the two vectors (−4, 1) and (5, 10). (a) 30 48. (c) −15i + 7j Find the smallest positive angle θ from the positive x-axis to the vector OP that corresponds to a. a = (6, −6) Page 6 of 11 (c) −12 (d) 9 Find the absolute value |9i| (a) 9 (b) −i (c) −9 (d) i Review Package · Pre-Calculus II 52. Express the complex number in trigonometric form √ with 0 ≤ θ ≤ 2π. 9 3 + 9i π 3 7π (b) 18cis 6 (a) 9cis 53. (d) 18cis π 6 π 6 Express the complex number in trigonometric form with 0 ≤ θ ≤ 2π. (a) 8cisπ π (b) 8cis 2 54. (c) −18cis 59. (c) 8cis0 √ 7 113cis(tan−1 ) 8 √ π (b) 113cis 2 (d) −8cisπ √ 7 113cis(tan ) 8 √ 7 (d) 113cis 8 (c) 55. Express in the form a + bi, where a and b are real numbers. π π 14(cos + i sin ) 4 4 √ √ √ √ (a) 7 2 − 7 2i (c) 7 2 + 7 2i √ √ √ (b) 7 3 + 7i (d) 14 2 + 14 2i 56. Express in the form a + bi, where a and b are real numbers. 7(cos π + i sin π) (a) 7i (b) −7 + 0i z1 = −5, z2 = −2 (b) 256i (d) 256 (b) 4096 (c) −2048i (d) 2048 60. Use De Moivre’s theorem to change the given complex number to the form a + bi, where a and b are√real numbers. √ 2 2 + i)15 (− 2 2 √ √ √ √ 2 2i 2 2i (c) − − − (a) 2 2 2 2 √ √ √ √ 2 2i 2 2i (b) (d) − + + 2 2 2 2 61. Use De Moivre’s theorem to change the given complex number to the form a + bi, where a and b are √ real numbers. ( 3 + i)11 √ (a) −1024 3 + 1024i √ (b) −1024 3 − 1024i (d) 7 + 0i z1 . z2 (c) 128i (a) −4096i (c) −7i Use trigonometric forms to find z1 z2 and (a) 128 Use De Moivre’s theorem to change the given complex number to the form a + bi, where a and b are real numbers. (−1 + i)24 Express the complex number in trigonometric form with 0 ≤ θ ≤ 2π. 8 + 7i (a) 57. Department of Mathematical Sciences 58. Use De Moivre’s theorem to change the given complex number to the form a + bi, where a and b are real numbers. 62. z1 5 = + 0i z2 4 z1 5 (b) z1 z2 = 10 + 0i, = + 0i z2 2 z1 5 (c) z1 z2 = 10 + 0i, = − + 0i z2 2 z1 5 (d) z1 z2 = −10 + 0i, + + 0i z2 2 (a) z1 z2 = 10 + 0i, Find the eight eighth roots of five. (a) (b) (c) (d) Page 7 of 11 √ (c) 1024 3 − 1024i √ (d) 1024 3 + 1024i √ 2 2i ± ) 5( 2 √ 2 √ 1 3i 8 5( ± ) 2 2 √ ±85 √ √ 3 i 8 5( ± ) 2 2 √ 8 √ (e) 1 √ (f) ± 8 5i (g) √ 8 (h) √ 8 √ 2 2i ± ) 5(− 2 2 7i √ Review Package · Pre-Calculus II 63. Find the solutions of the equation. x4 −625 = 0 (a) 10i, −10i (b) 10, −10, 10i, −10i 64. 65. 69. 1. (c) 5, −5, 5i, −5i Department of Mathematical Sciences x2 y 2 Find the one of the foci of the ellipse + = 49 9 (d) 5, −5 Find the focus of the parabola. 4y = x2 (a) F(2, 1) (c) F(0, 1) (b) F(0, 4) (d) F(1, 1) √ (a) ( 40, 0) √ (b) ( 58, 0) Find an equation for the parabola shown in the figure. 70. Sketch the graph of the ellipse. y 2 + 4x2 = 4. (a) (a) y 2 = 4(x − 1) (b) x2 = 4(y − 1) 66. (b) y 2 = 24(x − 2) (d) y 2 = (x − 1) (c) x2 = 24(y − 2) (d) y 2 = (x − 2) Find an equation of the parabola that satisfies the condition. Vertex V(−7, 5), directrix y = 3 (a) (x − 7)2 = 8(y − 5) (b) (x + 7)2 = (y − 5) 68. (c) y 2 = 4(x + 1) Find an equation of the parabola that satisfies the condition. Focus F(8, 0), directrix x = −4 (a) y 2 = 24(x + 2) 67. √ (c) (0, − 58) √ (d) (0, 40) (c) (y + 7)2 = 8(y − 5) (d) (x + 7)2 = 8(y − 5) Find the upper vertice of the ellipse (a) (6, 0) (c) (8, 0) (b) (0, 2) (d) (−6, 0) x2 y 2 + = 1. 36 4 Page 8 of 11 (b) Review Package · Pre-Calculus II Department of Mathematical Sciences (y + 5)2 74. Find the foci of the hyperbola − 4 (x + 5)2 =1 7 √ √ (a) F(−2, −2 + 11), F’(−2, −2 − 11) √ √ (b) F(−5, −5 + 17), F’(−5, −5 − 17) √ √ (c) F(−5, −5 + 11), F’(−5, −5 − 11) (c) 75. 71. Find a vertex of the ellipse (y − 4)2 = 1. 9 (a) (8, −4) (b) (0, −4) 72. Find an equation for the hyperbola shown in the figure (x − 4)2 + 16 (c) (0, 4) (d) (8, 4) Find an equation for the ellipse shown in the figure. x2 y2 − =1 49 33 x2 y2 (b) − =1 16 33 (a) 76. (c) x2 y2 − =1 16 49 Identify the graph of the equation as a parabola (with vertical or horizontal axis), circle, ellipse, or hyperbola 1 (x + 3) = y 2 3 (a) Parabola with horizontal axis (b) Hyperbola (c) Circle x2 y 2 + =1 8 6 x2 y 2 (b) + =1 6 8 (a) 73. x2 y 2 + =1 16 9 x2 y2 (d) + =1 9 16 Find the vertices of the hyperbola (a) V(3, 0), V’(−3, 0) (b) V(9, 0), V’(−9, 0) 77. (c) Identify the graph of the equation as a parabola (with vertical or horizontal axis), circle, ellipse, or hyperbola −x2 = y 2 − 25 x2 y 2 − =1 81 25 (c) V(5, 0), V’(−5, 0) Page 9 of 11 (a) Ellipse (b) Parabola with vertical axis (c) Circle Review Package · Pre-Calculus II 78. Use the graph of f to find the simplest expression g(x) such that the equation f (x) = g(x) is an identity. Verify the identity. sin2 x − sin4 x f (x) = (1 − sec2 x) cos4 x (a) g(x) = cos x (d) g(x) = tan x (b) g(x) = 1 (c) g(x) = sin x (e) g(x) = −1 79. Complete the identity selecting its right side from five expressions given in the choices. sin 4x + cos 4x cot 4x = (a) (b) (c) (d) (e) 80. Department of Mathematical Sciences 81. Complete the identity selecting its right side from five expressions given in the choices. cot2 4α − cos2 4α = (a) 2 csc2 4α (b) csc2 4α + cot2 4α (c) cot2 4α + cos2 4α 82. (e) cos2 8α Complete the identity selecting its right side from five expressions given in the choices. sec2 u − 1 = sec2 u (a) csc2 u (b) sin2 u (c) cos2 u sec 4x csc 4x sec 4x csc 4x + tan 4x csc 4x cot 4x cos 4x sec 4x (d) cot2 4α cos2 4α Complete the identity selecting its right side from five expressions given in the choices. cot y − tan y sin y cos y (a) sin2 y − cos2 y (d) csc2 y + sec2 y (b) cos2 y − sin2 y (c) sin2 y + cos2 y (e) csc2 y − sec2 y Page 10 of 11 (d) sec2 u (e) cot2 u Review Package · Pre-Calculus II Department of Mathematical Sciences Answer Key Problem Answer Problem Answer Problem Answer Problem Answer Problem Answer 1 A 18 D 35 A 52 D 69 A 2 C 19 A 36 B 53 A 70 B 3 B 20 C 37 ? 54 A 71 D 4 D 21 D 38 B 55 C 72 D 5 D 22 B 39 C 56 B 73 B 6 B 23 C 40 A 57 B 74 C 7 D 24 D 41 B 58 D 75 B 8 B 25 D 42 A 59 B 76 A 9 A 26 B 43 A 60 C 77 C 10 E 27 C 44 D 61 C 78 E 11 B 28 B 45 C 62 A,C,F,G 79 C 12 D 29 A 46 A 63 C 80 3 13 A 30 B 47 C 64 C 81 D 14 D 31 B 48 A 65 A 82 B 15 A 32 D 49 D 66 B 16 A 33 B 50 A 67 D 17 B 34 B 51 A 68 B Last Version: November 20, 2013 Page 11 of 11
© Copyright 2026 Paperzz