Matakuliah : I0014 / Biostatistika Tahun : 2008 Pengujian Hipotesis (II) Pertemuan 12 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : • Mahasiswa dapat menguji hipotesis untuk proporsi (C3) • Mahasiswa dapat menguji hipotesis untuk ragam tengah (C3) Bina Nusantara Outline Materi • Pendugaan Proporsi • Pendugaan Ragam Bina Nusantara Pengujian Proporsi Populasi When the sample size is large (both np> 5 and nq > 5), the distribution of the sample proportion may be approximated Large - sample test statistic for the population proportion, p: by a normal distribution with mean p and variance pq. p p0 z p0 q 0 n where q 0 (1 p0 ) Bina Nusantara Pengujian Ragam Populasi 1. Rumuskan hipotesis nol : H 0 : 2 02 H 0 : 2 02 H 0 : 2 02 2. Rumuskan hipotesisi alternatif: H1 : 2 0 2 H1 : 2 0 2 H1 : 2 0 2 α 3. Tentukan taraf nyata uji: hit 4. Tentukan nilai hitung uji statistik: 2 Bina Nusantara n 1S 0 2 2 5. Tentukan wilayah kritis: 2 hit 21 untuk H1 : 2 0 2 2 hit 2 untuk H1 : 2 0 2 2 hit 21 dan 2 hit 2 untuk H1 : 2 0 2 2 2 2 , 21 , 2 2 , 21 2 merupakan nilai khi kuadrat dengan db = v = n-1 6. Kesimpulan: tolak H0 bila 2hit jatuh di wilayah kritis Bina Nusantara Uji Dua Proporsi Populasi • Hypothesized difference is zero – I: Difference between two population proportions is 0 • p 1 = p2 » H0: p1 -p2 = 0 » H1: p1 -p20 – II: Difference between two population proportions is less than 0 • p1 p2 » H0: p1 -p2 0 » H1: p1 -p2 > 0 • Hypothesized difference is other than zero: – III: Difference between two population proportions is less than D • p1 p2+D » H0:p-p2 D » H1: p1 -p2 > D Bina Nusantara Dihipotesiskan Beda Dua Proporsi Nol When the population proportions are hypothesized to be equal, then a pooled estimator of the proportion ( ) pmay be used in calculating the test statistic. A large-sample test statistic for the difference between two population proportions, when the hypothesized difference is zero: z ( p1 p 2 ) 0 1 1 p(1 p) n1 n2 x1 x is the sample proportion in sample 1 and p 1 1 is the sample n1 n1 proportion in sample 2. The symbol p stands for the combined sample where p1 proportion in both samples, considered as a single sample. That is: p Bina Nusantara x1 x1 n1 n 2 Uji Kesamaan Ragam Dua Populasi Test statistic for the equality of the variances of two normally distributed populations: F n 1,n 1 1 2 • I: Two-Tailed Test • 1 = 2 • H0: 1 = 2 • H1: 2 II: One-Tailed Test • 12 • H0: 1 2 • H1: 1 2 • Bina Nusantara s12 2 s2 Penutup • Sampai saat ini Anda telah mempelajari pengujian hipotesis untuk ragam, dan proporsi, baik satu populasi maupun dua populasi • Untuk dapat lebih memahami penggunaan pengujian hipotesis tersebut, cobalah Anda pelajari materi penunjang, dan mengerjakan latihan Bina Nusantara
© Copyright 2026 Paperzz