Homogenization of a Contact Problem in Linear Viscoleasticity Abdelhamid Ainouz Labo. AMNEDP, USTHB february 1st, 2009 A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 1 / 18 The micro-model Let Y = [0, 1]3 be the generic cell of periodicity divided as Y = Ym [ Yinc [ Σ where Ym is the viscoelastic material, Yinc the rigid material and Σ is the interface barrier that separates them. A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 2 / 18 The micro-model Let Y = [0, 1]3 be the generic cell of periodicity divided as Y = Ym [ Yinc [ Σ where Ym is the viscoelastic material, Yinc the rigid material and Σ is the interface barrier that separates them. Let Ω be a bounded domain of R3 with a smooth boundary Γ. A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 2 / 18 The micro-model Let Y = [0, 1]3 be the generic cell of periodicity divided as Y = Ym [ Yinc [ Σ where Ym is the viscoelastic material, Yinc the rigid material and Σ is the interface barrier that separates them. Let Ω be a bounded domain of R3 with a smooth boundary Γ. A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 2 / 18 The micro-model Let Y = [0, 1]3 be the generic cell of periodicity divided as Y = Ym [ Yinc [ Σ where Ym is the viscoelastic material, Yinc the rigid material and Σ is the interface barrier that separates them. Let Ω be a bounded domain of R3 with a smooth boundary Γ. For all ε > 0, set ε Ωm = fx 2 Ω; ε Ωinc = fx 2 Ω; Σ ε = ε ∂Ωm x χm ( ) = 1g, ε x χinc ( ) = 1g, ε (1) ε \ ∂Ωinc where χm (y ) (resp. χinc (y )) denotes the characteristic function of Ym (resp. Yinc ) extended to R3 by Y -periodicity. A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 2 / 18 The micro-model Let Y = [0, 1]3 be the generic cell of periodicity divided as Y = Ym [ Yinc [ Σ where Ym is the viscoelastic material, Yinc the rigid material and Σ is the interface barrier that separates them. Let Ω be a bounded domain of R3 with a smooth boundary Γ. For all ε > 0, set ε Ωm = fx 2 Ω; ε Ωinc = fx 2 Ω; Σ ε = ε ∂Ωm x χm ( ) = 1g, ε x χinc ( ) = 1g, ε (1) ε \ ∂Ωinc where χm (y ) (resp. χinc (y )) denotes the characteristic function of Ym (resp. Yinc ) extended to R3 by Y -periodicity. ε \ Γ = ∅. We assume that Ωinc A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 2 / 18 The balance equation reads : ε ∂2tt um ε ∂2tt uinc ε divσ m ε divσ inc ε = fmε in Ωm , ε ε = finc in Ωinc (2) ε (resp. uε ) is the displacement of the matrix (resp. where um inc ε (resp. σ ε ) is the stress tensor in Ωε (resp. Ωε ). inclusions), σ m m inc inc A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 3 / 18 The balance equation reads : ε ∂2tt um ε ∂2tt uinc ε divσ m ε divσ inc ε = fmε in Ωm , ε ε = finc in Ωinc (2) ε (resp. uε ) is the displacement of the matrix (resp. where um inc ε (resp. σ ε ) is the stress tensor in Ωε (resp. Ωε ). inclusions), σ m m inc inc ε : The Kelvin-Voigt model for the viscoelastic material Ωm ε ε ε ε ε σm = Am e (um )+Bm e (vm ) (3) ε = ∂ uε the velocity vector of uε . where vm t m m A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 3 / 18 The balance equation reads : ε ∂2tt um ε ∂2tt uinc ε divσ m ε divσ inc ε = fmε in Ωm , ε ε = finc in Ωinc (2) ε (resp. uε ) is the displacement of the matrix (resp. where um inc ε (resp. σ ε ) is the stress tensor in Ωε (resp. Ωε ). inclusions), σ m m inc inc ε : The Kelvin-Voigt model for the viscoelastic material Ωm ε ε ε ε ε σm = Am e (um )+Bm e (vm ) (3) ε = ∂ uε the velocity vector of uε . where vm t m m ε The Navier model for the inclusions Ωinc ε ε ε σ inc = Ainc e (uinc ) (4) where e ( ) is the linearized strain tensor. A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 3 / 18 The micro-model ε , Aε and Bε are given by The tensors Am m inc x x x ε ε ε Am (x ) = Am ( ), Ainc (x ) = Ainc ( ), Bm (x ) = Bm ( ) (5) ε ε ε where Am (y ), Ainc (y ) and Bm (y ) are Y -periodic smooth tensors satisfying the classical conditions of symmetry and coerciveness. A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 4 / 18 The micro-model ε , Aε and Bε are given by The tensors Am m inc x x x ε ε ε Am (x ) = Am ( ), Ainc (x ) = Ainc ( ), Bm (x ) = Bm ( ) (5) ε ε ε where Am (y ), Ainc (y ) and Bm (y ) are Y -periodic smooth tensors satisfying the classical conditions of symmetry and coerciveness. The Dirichlet boundary condition on the exterior boundary: ε = 0 on Γ. um A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 (6) february 1st, 2009 4 / 18 The micro-model ε , Aε and Bε are given by The tensors Am m inc x x x ε ε ε Am (x ) = Am ( ), Ainc (x ) = Ainc ( ), Bm (x ) = Bm ( ) (5) ε ε ε where Am (y ), Ainc (y ) and Bm (y ) are Y -periodic smooth tensors satisfying the classical conditions of symmetry and coerciveness. The Dirichlet boundary condition on the exterior boundary: ε = 0 on Γ. um On the interface friction: A. Ainouz (Labo. AMNEDP, USTHB) Σε , (6) we prescribe a linear contact condition with CIMPA EGYPT ’09 february 1st, 2009 4 / 18 The micro-model ε , Aε and Bε are given by The tensors Am m inc x x x ε ε ε Am (x ) = Am ( ), Ainc (x ) = Ainc ( ), Bm (x ) = Bm ( ) (5) ε ε ε where Am (y ), Ainc (y ) and Bm (y ) are Y -periodic smooth tensors satisfying the classical conditions of symmetry and coerciveness. The Dirichlet boundary condition on the exterior boundary: ε = 0 on Γ. um On the interface friction: 1 Σε , (6) we prescribe a linear contact condition with Normal compliance law x ε ε ε σm ν = σ inc νε = εg ( ) ε A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 ε ε ε(um ν ε uinc ν ε ), february 1st, 2009 (7) 4 / 18 The micro-model ε , Aε and Bε are given by The tensors Am m inc x x x ε ε ε Am (x ) = Am ( ), Ainc (x ) = Ainc ( ), Bm (x ) = Bm ( ) (5) ε ε ε where Am (y ), Ainc (y ) and Bm (y ) are Y -periodic smooth tensors satisfying the classical conditions of symmetry and coerciveness. The Dirichlet boundary condition on the exterior boundary: ε = 0 on Γ. um On the interface friction: Σε , we prescribe a linear contact condition with 1 Normal compliance law 2 x ε ε ε σm ν = σ inc νε = εg ( ) ε Linear viscous friction law ε ε ε σm τ = σ inc τ ε = A. Ainouz (Labo. AMNEDP, USTHB) (6) ε ε ε(um ν ε ε(vm CIMPA EGYPT ’09 τε ε uinc ν ε ), ε vinc τ ε ). february 1st, 2009 (7) (8) 4 / 18 Finally, the initial conditions ε (x, 0) = 0; um ε uinc (x, 0) = 0; A. Ainouz (Labo. AMNEDP, USTHB) ε ε vm (x, 0) = 0 in Ωm , ε ε vinc (x, 0) = 0 in Ωinc . CIMPA EGYPT ’09 february 1st, 2009 (9) 5 / 18 Finally, the initial conditions ε (x, 0) = 0; um ε uinc (x, 0) = 0; A. Ainouz (Labo. AMNEDP, USTHB) ε ε vm (x, 0) = 0 in Ωm , ε ε vinc (x, 0) = 0 in Ωinc . CIMPA EGYPT ’09 february 1st, 2009 (9) 5 / 18 Finally, the initial conditions ε (x, 0) = 0; um ε uinc (x, 0) = 0; ε ε vm (x, 0) = 0 in Ωm , ε ε vinc (x, 0) = 0 in Ωinc . (9) Notations : Hmε Vmε Vε ε 3 ε ε ε = L2 (Ωm ) , Hinc = L2 (Ωinc )3 , H ε = Hmε Hinc , 1 ε 3 ε 1 ε 3 = f u 2 H (Ωm ) ; ujΓ = 0g, Vinc = H (Ωinc ) , ε = Vmε Vinc . A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 5 / 18 Finally, the initial conditions ε (x, 0) = 0; um ε uinc (x, 0) = 0; ε ε vm (x, 0) = 0 in Ωm , ε ε vinc (x, 0) = 0 in Ωinc . (9) Notations : Hmε Vmε Vε Uε = ε 3 ε ε ε = L2 (Ωm ) , Hinc = L2 (Ωinc )3 , H ε = Hmε Hinc , 1 ε 3 ε 1 ε 3 = f u 2 H (Ωm ) ; ujΓ = 0g, Vinc = H (Ωinc ) , ε = Vmε Vinc . 8 ε ε < um in Ωm : ε in Ωε uinc inc A. Ainouz (Labo. AMNEDP, USTHB) ; ε [Uε ] = um CIMPA EGYPT ’09 ε uinc the jump over Σε . february 1st, 2009 5 / 18 The space V ε is equipped with the norm ε )k2L2 (Ωε kUε k2V ε = ke (um m) A. Ainouz (Labo. AMNEDP, USTHB) 3 3 ε + ke (uinc )k2L2 (Ωε CIMPA EGYPT ’09 inc ) 3 3 + ε k[Uε ]k2L2 (Σε )3 . february 1st, 2009 6 / 18 The space V ε is equipped with the norm ε )k2L2 (Ωε kUε k2V ε = ke (um m) 3 3 ε + ke (uinc )k2L2 (Ωε inc ) 3 3 + ε k[Uε ]k2L2 (Σε )3 . x x x x Aε (x ) = χm ( )Am ( ) + χinc ( )Ainc ( ), ε ε ε ε x x ε B ( x ) = χ m ( ) Bm ( ) . ε ε A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 (10) 6 / 18 The space V ε is equipped with the norm ε )k2L2 (Ωε kUε k2V ε = ke (um m) 3 3 ε + ke (uinc )k2L2 (Ωε inc ) 3 3 + ε k[Uε ]k2L2 (Σε )3 . x x x x Aε (x ) = χm ( )Am ( ) + χinc ( )Ainc ( ), ε ε ε ε x x ε B ( x ) = χ m ( ) Bm ( ) . ε ε (10) Φ = ( ϕm , ϕinc ) 2 V ε , [Φ] = ϕm ϕinc , x ε x (x ). Fε (x ) = χm ( )fmε (x ) + χinc ( )finc ε ε A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 6 / 18 The weak formulation associated to the problem (2)-(9) is : Find Uε 2 W ε , Uε (x, 0) = 0, ∂t Uε (x, 0) = 0 such that Z Z x a (Uε , Φ ) = Fε Φ + ε g ( )(νε [Φ]) ε Ω Σε ε for all Φ 2 V where A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 (11) 7 / 18 The weak formulation associated to the problem (2)-(9) is : Find Uε 2 W ε , Uε (x, 0) = 0, ∂t Uε (x, 0) = 0 such that Z Z x a (Uε , Φ ) = Fε Φ + ε g ( )(νε [Φ]) ε Ω Σε ε for all Φ 2 V where A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 (11) 7 / 18 The weak formulation associated to the problem (2)-(9) is : Find Uε 2 W ε , Uε (x, 0) = 0, ∂t Uε (x, 0) = 0 such that Z Z x a (Uε , Φ ) = Fε Φ + ε g ( )(νε [Φ]) ε Ω Σε ε for all Φ 2 V where (11) W ε = fV = (vm , vinc ) 2 L2 (0, T ; V ε ); ∂t V 2 L2 (0, T ; H ε )g. equipped with the norm ε 2 ε kUε k2W ε = kum kL2 (0,T ;H 1 (Ωmε )3 ) + kuinc k2L2 (0,T ;H 1 (Ωε 3 inc ) ) 2 2 ε ε kvm kL2 (0,T ;L2 (Ωmε )3 ) + kvinc kL2 (0,T ;L2 (Ωε )3 ) inc ε 2 +ε k[U ]kL2 (0,T ;L2 (Σε )3 ) . a (Uε , Φ ) = Z Ω + A. Ainouz (Labo. AMNEDP, USTHB) + [< ∂2tt Uε , Φ > +(Aε e (Uε ) + B ε e (∂t Uε ))e (Φ)] Z Σε ε [ ∂ t [ Uε ] τ ε [ Φ ] CIMPA EGYPT ’09 [Uε ]νε (νε [Φ])] . february 1st, 2009 7 / 18 Theorem ε )3 , f ε 2 L2 ( Ωε )3 and g (y ) Assume that fmε 2 L2 (Ωm 0 Y periodic inc inc smooth function on Σ such that p ε kfmε kL2 (Ωmε )3 + kfinc kL2 (Ωε )3 + ε kg (x /ε)kL2 (Σε ) C . inc Then the problem (11) admits a unique solution Uε 2 W ε . Furthermore we have the a priori estimate : ε jjUε (t )jjW ε + ke (vm )kL2 (0,T ;L2 (Ωmε )3 3) C (T ) (12) where C (T ) is a postive constant independent of ε. Proof. Faedo-Galerkin method. A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 8 / 18 Two scale convergence A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 9 / 18 De…nition w ε 2 L2 ([0, T ] Ω) two-scale converges to w 0 2 L2 ([0, T ] ∞ (Y )) we have for all test function ψ 2 D(]0, T [ Ω; C# Z TZ 0 ! ε !0 A. Ainouz (Labo. AMNEDP, USTHB) Ω Y ) if x w ε (t, x )ψ(t, x, )dxdt ε Ω Z TZ 0 Ω Y w 0 (t, x, y )ψ(t, x, y )dxdydt. CIMPA EGYPT ’09 february 1st, 2009 9 / 18 Theorem 1 For each bounded sequence in L2 ([0, T ] two-scale convergent subsequence. A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 Ω), one can extract a february 1st, 2009 10 / 18 Theorem 1 2 For each bounded sequence in L2 ([0, T ] two-scale convergent subsequence. Ω), one can extract a If (w ε )is a bounded sequence in L2 ([0, T ]; H 1 (Ω)) then, up to a subsequence, there exist w 2 L2 ([0, T ]; H 1 (Ω)) and w 1 2 1 (Y ) /R) such that L2 ([0, T ] Ω; H# w ε two scale converges to w rw ε two scale converges to rw + ry w 1 . and ε Z TZ 0 ! ε !0 A. Ainouz (Labo. AMNEDP, USTHB) Σε x w ε (t, x )ψ(t, x, )dsε dt ε Z TZ 0 Ω Σ w (t, x )ψ(t, x, y )dxdsy dt CIMPA EGYPT ’09 february 1st, 2009 10 / 18 Thanks to (12) and the preceeding theorem, we have: ∞ (Y ))3 for all ϕm 2 D(]0, T [ Ω; C# m lim Z TZ 0 = Z TZ 0 A. Ainouz (Labo. AMNEDP, USTHB) ε Ωm Ω Ym x ε um (t, x ) ϕm (t, x, )dxdt ε um (t, x, y ) ϕm (t, x, y )dxdydt, CIMPA EGYPT ’09 february 1st, 2009 (13) 11 / 18 Thanks to (12) and the preceeding theorem, we have: ∞ (Y ))3 for all ϕm 2 D(]0, T [ Ω; C# m lim Z TZ 0 Z TZ = 0 ε Ωm Ω Ym x ε um (t, x ) ϕm (t, x, )dxdt ε um (t, x, y ) ϕm (t, x, y )dxdydt, (13) ∞ (Y ))3 for all ϕinc 2 D(]0, T [ Ω; C# inc lim Z TZ 0 = Z TZ 0 A. Ainouz (Labo. AMNEDP, USTHB) ε Ωinc Ω Y inc x ε uinc (t, x ) ϕinc (t, x, )dxdt ε uinc (t, x, y ) ϕinc (t, x, y )dxdydt. CIMPA EGYPT ’09 february 1st, 2009 (14) 11 / 18 Thanks to (12) and the preceeding theorem, we have: ∞ (Y ))3 for all Φm 2 D(]0, T [ Ω; C# m lim Z TZ 0 = Z TZ 0 A. Ainouz (Labo. AMNEDP, USTHB) ε Ωm Ω Ym 3 x ε e ( um ) Φm (t, x, )dxdt ε (e (um ) + ey u1m )Φm (t, x, y )dxdydt, CIMPA EGYPT ’09 february 1st, 2009 (15) 12 / 18 Thanks to (12) and the preceeding theorem, we have: ∞ (Y ))3 for all Φm 2 D(]0, T [ Ω; C# m lim Z TZ 0 = Z TZ 0 ε Ωm Ω Ym 3 x ε e ( um ) Φm (t, x, )dxdt ε (e (um ) + ey u1m )Φm (t, x, y )dxdydt, ∞ (Y ))3 for all Φinc 2 D(]0, T [ Ω; C# inc lim Z TZ 0 = Z TZ 0 ε Ωinc Ω Y inc A. Ainouz (Labo. AMNEDP, USTHB) (15) 3 x ε e (uinc ) Φinc (t, x, )dxdt ε (e (uinc ) + ey u1inc )Φinc (t, x, y )dxdydt. (16) CIMPA EGYPT ’09 february 1st, 2009 12 / 18 We also have lim ε = Z TZ 0 A. Ainouz (Labo. AMNEDP, USTHB) Z TZ 0 Ω Σ x ε um (t, x )ψ(t, x, )dsε dt ε Σε um (t, x, y )ψ(t, x, y )dxdsy dt, CIMPA EGYPT ’09 february 1st, 2009 (17) 13 / 18 We also have lim ε = = Z TZ 0 Ω Σ lim ε Z TZ Z TZ 0 Ω Σ x ε um (t, x )ψ(t, x, )dsε dt ε Σε um (t, x, y )ψ(t, x, y )dxdsy dt, 0 0 A. Ainouz (Labo. AMNEDP, USTHB) Z TZ Σε (17) x ε uinc (t, x )ψ(t, x, )dsε dt ε uinc (t, x, y )ψ(t, x, y )dxdsy dt. CIMPA EGYPT ’09 february 1st, 2009 (18) 13 / 18 Choosing test functions We take in (11) the following test functions h x x i ϕε θ (t ) ϕ(x, ) + εϕ1 (x, ) ε ε ϕ(x, y ) = χm (y ) ϕm (x ) + χinc (y ) ϕinc (x ) ϕ1 (x, y ) = χm (y ) ϕ1m (x, y ) + χinc (y ) ϕ1inc (x, y ) where θ (t ) 2 D(]0, T [); ϕm , ϕinc 2 D(Ω)3 and ∞ (Y ))3 . Passing to the two-scale limit we get ϕ1m , ϕ1inc 2 D(Ω; C# A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 14 / 18 Corollary The two scale homogenized system jYm j∂2tt um divx ( T (vm where Tij = jΣjδij A. Ainouz (Labo. AMNEDP, USTHB) Z Ym 1 [Am [e (um ) + ey (u1m )] + Bm [e (vm ) + ey (vm )]]) vinc )+H (um uinc ) = fm + ĝ in Ω, um = 0 on Γ R R Hij ; Hij = Σ (ν ν)ij ; ĝ = Σ g ν CIMPA EGYPT ’09 february 1st, 2009 15 / 18 Corollary The two scale homogenized system jYm j∂2tt um divx ( T (vm Z Ym vinc )+H (um jYinc j∂2tt uinc Z Y2 uinc ) = fm + ĝ in Ω, um = 0 on Γ R R Hij ; Hij = Σ (ν ν)ij ; ĝ = Σ g ν where Tij = jΣjδij T (vm 1 [Am [e (um ) + ey (u1m )] + Bm [e (vm ) + ey (vm )]]) divx ( Z Y inc vinc ) + H (um [Ainc (e (uinc ) + ey (u1inc ))]) uinc ) = finc + ĝ in Ω, [Ainc (e (uinc ) + ey (u1inc ))] ν = 0 on Γ A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 15 / 18 1 divy (Am [e (um ) + ey (u1m )] + Bm [e (v1 ) + ey (vm )]) = 0 in Ω divy (Ainc [e (uinc ) + ey (u1inc )]) = 0 in Ω 1 (Am [e (um ) + ey (u1m )] + Bm [e (vm ) + ey (vm )]) ν 1 Ainc [e (uinc ) + ey (uinc )] ν = 0 in Ω y ! u1m , u1inc are Y -periodic. A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 Ym Yinc = 0 in Ω Σ Σ february 1st, 2009 16 / 18 1 divy (Am [e (um ) + ey (u1m )] + Bm [e (v1 ) + ey (vm )]) = 0 in Ω divy (Ainc [e (uinc ) + ey (u1inc )]) = 0 in Ω 1 (Am [e (um ) + ey (u1m )] + Bm [e (vm ) + ey (vm )]) ν 1 Ainc [e (uinc ) + ey (uinc )] ν = 0 in Ω y ! u1m , u1inc are Y -periodic. Ym Yinc = 0 in Ω Σ Σ Initial Condition um (x, 0) = vm (x, 0) = 0, uinc (x, 0) = vinc (x, 0) = 0. A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 16 / 18 Theorem The homogenized problem: ∂2tt um div (Ahom m e ( um ) + T (vm ∂2tt u2 hom Bm e ( ∂ t um ) + vinc )+H (um Z t 0 Cmhom (t uinc ) = fm divx (Ahom inc e (uinc )) + T (vm um = 0, s )e (um )ds ) ĝ in Ω, vinc ) + H (um hom Ainc e (uinc ) ν = 0 on Γ, uinc ) = finc ĝ , um (0) = uinc (0) = 0 in Ω, vm (0) = vinc (0) = 0 in Ω. A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 17 / 18 M. Buckingham, Wave propagation, stress relaxation and grain-to-grain shearing in saturated, unconsolidated marine sediments, Acous. Soc. of Am. journal, 108 (6) (2000) pp 2796-2815. D. Cioranescu and F. Murat, un terme étrange venu d’alleurs. Nonlinear Partial Di¤erential Equations and Their Applications (H. Brézis and J. L. Lions, eds), Collège de France Seminar, vol. II et III, Research Notes in Mathematics, vol. 60 and 70, Pitman, 1982, pp. 93-138 and 154-178. P. Donato, L. Faella and S. Monsurro, Homogenization of the wave equation in composites with imperfect interface : A memory e¤ect, J. de Math. Pures et Appl. 87 (2007) pp 119-143 G. Francfort, P. Suquet, Homogenization and mechanical dissipation in thermoviscoelasticity. Arch. Rational Mech. Anal. 96, (1986)265–293 R. Gilbert, A. Panchenko and X. Xie, Homogenization of a viscoelastic matrix in linear frictional contact. Math. Meth. App. Sci., 28, (2005) pp 309-328. A. Ainouz (Labo. AMNEDP, USTHB) CIMPA EGYPT ’09 february 1st, 2009 18 / 18
© Copyright 2026 Paperzz