Matakuliah Tahun Versi : H0434/Jaringan Syaraf Tiruan : 2005 :1 Pertemuan 10 PERFORMANCE SURFACES 1 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : • Menjelaskan pengertian tentang performance learning. 2 Outline Materi • Permukaan kinerja. • Titik Optimal 3 Taylor Series Expansion F ( x ) = F ( x* ) + d F( x ) dx x = x* ( x – x* ) 2 1 d + --F( x) 2 d x2 2 ( x – x* ) + x = x* n 1 d + ----F( x) n! d x n ( x – x* ) + n x = x* 4 Example –x F( x ) = e Taylor series of F(x) about x* = 0 : F (x ) = e –x –0 = e –0 1 –0 2 1 –0 3 – e ( x – 0 ) + ---e ( x – 0 ) – -- e ( x – 0 ) + 2 6 1 2 1 3 F ( x ) = 1 – x + -- x – --- x + 2 6 Taylor series approximations: F( x ) F0 ( x ) = 1 F( x) F1 ( x) = 1 – x 1 2 F ( x ) F 2 ( x ) = 1 – x + --- x 2 5 Plot of Approximations 6 5 4 F2 ( x ) 3 2 1 F1 ( x ) F0 ( x ) 0 -2 -1 0 1 2 6 Vector Case F( x) = F( x1 x 2 x n ) F ( x ) = F ( x* ) + F(x ) F(x) ( x 1 – x 1* ) + ( x 2 – x 2* ) * * x1 x2 x=x x=x 2 2 1 * * ++ F( x) x – x + -F x – x x ( ) ( ) ( ) n n 1 1 2 x2 xn x = x* x = x* 1 2 1 + --F(x) ( x 1 – x 1* ) ( x 2 – x 2* ) + * 2 x 1 x 2 x=x 7 Matrix Form T * F(x) = F(x ) + F(x) x = x* ( x – x* ) T 2 1 * + --- ( x – x ) F ( x ) ( x – x* ) + * 2 x=x F(x) xn 2 2 x1 F(x) 2 F(x) 2 F ( x ) = x 2 x 1 2 2 2 F(x) x 2 x n F(x ) F(x) x 1 x 2 x 1 x n 2 x2 F(x) F(x) F ( x ) = x 2 F(x) x1 Hessian 2 2 F(x) F(x ) x n x 1 x n x 2 2 Gradient 2 2 xn F(x) 8 Directional Derivatives First derivative (slope) of F(x) along xi axis: F( x) xi (ith element of gradient) 2 2 Second derivative (curvature) of F(x) along xi axis: F(x ) x i (i,i element of Hessian) T First derivative (slope) of F(x) along vector p: p F ( x ) ----------------------p T Second derivative (curvature) of F(x) along vector p: p 2 F ( x ) p -----------------------------2 p 9 Example 2 2 F(x ) = x 1 + 2x 1 x2 + 2 x2 x* = F ( x) x = x* = 0.5 0 p = F( x ) x1 F( x ) x2 = 1 –1 2x 1 + 2x 2 2x 1 + 4x 2 x = x* 1 1 – 1 T 1 0 p F ( x ) ----------------------- = ------------------------ = ------- = 0 p 2 1 –1 x = x* = 1 1 10 Plots Directional Derivatives 2 20 15 1 1.4 10 1.3 x2 5 1.0 0 0.5 0 2 1 2 1 0 x2 0.0 -1 0 -1 -1 -2 -2 x1 -2 -2 -1 0 1 2 x1 11 Minima Strong Minimum The point x* is a strong minimum of F(x) if a scalar d > 0 exists, such that F(x*) < F(x* + Dx) for all Dx such that d > ||Dx|| > 0. Global Minimum The point x* is a unique global minimum of F(x) if F(x*) < F(x* + Dx) for all Dx ° 0. Weak Minimum The point x* is a weak minimum of F(x) if it is not a strong minimum, and a scalar d > 0 exists, such that F(x*) Š F(x* + Dx) for all Dx such that d > ||Dx|| > 0. 12 Scalar Example 4 2 1 F ( x ) = 3x – 7x – --- x + 6 2 8 Strong Maximum 6 4 2 Strong Minimum Global Minimum 0 -2 -1 0 1 2 13 Vector Example 4 F(x ) = ( x2 – x1 ) + 8x 1 x2 – x1 + x2 + 3 2 2 2 F( x) = ( x 1 – 1.5x 1 x2 + 2 x2 )x1 2 2 1.5 1 1 0.5 0 0 -0.5 -1 -1 -1.5 -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 -2 -2 2 12 -1 0 1 2 8 6 8 4 4 2 0 2 0 2 1 2 1 0 0 -1 -1 -2 -2 1 2 1 0 0 -1 -1 -2 -2 14
© Copyright 2026 Paperzz