Matakuliah Tahun Versi : H0434/Jaringan Syaraf Tiruan : 2005 :1 Pertemuan 22 FUZZIFIKASI DAN DEFUZZIFIKASI 1 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : • Menjelaskan FUZZY to CRISP conversion dan sebaliknya. 2 Outline Materi • Proses Fuzzifikasi. • Proses Defuzzifikasi. 3 FUZZIFIKASI & DEFUZZIFIKASI Fuzzification Inference Mechanism Scales and maps input variables to fuzzy sets Approximate reasoning Deduces the control action Defuzzification Convert fuzzy output values to control signals 4 FUZZY CONTROLLER Fuzzy Controller Rule Base Pre processing Fuzzification Defuzzification Post Processing Inference engine 5 FUZZY CONTROLLER action Defuzzification Module Fuzzy Inference Engine Controlled Process condition Fuzzy Controller Fuzzy Rule base Fuzzification Module 6 FUZZIFICATION Transformation from crisp input to fuzzy input. 1 0.6 input 7 APPROXIMATE REASONING y = f(x) Then we can make inferences easily premise y = f(x) fact x = x’ -----------------------------consequence y = f( x’ ) 8 BASIC INFERENCES x is A AB -----------x is B Mary is very young very young young ------------------------Mary is young x is A x is B --------------x is A B and pressure is not very high pressure is not very low -----------------------------------pressure is not very high not very low 9 MAMDANI’S IMPLICATION OPERATOR if x is A then y is B x is A’ ----------------------y is B’ 10 INFERENCE Penarikan kesimpulan dari semua fungsi keanggotaan yang sudah didefinisikan menggunakan RULE BASE. IF A AND B THEN C RULE 1 : A1 , B1 C1 RULE 2 : A2 , B2 C2 FAKTA : x , Dx ---------------------------------------KESIMPULAN : C’ 11 MIN-MAX METHOD NL PM A1 PL B1 NM A2 C1 PS C1' PM B2 C2 C2' x Dx C' = C1' U C2' METODE MIN-MAX 12 DEFUZZIFICATION Transformation from fuzzy output to crisp ouput. Defuzzification is a process to get a non-fuzzy value that best represents the possibility distribution of an inferred fuzzy control action. There is no systematic procedure for choosing a good defuzzification strategy. Selection of defuzzification procedure depends on the properties of the application. 13 CENTROID OF THE AREA 14 EXAMPLE 15 MEAN OF MAXIMUM 16 EXAMPLE 17 HEIGHT METHOD 18 WEIGHTED AVERAGE 19 EXAMPLE 20 BISECTOR OF THE AREA 21 FIRST/LAST MAXIMA 22 EXAMPLE 23
© Copyright 2026 Paperzz