Matakuliah Tahun Versi : H0434/Jaringan Syaraf Tiruan : 2005 :1 Pertemuan 15 ADAPTIVE RESONANCE THEORY 1 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : • Menjelaskan mengenai jaringan Adaptive Resonance Theory ( ART ). 2 Outline Materi • Arsitektur ART • Layer 1 ART • Layer 2 ART 3 Basic ART Architecture 4 ART Subsystems Layer 1 Normalization Comparison of input pattern and expectation L1-L2 Connections (Instars) Perform clustering operation. Each row of W1:2 is a prototype pattern. Layer 2 Competition, contrast enhancement L2-L1 Connections (Outstars) Expectation Perform pattern recall. Each column of W2:1 is a prototype pattern Orienting Subsystem Causes a reset when expectation does not match input Disables current winning neuron 5 Layer 1 6 Layer 1 Operation Shunting Model 1 d n (t) 1 + 1 1 2:1 2 1 - 1 - 1 2 --------------- = – n (t) + b – n (t) p + W a t – n (t) + b W a t dt Excitatory Input (Comparison with Expectation) 1 + Inhibitory Input (Gain Control) 1 a = hardlim n 1, n 0 + hardlim n = 0, n 0 7 Excitatory Input to Layer 1 2:1 2 p + W a t Suppose that neuron j in Layer 2 has won the competition: 2:1 2 2:1 2:1 2:1 W a = w 2:1 w w w 2 1 2 j S 0 0 2:1 = wj (jth column of W2:1) 1 Therefore the excitatory input is the sum of the input pattern and the L2-L1 expectation: 2:1 2 2:1 p +W a = p +wj 8 Inhibitory Input to Layer 1 Gain Control - 1 2 W a t 11 1 1 - 1 W = 11 11 1 The gain control will be one when Layer 2 is active (one neuron has won the competition), and zero when Layer 2 is inactive (all neurons having zero output). 9 Steady State Analysis: Case I 1 dn i 1 + 1 1 -------- = – n i + b – ni p i + dt S 2 S 2 2:1 2 1 - 1 2 w a – n + b a i j j i j j= 1 j=1 Case I: Layer 2 inactive (each a2j = 0) 1 dn i 1 + 1 1 -------- = – n i + b – n i p i dt In steady state: + 1 0 = – 1 ni + 1 + b – 1 ni pi = – 1 + 1 p i n i + 1 + b pi 1 ni b pi = -------------1 + pi Therefore, if Layer 2 is inactive: 1 a = p 10 Steady State Analysis: Case II Case II: Layer 2 active (one a2j = 1) 1 d ni 1 + 1 1 2:1 1 - 1 --------- = – n i + b – ni pi + wi j – n i + b dt In steady state: 0 = – 1 + 1 ni + b = – 1 + pi + 1 2:1 1 - 1 – n i pi + wi j – n i + b 2:1 1 + 1 2:1 - 1 wi j + 1 n i + b p i + wi j – b + 1 2:1 - 1 b pi + wi j – b 1 n i = -----------------------------------2:1 -----------2 + p i + w i j We want Layer 1 to combine the input vector with the expectation from Layer 2, using a logical AND operation: + 1 - 1 b 2 – b 0 1 2:1 n i<0, if either w i,j or pi is equal to zero. + 1 - 1 + 1 b 2 b b + 1 - 1 n1i>0, if both w2:1i,j or pi are equal to one. b – b 0 Therefore, if Layer 2 is active, and the biases satisfy these conditions: a1 = p w 2:1 j 11 Layer 1 Summary If Layer 2 is inactive (each a2j = 0) 1 a = p If Layer 2 is active (one a2j = 1) a1 = p w 2:1 j 12 Layer 1 Example = 1, +b1 = 1 and -b 1 2:1 W = 1.5 = 11 01 0 1 p = Assume that Layer 2 is active, and neuron 2 won the competition. 1 dn 1 1 1 2:1 1 0.1 --------- = – n1 + 1 – n1 p 1 + w1 2 – n 1 + 1.5 dt 1 1 1 1 1 d n1 1 --------- = – 30n1 – 5 dt 1 dn 2 1 --------- = – 40n 2 + 5 dt = – n1 + 1 – n1 0 + 1 – n 1 + 1.5 = – 3n 1 – 0.5 1 dn 2 1 1 2:1 1 0.1 -------- = – n 2 + 1 – n 2 p2 + w 2 2 – n 2 + 1.5 dt 1 1 1 1 = – n 2 + 1 – n 2 1 + 1 – n 2 + 1.5 = – 4n2 + 0.5 13 Example Response 0.2 1 1 –40t n 2 t = -- 1 – e 8 0.1 0 -0.1 1 1 – 30t n1 t = – ---1 – e 6 -0.2 0 0.05 0.1 2:1 p w2 0.15 1 = 0 1 = 0 = a 1 1 1 0.2 14 Layer 2 15 Layer 2 Operation Shunting Model 2 d n (t ) 2 --------------- = – n (t ) dt On-Center Feedback + 2 2 + 2 2 Adaptive Instars 2 ? + b – n (t ) W f (n (t )) + W 1:2 1 a Excitatory Input Off-Surround Feedback 2 - 2 - 2 2 2 – n (t) + b W f (n (t)) Inhibitory Input 16 Layer 2 Example = 0.1 b = 1 b = 1 + 2 - 2 1 1 10 n 2 , f (n ) = 0, 2 W1:2 = 1:2 T 1w 1:2 T 2w n0 n0 = 0.5 0.5 1 0 (Faster than linear, winner-take-all) 2 dn 1(t ) 2 2 2 2 1:2 T 1 2 2 2 0.1 -------------- = – n 1(t ) + 1 – n 1 (t) f (n 1 (t)) + 1 w a – n 1 (t) + 1 f (n 2 (t)) dt 2 dn 2 (t) 2 2 1:2 T 1 2 2 2 2 2 0.1 -------------- = – n 2 (t) + 1 – n 2(t ) f (n 2(t )) + 2 w a – n 2(t ) + 1 f (n 1(t )) . dt 17 Example Response 1 1:2 T 1 2w a 2 n2 t 0.5 1w a = 1 1 1:2 T 1 a 2 a = 0 0 1 0 -0.5 2 n1 t -1 0 0.05 0.1 t 0.15 0.2 18 Layer 2 Summary 1, 2 ai = 0, if iw 1:2 T 1 1:2 T 1 a = max jw a otherwise 19 Orienting Subsystem Purpose: Determine if there is a sufficient match between the L2-L1 expectation (a1) and the input pattern (p). 20 Orienting Subsystem Operation 0 dn (t ) 0 + 0 0 + 0 0 - 0 0 1 -------------- = – n (t ) + b – n (t ) W p – n (t) + b W a dt Excitatory Input + S 0 W p = aaap = a 1 pj = a p 2 j=1 Inhibitory Input - S 1 W a = bbba = b 0 1 1 1 a j t = b a 1 2 j=1 When the excitatory input is larger than the inhibitory input, the Orienting Subsystem will be driven on. 21 Steady State Operation 1 2 0 = – n + b – n a p – n + b b a 0 + 0 = – 1 + a p 2 0 2 +b a 1 2 0 - 0 0 + 0 2 2 - 0 1 2 - 0 n + b a p – b b a + 0 1 2 b a p – b b a 0 n = --------------------------------------------------------------2 1 2 1 + a p + b a Let 0 n 0 + 0 - 0 b = b = 1 1 2 if a a ------------- --- = r 2 b p Vigilance RESET 1 2:1 Since a = p w j , a reset will occur when there is enough of a 2:1 mismatch between p and w j . 22 Orienting Subsystem Example = 0.1, a = 3, b = 4 (r = 0.75) p = 1 1 1 a = 1 0 0 dn (t ) 0 0 0 1 1 0.1 -------------- = – n (t ) + 1 – n (t) 3 p 1 + p 2 – n (t ) + 1 4 a 1 + a2 dt 0 dn (t) 0 -------------- = – 110n (t) + 20 dt 0.2 0 n t 0.1 0 -0.1 -0.2 0 0.05 0.1 t 0.15 0.2 23 Orienting Subsystem Summary 1, 0 a = 0, if a 1 2 p 2 r otherwise 24
© Copyright 2026 Paperzz