Matakuliah Tahun Versi : H0434/Jaringan Syaraf Tiruan : 2005 :1 Pertemuan 11 OPTIMASI KINERJA 1 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : • Menjelaskan konsep optimasi kinerja. 2 Outline Materi • Steepest Descent Method. • Contoh Aplikasi. 3 Basic Optimization Algorithm xk + 1 = xk + k pk or xk = xk + 1 – x k = kpk kp k xk +1 xk pk - Search Direction k - Learning Rate 4 Steepest Descent Choose the next step so that the function decreases: Fx k + 1 F xk For small changes in x we can approximate F(x): T F xk + 1 = F xk + x k F xk + gk x k where g k Fx x = xk If we want the function to decrease: T T g k xk = kg k pk 0 We can maximize the decrease by choosing: pk = –gk x k + 1 = xk – k g k 5 Example 2 2 F x = x1 + 2 x1 x 2 + 2x 2 + x1 x 0 = 0.5 = 0.1 0.5 F x = F x x1 F x x2 = 2x 1 + 2x2 + 1 g0 = F x 2x 1 + 4x 2 = 3 x = x0 3 x 1 = x 0 – g 0 = 0.5 – 0.1 3 = 0.2 0.5 3 0.2 x2 = x1 – g1 = 0.2 – 0.1 1.8 = 0.02 0.2 1.2 0.08 6 Plot 2 1 0 -1 -2 -2 -1 0 1 2 7 Newton’s Method T 1 T F xk + 1 = F xk + xk F xk + g k x k + -- xk A k x k 2 Take the gradient of this second-order approximation and set it equal to zero to find the stationary point: gk + Ak xk = 0 –1 x k = – Ak g k xk + 1 = xk – A–k 1 gk 8 Example 2 2 F x = x1 + 2 x1 x 2 + 2x 2 + x1 x 0 = 0.5 0.5 F x = x1 = F x x1 F x x2 0.5 22 – 0.5 24 –1 = 2x 1 + 2x2 + 1 2x 1 + 4x 2 g0 = F x = 3 x = x0 3 A= 22 24 3 0.5 1 – 0.5 3 0.5 1.5 –1 = – = – = 3 0.5 – 0.5 0.5 3 0.5 0 0.5 9 Plot 2 1 0 -1 -2 -2 -1 0 1 2 10 Non-Quadratic Example 4 Fx = x2 – x1 + 8x 1 x2 – x1 + x2 + 3 1 x = Stationary Points: – 0.42 0.42 2 x = – 0.13 0.13 F(x) F2(x) 2 2 1 1 0 0 -1 -1 -2 -2 -1 0 0.55 – 0.55 3 x = 1 2 -2 -2 11 -1 0 1 2
© Copyright 2026 Paperzz