2G1503 Simulation and Modeling Exercise #5 Ali Ghodsi [email protected] 1 Point and Interval Estimates • Assume Xi denotes the results from a real-world system. Yi denotes the result from a simulation of the same system. D is the difference between Yi and Xi. 6 experiments are shown and the values of Xi and Yi are IID. Calculate the point estimate and a confidence interval of 90%. i 1 2 3 4 5 6 Xi 3.06 2.79 2.21 2.54 9.27 0.31 Yi 3.81 3.37 2.61 3.59 9.02 0.71 Di 0.75 0.58 0.40 1.05 -0.25 0.40 2 Point Estimate: mean • The point estimate for the mean is: 1 n D = ∑ Di n i =1 6 1 Di ∑ 6 i =1 1 D = (0.75 + 0.58 + 0.40 + 1.05 − 0.25 + 0.40 ) = 0.488 6 D= i 1 Di 0.75 2 0.58 3 0.40 4 1.05 5 -0.25 6 0.40 3 Interval Estimate: confidence interval 1/4 • The variance for the sample is: 1 S [ D] = ∑ (D − D ) n 2 2 n − 1 i =1 1 S 2 [ D] = (0.75 − 0.488) 2 + (0.58 − 0.488) 2 + ... + (0.40 − 0.488) 2 ≈ 0.1907 6 −1 0.069 + 0.008 + 0.008 + 0.316 + 0.545 + 0.008 S 2 [ D] = ≈ 0.1907 5 i ( ) i 1 2 3 4 5 6 Di 0.75 0.58 0.40 1.05 -0.25 0.40 4 Interval Estimate: confidence interval 2/4 • The variance of the sample distribution is: σ2 2 σ (D ) = n • But we do not know 2, for the underlying population. It is estimated by s2[D]: 1 n 2 ( ) D − D i n S 2 [ D] n − 1 ∑ 1 2 2 i =1 ( ) σ (D ) = = D − D = ∑ i n n n(n − 1) i =1 0.1907 σ 2 (D ) = ≈ 0.0318 6 5 Interval Estimate: confidence interval 3/4 • Since 2 was replaced by s2[D] the variance of the sampling distribution is no longer normally distributed, but instead t-distributed with n-1 degrees of freedom. • For 90% confidence interval we lookup the tdistribution: 100 − 90 = 0.10 α= 100 v = 6 −1 = 5 tα / 2,v = t0.10 / 2,5 = 2.02 6 Interval Estimate: confidence interval 4/4 • The confidence interval is calculated by: D ± t0.05,5σ ( D ) 0.488 ± 2.02 * 0.0318 0.128 ≤ µ ≤ 0.848 7 Summary • Use the given formula: D ± tα / 2,n −1 S 2 [ D] n • where: 1 (0.75 + 0.58 + 0.40 + 1.05 − 0.25 + 0.40) = 0.488 6 0.069 + 0.008 + 0.008 + 0.316 + 0.545 + 0.008 ≈ 0.1907 S 2 [ D] = 5 tα / 2,v = t0.10 / 2,5 = 2.02 D= D ± t0.05,5σ ( D ) 0.1907 6 0.128 ≤ µ ≤ 0.848 0.488 ± 2.02 * 8
© Copyright 2026 Paperzz