PD - 94300C
SMPS MOSFET
IRFBA90N20D
HEXFET® Power MOSFET
Applications
High frequency DC-DC converters
l
VDSS
200V
RDS(on) max
ID
0.023W
98A
Benefits
Low Gate-to-Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective COSS to Simplify Design, (See
App. Note AN1001)
l Fully Characterized Avalanche Voltage
and Current
l
Super-220
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Recommended Clip Force
Max.
98
71
Units
A
390
650
4.3
± 30
6.3
-55 to + 175
W
W/°C
V
V/ns
300 (1.6mm from case )
20
°C
N
Thermal Resistance
Parameter
RqJC
RqCS
RqJA
Notes
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
through
www.irf.com
Typ.
Max.
Units
0.50
0.23
58
°C/W
are on page 8
1
1/20/04
IRFBA90N20D
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
DV(BR)DSS/DTJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
V(BR)DSS
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min.
200
3.0
Typ.
0.22
Max. Units
Conditions
V
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
0.023
W
VGS = 10V, ID = 59A
5.0
V
VDS = VGS, ID = 250µA
25
VDS = 200V, VGS = 0V
µA
250
VDS = 160V, VGS = 0V, TJ = 150°C
100
VGS = 30V
nA
-100
VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
41
Typ.
160
45
75
23
160
39
77
6080
1040
150
7500
410
790
Max. Units
Conditions
S
V DS = 50V, ID = 59A
240
ID = 59A
67
nC V DS = 160V
110
V GS = 10V
V DD = 100V
I D = 59A
ns
R G = 1.2W
V GS = 10V
V GS = 0V
V DS = 25V
pF
= 1.0MHz
V GS = 0V, VDS = 1.0V, = 1.0MHz
V GS = 0V, VDS = 160V, = 1.0MHz
V GS = 0V, VDS = 0V to 160V
Avalanche Characteristics
Parameter
EAS
I AR
EAR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Diode Characteristics
IS
ISM
VSD
trr
Qrr
ton
2
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Typ.
Max.
Units
960
59
65
mJ
A
mJ
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
98
showing the
A
G
integral reverse
390
S
p-n junction diode.
1.5
V
TJ = 25°C, IS = 59A, VGS = 0V
220 340
nS
TJ = 25°C, IF = 59A
1.9 2.8
µC di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRFBA90N20D
#
V
P
G
T
T
W
%
G
E
T
W
Q
5
Q
V
P
K
C
T
&
+&
8)5
6128
8
8
8
8
8
8
$1661/8
8
zU27.5'9+&6*
6Lu%
#
V
P
G
T
T
W
%
G
E
T
W
Q
5
Q
V
P
K
C
T
&
+&
8)5
6128
8
8
8
8
8
8
$1661/8
8
zU27.5'9+&6*
6Lu%
8&5&TCKPVQ5QWTEG8QNVCIG
8
3.5
6 ,u%
6 ,u%
8&58
zU27.5'9+&6*
8)5)CVGVQ5QWTEG8QNVCIG
8
Fig 3. Typical Transfer Characteristics
www.irf.com
2.5
(Normalized)
V
P
G
T
T
W
%
G
E
T
W
Q
5
Q
V
KP
C
T
&
&
+
I D = 98A
3.0
RDS(on) , Drain-to-Source On Resistance
$
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
8&5&TCKPVQ5QWTEG8QNVCIG
8
2.0
1.5
1.0
0.5
V GS = 10V
0.0
-60
-40
-20
0
20
40
60
80
TJ , Junction Temperature
100 120 140 160 180
( ° C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRFBA90N20D
8)58H/*<
%KUU%IU%IF%FU5*146'&
%TUU%IF
%QUU%FU%IF
(
RG
EP
VCKE
CR
C%
%
%KUU
%QUU
%TUU
8 G
IC
NVQ 8
GE
TW
Q5 Q
V
VGC )
5
8) 8&5&TCKPVQ5QWTEG8QNVCIG
8
#
V
P
G
T
T
6 ,u%
W
%
G
E
T
W
Q
5
Q
V
KP
C
T
&
+
8)58
12'4#6+10+06*+5#4'#
.+/+6'&$;4 &5
QP
6 ,u%
85&5QWTEGVQ&TCKP8QNVCIG
8
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
8&58
8&58
8&58
3)6QVCN)CVG%JCTIG
P%
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
#
V
P
G
T
T
W
%
P
K
C
T
&
G
U
T
G
X
G
4
&
5
+
+&#
zUGE
OUGE
6Eu%
6Lu%
5KPING2WNUG
OUGE
&
8&5 &TCKPVQ5QWTEG8QNVCIG
8
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFBA90N20D
100
RD
V DS
LIMITED BY PACKAGE
VGS
I D , Drain Current (A)
80
D.U.T.
RG
60
+
-VDD
10V
Pulse Width £ 1 µs
Duty Factor £ 0.1 %
40
Fig 10a. Switching Time Test Circuit
VDS
20
90%
0
25
50
75
100
125
TC , Case Temperature
150
175
( °C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
(Z thJC)
1
D = 0.50
0.1
Thermal Response
0.20
0.10
0.05
0.01
0.02
0.01
P DM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D =
2. Peak T
0.001
0.00001
0.0001
0.001
0.01
t1 / t 2
J = P DM x Z thJC
+TC
0.1
1
t 1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFBA90N20D
2000
15V
DRIVER
D.U.T
RG
+
V
- DD
IAS
20V
tp
1600
A
0.01:
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
L
VDS
ID
TOP
24A
42A
BOTTOM
59A
1200
800
400
0
25
50
75
100
125
150
175
( °C)
Starting T , JJunction Temperature
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
I AS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
10 V
50KΩ
12V
QGS
.2µF
.3µF
QGD
D.U.T.
VG
+
V
- DS
VGS
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
6
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
www.irf.com
IRFBA90N20D
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
· Low Stray Inductance
· Ground Plane
· Low Leakage Inductance
Current Transformer
+
-
-
+
RG
·
·
·
·
Driver Gate Drive
P.W.
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Period
D=
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFET® Power MOSFETs
www.irf.com
7
IRFBA90N20D
Super-220 Package Outline
Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
Starting TJ = 25°C, L = 0.55mH
Pulse width £ 300µs; duty cycle £ 2%.
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
RG = 25W, IAS = 59A.
Calculated continuous current based on maximum allowable
ISD £ 59A, di/dt £ 170A/µs, VDD £ V(BR)DSS,
junction temperature. Package limitation current is 95A.
TJ £ 175°C
Super-220 not recommended for surface mount application.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IRs Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.01/04
8
www.irf.com
© Copyright 2025 Paperzz