THESES2009SPRING_18.pdf

CYAOSCORPIOATES: EW STRUCTURAL MOTIFS FOR TRASITIO METAL
COMPLEXES AD COIAGE METAL POLYMERS.
A Thesis by
John C. Bullinger
Bachelor of Science, Wichita State University, 2005
Submitted to the Department of Chemistry
and the faculty of the Graduate School of
Wichita State University
in partial fulfillment of
the requirements for the degree of
Masters of Science.
May 2009
Copyright 2009 by John C. Bullinger
All Rights Reserved
CYAOSCORPIOATES: EW STRUCTURAL MOTIFS FOR TRASITIO METAL
COMPLEXES AD COIAGE METAL POLYMERS.
The following faculty members have examined the final copy of the this thesis for form and content,
and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master
of Science with a major in Chemistry.
David M. Eichhorn, Committee Chair
D. Paul Rillema, Committee Member
Michael Van Stipdonk, Committee Member
Francis D’Souza, Committee Member
Peer H. Moore-Jansen, Committee Member
Accepted for the College of Liberal Arts & Sciences
William D. Bischoff, Dean
Accepted for the Graduate School
J. David McDonald, Associate Provost of Research
And Dean of the Graduate School
iii
DEDICATIO
For My Family
iv
ACKOWLEDGEMETS
First and foremost, I would like to thank my beautiful wife Cathy, for believing in me and giving me
the support I needed to succeed, both emotional as well as financially. I would also like to thank my
children, Alex and Will for their unconditional love which has made my life complete and
worthwhile. I must give a special thanks to my dad for teaching me to be gracious and caring towards
other people, and my mother for always standing by me even when she shouldn’t have. Finally, I
would like to give my big thanks to my In-Laws, Bill and Vicki who are truly wonderful people that
have helped me as well as my family in numerous way, and for some strange reason thought I was
good enough for their daughter.
Graduate school would not have been possible if it were not for Dr. David Eichhorn’s advice and
encouragement. As my graduate advisor, Dr. Eichhorn’s intelligence and knowledge is inspiring and
he has always been encouraging and helpful even when I was pulling off solvent using the Schlenk
line pump with no nitrogen in the solvent trap.
I would also like to give a special thanks to Dr. Curtis Moore, for his crystallography knowledge as
well as his friendship. They were both a key factor in my success as a graduate student.
Finally, thanks to all of the professors of the Chemistry Department at Wichita State University for
their knowledge and help. I would also like to thank Elaine in the Chemistry library for helping a
greenhorn find his articles, and Brenda, who was a life saver on numerous occasions.
v
ABSTRACT
New complexes have been synthesized of scorpionate ligands with cyano substituents in the 4positions of the pyrazoles and tert-butyl substituents in the 3-positions of the pyrazoles. Reaction of
Co2+, Mn2+, and Ni(cyclam)2+ (cyclam=1,4,8,11-tetraazacyclotetradecane) salts with KTpt-Bu,4CN in a
1:2 ratio produced new octahedral metal complexes of the form (Tpt-Bu,4CN)2ML4 (L4=(H2O)4,
(H2O)2(MeOH)2, or cyclam). Unlike the sandwich complexes previously isolated with TpPh,4CN, the
crystal structures showed none of the pyrazole nitrogen atoms coordinated to the metal. Rather, the
metal is coordinated to one CN nitrogen atom from each ligand, with two Tp anions coordinated
trans to each other around the metal center. This leaves the Tp pyrazole nitrogen atoms open for
another metal to coordinate, which could to lead to heterometallic complexes, new coordination
polymers, as well as the framework for supramolecular complexes.
Attempts to insert metal ions into the pyrazole coordination pockets of these complexes have to date
been unsuccessful. However, these attempts resulted in new Cu(I) and Ag(I) coordination polymers
of the cyano-substituted scorpionate ligands as well as several new metal complexes of 3-tert-butyl4-cyanopyrazole. The newly isolated Tpt-Bu,4CNCu(I) polymer has the same structure as the one
previously synthesized except for the acetonitrile which is crystallized in the lattice. This is a very
good indication that there is some type of channel or pocket within the lattice which was not
previously recognized. The newly isolated Tpt-Bu,4CNAg(I) polymers show various coordination
motifs giving rise to different structural networks.
vi
TABLE OF COTETS
Chapter
1.
2.
Page
INTRODUCTION ...........................................................................................................1
1.1
General Introduction............................................................................................1
1.2
Molecular-Based Materials .................................................................................3
1.3
Supramolecular Complexes ................................................................................7
1.4
Polypyrazolylborates .........................................................................................10
CYANOSCORPIONATE METAL COMPLEXES ......................................................16
2.1
Introdcution .......................................................................................................16
2.2
KTpt-Bu,4CN and KTpPh,4CN ..................................................................................18
2.3
Tpt-Bu,4CN Complexes of Co, Mn, and Ni ...........................................................21
2.4
Non-isomerized (TpPh,4CN)2Co ...........................................................................27
2.5
Inverted Sandwich Complex (TpPh,4CN)2Mn ......................................................30
2.6
Conclusion .........................................................................................................36
2.7
Experimental ......................................................................................................38
2.7.1
General ..................................................................................................38
2.7.2
Synthesis of KTpt-Bu,4CN .........................................................................39
2.7.3
Synthesis of KTpPh,4CN ..........................................................................39
2.7.4
Synthesis of [(Tpt-Bu,4CN)2Co (H2O)4] ....................................................40
2.7.5
Synthesis of [(Tpt-Bu,4CN)2Mn(H2O)4] ....................................................40
2.7.6
Synthesis of [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2] .....................................41
2.7.7
Synthesis of [(Tpt-Bu,4CN)2 Mn(MeOH)2(H2O)2] ....................................41
2.7.8
Synthesis of [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH .......................................42
2.7.9
Synthesis of Co(κ3-TpPh,4CN)(κ2-TpPh,4CN) ..............................................42
vii
TABLE OF COTETS (continued)
Chapter
Page
2.7.10 Synthesis of [(TpPh,4CN)2 Mn(MeOH)2(H2O)2] ......................................43
2.7.11 Synthesis of [(TpPh,4CN)2Mn(MeOH)4] ..................................................43
3.
METAL COORDINATION POLYMERS ....................................................................45
3.1
Introduction .......................................................................................................45
3.2
Cu(I) Coordination Polymers{[Tpt-Bu,4CNCu][MeCN]}n and
{[Tpt-Bu,4CNCu][MeOH]}n ..................................................................................47
3.3
Ag(I) Coordination Polymers {[Tpt-Bu,4CNAg]}n(Ag-1) ...................................50
3.4
Ag(I) Coordination Polymers (Ag-2.)...............................................................52
3.5
Ag(I) Coordination Polymers (Ag-3)................................................................54
3.6
Ag(I) Coordination Polymers (Ag-4) ...............................................................56
3.7
Experimental......................................................................................................58
3.8
4.
3.7.1
General .................................................................................................58
3.7.2
Synthesis of {[Tpt-Bu,4CNCu][MeCN]}n and
{[Tpt-tu,4CNCu][MeOH]}n ......................................................................58
3.7.3
Synthesis of Ag-1 .................................................................................58
3.7.4
Synthesis of Ag-2 .................................................................................58
3.7.5
Synthesis of Ag-3 .................................................................................59
3.7.6
Synthesis of Ag-4 .................................................................................59
Conclusion 60
METAL PYRAZOLE COMPLEXES ...........................................................................61
4.1
Introduction .......................................................................................................61
4.2
Reaction of (Tpt-Bu,4CN)2C(MeOH)2(H2O)2 with CuSPh ...................................62
viii
TABLE OF COTETS (continued)
Chapter
4.3
Reaction of [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH with [Cu(CH3CN)4]PF6
and NaSPh ........................................................................................................64
4.4
Reaction of KTpt-Bu,4CN with Mn(CF3COO)2.....................................................66
4.5
Reaction of [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH with CuCl2 ...........,....................68
4.6
Reaction of (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2 with AgBF4 ..........,......................69
4.7
Experimental ......................................................................................................71
4.8
5.
Page
4.7.1
General ..................................................................................................71
4.7.2
Synthesis of {(Hpzt-Bu,4CN)4Cu(ClO4)}n .................................................71
4.7.3
Synthesis of {(Hpzt-Bu,4CN)4Cu(PF6)}n ...................................................71
4.7.4
Synthesis of {(Hpzt-Bu,4CN)2Mn(CF3COO)2}n ........................................71
4.7.5
Synthesis of the [(Hpzt-Bu,4CN)4Cu2]Cl4 dimer .......................................72
4.7.6
Synthesis of {[(pzt-Bu,4CN)6Ag6]}n·CH3CN ............................................72
Conclusion .........................................................................................................73
CONCLUSION ..............................................................................................................74
REFERENCES ..............................................................................................................76
APPENDIX (CRYSTALLOGRAPHIC DATA)............................................................79
ix
LIST OF TABLES
Table
Page
Table 2.2.1
Bond Lengths (Å) and Angles (deg.) for KTpt-Bu,4CN .......................................19
Table 2.2.2:
Bond Lengths (Å) and Angles (deg.) for KTpPh,4CN .........................................19
Table 2.3.1
Bond Lengths (Å) and Angles (deg) for KTpt-Bu,4CN , KTpPh,4CN, [(Tpt-Bu,4CN)2
Co(H2O)4], [(Tpt-Bu,4CN)2Mn(H2O)4], [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2],
[(Tpt-Bu,4CN)2 Mn(MeOH)2(H2O)2], and [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH ........22
Table 2.4.1
Selected bond distances (Å) and angles (deg) for Co(κ3-TpPh,4CN)
(κ2-TpPh,4CN) and Co(κ3-TpPh)(κ2-TpPh) ........................................................... 28
Table 2.5.1
Bond Lengths (Å) and Angles (deg) for (TpPh,4CN)2Mn(MeOH)2(H2O)2 and
(TpPh,4CN)2Mn(MeOH)4 .....................................................................................32
Table 3.2.1
Bond Lengths (Å) and Angles (deg.) for{[Tpt-Bu,4CNCu][MeCN]}n and
{[Tpt-u,4CNCu][MeOH]}n ....................................................................................49
Table 3.3.1
Bond Lengths (Å) and Angles (deg.) for Ag-1 .................................................51
Table 3.4.1
Bond Lengths (Å) and Angles (deg.) for Ag-2 .................................................52
Table 3.5.1
Bond Lengths (Å) and Angles (deg.) for Ag-3 .................................................54
Table 3.6.1
Bond Lengths (Å) and Angles (deg.) for Ag-4 .................................................56
Table 4.2.1
Bond Lengths (Å) and Angles (deg.) for{(Hpz)4Cu(ClO4)}n ........................... 62
Table 4.3.1
Bond Lengths (Å) and Angles (deg.) for {(Hpz)4Cu(PF6)}n .............................64
Table 4.4.1
Bond Lengths (Å) and Angles (deg.) for {(Hpzt-Bu,4CN)2Mn(CF3COO)}n .........66
Table 4.5.1
Bond Lengths (Å) and Angles (deg.) for [(Hpz)4Cu2]Cl4 ..................................68
Table 4.6.1
Bond Lengths (Å) and Angles (deg.) for {[(pzt-Bu,4CN)6Ag6]}n...........................70
Table A.1
Crystallographic Data ........................................................................................82
Table A.2
Atomic coordinates and isotropic displacement parameters for KTpt-Bu,4CN......91
Table A.3
Anisotropic displacement parameters for KTpt-Bu,4CN........................................92
Table A.4
Bond lengths [Å] for KTpt-Bu,4CN........................................................................93
x
LIST OF TABLES (continued)
Table
Page
Table A.5
Bond angles[°] for KTpt-Bu,4CN ..........................................................................95
Table A.6
Atomic Coordinates and isotropic displacement parameters for KTpPh,4CN ......97
Table A.7
Anisotropic displacement parameters for KTpPh 4CN .........................................98
Table A.8
Bond lengths [Å] for KTpPh,4CN .........................................................................98
Table A.9
Bond angles[°] for KTpPh,4CN ............................................................................99
Table A.10
Atomic coordinates and isotropic displacement parameters for
[(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2]·0.15MeOH ..................................................100
Table A.11
Anisotropic displacement parameters for [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2]
·0.15MeOH ......................................................................................................102
Table A.12
Bond lengths [Å] for [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2] ·0.15MeOH ...............103
Table A.13
Bond angles[°] for [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2] ·0.15MeOH ..................104
Table A.14
Atomic coordinates and isotropic displacement parameters for
[(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2] ....................................................................107
Table A.15
Anisotropic displacement parameters for [(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2]...108
Table A.16
Bond lengths [Å] for [(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2] .................................110
Table A.17
Bond angles[°] for [(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2] .....................................111
Table A.18
Atomic coordinates and isotropic displacement parameters for
[(Tpt-Bu,4CN)2Co(H2O)4] ....................................................................................113
Table A.19
Anisotropic displacement parameters for [(Tpt-Bu,4CN)2Co(H2O)4] ..................114
Table A.20
Bond lengths [Å] for [(Tpt-Bu,4CN)2Co(H2O)4 ...................................................115
Table A.21
Bond angles[°] for [(Tpt-Bu,4CN)2Co(H2O)4 .......................................................117
Table A.22
Atomic coordinates and isotropic displacement parameters for
[(Tpt-Bu,4CN)2Mn(H2O)4] ...................................................................................119
Table A.23
Anisotropic displacement parameters for [(Tpt-Bu,4CN)2Mn(H2O)4] .................120
xi
LIST OF TABLES (continued)
Table
Page
Table A.24
Bond lengths [Å] for [(Tpt-Bu,4CN)2Mn(H2O)4 ..................................................121
Table A.25
Bond angles[°] for [(Tpt-Bu,4CN)2Mn(H2O)4 ......................................................123
Table A.26
Atomic coordinates and isotropic displacement parameters for
[(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH .....................................................................125
Table A.27
Anisotropic displacement parameters for [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH ...126
Table A.28
Bond lengths [Å] for [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH....................................128
Table A.29
Bond angles[°] for [(Tpt-Bu,4CN)2Mn(H2O)4.......................................................129
Table A.30
Atomic coordinates and isotropic displacement parameters for
Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)·3C7H8 .................................................................132
Table A.31
Anisotropic displacement parameters for
Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)·3C7H8 .................................................................135
Table A.32
Bond lengths [Å] for Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)·3C7H8 ...............................138
Table A.33
Bond angles[°] for Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)·3C7H8 ...................................141
Table A.34
Atomic coordinates and isotropic displacement parameters for
[(TpPh,4CN)2Mn(MeOH)2(H2O)2]·H2O ..............................................................145
Table A.35
Anisotropic displacement parameters for
[(TpPh,4CN)2Mn(MeOH)2(H2O)2]·H2O...............................................................146
Table A.36
Bond lengths [Å] for [(TpPh,4CN)2Mn(MeOH)2(H2O)2]·H2O............................148
Table A.37
Bond angles[°] for [(TpPh,4CN)2Mn(MeOH)2(H2O)2]·Η2Ο................................149
Table A.38
Atomic coordinates and isotropic displacement parameters for
[(TpPh,4CN)2Mn(MeOH)4] .................................................................................151
Table A.39
Anisotropic displacement parameters for [(TpPh,4CN)2Mn(MeOH)4] ...............153
Table A.40
Bond lengths [Å] for [(TpPh,4CN)2Mn(MeOH)4] ...............................................154
Table A.41
Bond angles[°] for [(TpPh,4CN)2Mn(MeOH)4] ..................................................156
Table A.42
Atomic coordinates and isotropic displacement parameters for
{[Tpt-Bu,4CNCu][MeCN]}n .................................................................................158
xii
LIST OF TABLES (continued)
Table
Page
Table A.43
Anisotropic displacement parameters for {[Tpt-Bu,4CNCu][MeCN]}n...............159
Table A.44
Bond lengths [Å] for {[Tpt-Bu,4CNCu][MeCN]}n ..............................................161
Table A.45
Bond angles[°] for {[Tpt-Bu,4CNCu][MeCN]}n ..................................................162
Table A.46
Atomic coordinates and isotropic displacement parameters for Ag-1.............164
Table A.47
Anisotropic displacement parameters for Ag-1...............................................166
Table A.48
Bond lengths [Å] for Ag-1 ..............................................................................167
Table A.49
Bond angles[°] for Ag-1 ..................................................................................168
Table A.50
Atomic coordinates and isotropic displacement parameters for Ag-2 ............169
Table A.51
Anisotropic displacement parameters for Ag-2................................................171
Table A.52
Bond lengths [Å] for Ag-2 ..............................................................................173
Table A.53
Bond angles[°] for Ag-2 ..................................................................................175
Table A.54
Atomic coordinates and isotropic displacement parameters for Ag-3 ............178
Table A.55
Anisotropic displacement parameters for Ag-3 ...............................................180
Table A.56
Bond lengths [Å] for Ag-3...............................................................................183
Table A.57
Bond angles[°] for Ag-3...................................................................................185
Table A.58
Atomic coordinates and isotropic displacement parameters for Ag-4.............188
Table A.59
Anisotropic displacement parameters for Ag-4................................................191
Table A.60
Bond lengths [Å] for Ag-4...............................................................................192
Table A.61
Bond angles[°] for Ag-4...................................................................................193
Table A.62
Atomic coordinates and isotropic displacement parameters for
{(Hpz)4Cu(ClO4)}n ..........................................................................................194
Table A.63
Anisotropic displacement parameters for {(Hpz)4Cu(ClO4)}n ........................196
xiii
LIST OF TABLES (continued)
Table
Page
Table A.64
Bond lengths [Å] for {(Hpz)4Cu(ClO4)}n ........................................................197
Table A.65
Bond angles[°] for {(Hpz)4Cu(ClO4)}n ...........................................................199
Table A.66
Atomic coordinates and isotropic displacement parameters for
{(Hpzt-Bu,4CN)4Cu(PF6)}n ..................................................................................202
Table A.67
Anisotropic displacement parameters for {(Hpzt-Bu,4CN)4Cu(PF6)}n ................202
Table A.68
Bond lengths [Å] for {(Hpzt-Bu,4CN)4Cu(PF6)}n ................................................203
Table A.69
Bond angles[°] for {(Hpzt-Bu,4CN)4Cu(PF6)}n ...................................................204
Table A.70
Atomic coordinates and isotropic displacement parameters for
{(HpztBu,4CN)2Mn(CF3COO)2}n·C7H8 ...............................................................205
Table A.71
Anisotropic displacement parameters for
{(HpztBu,4CN)2Mn(CF3COO)2}n·C7H8 ...............................................................206
Table A.72
Bond lengths [Å] for {(HpztBu,4CN)2Mn(CF3COO)2}n·C7H8 ............................207
Table A.73
Bond angles[°] for {(HpztBu,4CN)2Mn(CF3COO)2}n·C7H8 ................................207
Table A.74
Atomic coordinates and isotropic displacement parameters for
[(Hpzt-Bu,4CN)2CuCl(η-Cl)]2 ..............................................................................208
Table A.75
Anisotropic displacement parameters for [(Hpzt-Bu,4CN)2CuCl(η-Cl)]2 ............209
Table A.76
Bond lengths [Å] for [(Hpzt-Bu,4CN)2CuCl(η-Cl)]2 ............................................210
Table A.77
Bond angles[°] for [(Hpzt-Bu,4CN)2CuCl(η-Cl)]2 ................................................211
Table A.78
Atomic coordinates and isotropic displacement parameters for
{[(pzt-Bu,4CN)3Ag3]}n·CH3CN ............................................................................212
Table A.79
Anisotropic displacement parameters for {[(pzt-Bu,4CN)3Ag3]}n·CH3CN. .........214
Table A.80
Bond lengths [Å] for {[(pzt-Bu,4CN)3Ag3]}n·CH3CN ..........................................215
Table A.81
Bond angles[°] for {[(pzt-Bu,4CN)3Ag3]}n·CH3CN .............................................216
xiv
LIST OF FIGURES
Figure
Page
1.2.1
Schematic illustration of band gaps for conductors, semiconductors ,
and insulators ...................................................................................................................4
1.2.2
Conductivity of some metals and conjugated polymers ..................................................5
1.3.1
Packing view down axis c of [Co(dpyo)(tp)(H2O)2]n,[Co(H2O)6 ....................................8
1.3.2
The supramolecular structure of Fe[(p-HC2C6H4)B(3-Mepz)3]2 .....................................8
1.3.3
Three-dimensional network structure of [hydrotris(pyrazolyl)borato]magnesium(II)
built up through π•••Cl•••π 9
1.4.1
The three general types of polypyrazolylborates ...........................................................10
1.4.2
The “Sandwich“ and “Half-Sandwich" complexes ........................................................11
1.4.3
Structure of Mn(TpPh )2 showing bis-chelation ..............................................................11
1.4.4
Ligand isomerization through 1,2 borotropic shift ........................................................12
1.4.5
The structure of (TpPh,4CN)2Mn sandwich complex ........................................................13
1.4.6
The extended structure of {CuTpPh,4CN}n .......................................................................14
1.4.7
A cyanoscorpionate structure showing the two different types of metal nuclei ..........15
2.2.1
ORTEP drawing of KTpt-Bu,4CN ......................................................................................18
2.2.2
ORTEP drawing of KTpPh,4CN ........................................................................................20
2.3.1
The “Inverted-Sandwich” complex ................................................................................21
2.3.2
ORTEP drawing of (Tpt-Bu,4CN)2Co(H2O)4 , (Tpt-Bu,4CN)2 Co(MeOH)2(H2O)2, and
(Tpt-Bu,4CN)2Ni(cyclam) ...................................................................................................21
2.3.3
H-bonding network of (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2 ................................................23
2.3.4
The H-bonding interaction scheme for an individual Tpt-Bu,4CN ligand for
(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2 .....................................................................................23
2.3.5 H-bonding interaction scheme for (Tpt-Bu,4CN)2Ni(cyclam) ...........................................25
.
2.3.6 Two possible oligimerization patterns for (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2 and
(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2 .....................................................................................26
xv
LIST OF FIGURES (continued)
Figure
Page
2.4.1 ORTEP drawing of non-isomerizes [Co(κ3-TpPh,4CN)( κ2-TpPh,4CN)] .............................27
2.4.2 Mercury drawings of Co(κ3-TpPh,4CN)(κ2-TpPh,4CN) ........................................................29
2.5.1 The two possible heteropyrazolylborate ligands containing 3-phenyl and
3-tert-butyl-4cyano pyrazole .........................................................................................30
2.5.2 ORTEP drawing of (TpPh,4CN)2Mn(MeOH)2 (H2O)2 .......................................................31
2.5.3 H-bonding interaction scheme for (TpPh,4CN)2Mn(MeOH)2(H2O)2 ...............................32
2.5.4 H-bonding network for (TpPh,4CN)2Mn(MeOH)2(H2O)2 ................................................33
2.5.5 H-bonding network for (TpPh,4CN)2Mn(MeOH)4 ..........................................................34
3.2.1 Mercury drawing showing five units of the extended structures of {CuTpPh,4CN}n
and {CuTpt-Bu,4CN}n .........................................................................................................47
3.2.2 Mercury drawings directed down the channels of (a) {TpPh,4CNCu}n
and (b) {Tpt-Bu,4CNCu}n ...................................................................................................47
3.2.3
Mercury drawing of the top view of {[Tpt-Bu,4CNCu][MeCN]}n ...................................48
3.2.4 The reaction scheme for the various attempts to produce the desired
heterometallic coordination polymer .............................................................................49
3.3.1 Mercury drawing of the monomer of Ag-1 ...................................................................50
3.4.1 Mercury drawing of the monomer of Ag-2 ..................................................................52
3.4.2 Mercury drawing of the 2-D network of Ag-2 ..............................................................53
3.4.3 Mercury drawing of the 2-dimensional polymeric network of Ag-2 ...........................53
3.5.1 Mercury drawing of the repeat unit of Ag-3 ................................................................54
3.5.2 Mercury drawing of the polymeric chain of Ag-3 ......................................................55
3.6.1 Mercury drawing of a) The monomeric unit for Ag-4 .................................................56
3.6.2 Mercury drawing of A-4 showing the stacking of the helical polymer chains .............57
4.2.1 ORTEP drawing of the monomer {(Hpz)4Cu(ClO4)}n ..................................................62
xvi
LIST OF FIGURES (continued)
Figure
Page
4.2.2 Mercury drawing of three monomer units of{(Hpz)4Cu(ClO4)}n ..................................63
4.3.1 ORTEP drawing of the monomer {(Hpz)4Cu(PF6)}n ...................................................64
4.3.2
Mercury drawing of three monomer units of {(Hpz)4Cu(PF6)}n ...................................64
4.3.3
Mercury drawing of the eclipsed conformation of{(Hpz)4Cu(PF6)}n ............................65
4.4.1
ORTEP drawing of the monomer’s {(Hpz)2Mn(CF3COO)2}n coordination
environment ...................................................................................................................66
4.4.2
Mercury drawing of five monomer units of {(Hpz)2Mn (CF3COO)2}n .........................66
4.4.3
Intramolecular H-bonding interactions of {(Hpz)2Mn(CF3COO)2}n .............................67
4.5.1
ORTEP drawing of the [(Hpz)4Cu2]Cl4 dimer ...............................................................68
4.6.1
ORTEP and Mercury drawings of {[(pzt-Bu,4CN)3Ag3]}n ..............................................69
4.6.2
Mercury drawing of chain elongation for {[(pzt-Bu,4CN)6Ag6]}n·CH3CN ........................70
xvii
ITRODUCTIO
1.1 General Introduction
The advances in technology that will be necessary as the 21st century progresses will require new
materials for diverse purposes such as structural components, conductive and magnetic devices, gas
storage, and catalytic surfaces. Currently used conductive and magnetic materials are predominantly
atom-based materials made up of metals or metal-oxides. Functionally, these materials are extremely
efficient, however, they are expensive to synthesize and process, and are heavy, opaque, and possess
limited flexibility. These properties limit the applications of atom-based materials. Molecule-based
materials can be synthesized by less expensive, lower energy methods. Comprised largely of light
molecular weight elements, they are lighter and can potentially be imbued with desirable properties
such as transparency or flexibility. Coordination polymers containing transition metal centers with
unsaturated organic ligands are good candidates for such materials.1 These polymers have also
received increased attention with respect to gas storage, in light of the push towards replacing
hydrocarbon fuels with hydrogen.2
We have been investigating the synthesis of cyanoscorpionate ligands as components of
coordination polymers. Polypyrazolylborate, or scorpionate, ligands have been a very popular class
of inorganic ligands for the past four decades.3 The ease with which these ligands can be synthesized
with the incorporation of various ring substituents allows for a wide variety of steric and electronic
properties. However, scorpionate ligands containing strongly electron withdrawing ligands have not
been the focus of many studies. Over the last several years, we have been investigating scorpionate
ligands containing CN substituents in the 4-positions of the pyrazole rings. The cyano group has a
strong electron-withdrawing character, raising the possibility of imbuing the metal complexes with
interesting reactivity akin to those seen with CF3-substituted scorpionate ligands.4 In addition, the
1
cyano N atom can coordinate to a metal, allowing the scorpionate to form various coordination
polymers in which two cyanoscorpionate complexes are bound to a metal ion through the cyano
groups.5 Herein is presented recent work in this field, including the synthesis and structural
characterization of complexes in which the Tp cyano groups are coordinated to a central metal atom.
These complexes represent the first step towards the synthesis of two-component coordination
polymers involving this ligand class.
2
1.2 Molecular-Based Materials
In the past, electronic and magnetic materials have been atom based materials made up of metals or
metal-oxides. Functionally, these atom based materials are extremely efficient, however, they are
very expensive to synthesize, very heavy, and possess limited flexibility. These properties limit the
applications of traditional atom based materials where expense, weight, and flexibility are issues.
Molecule based materials contain individual molecules which are inexpensively synthesized and
made from predominantly light weight carbon, hydrogen, nitrogen, and oxygen. Also the individual
components of these materials can be chemically varied in order to give desired physical, chemical,
electronic, and magnetic properties using standard procedures.
The important properties of molecular materials are conductivity and magnetism. In the past,
magnetic materials have been atom-based and involving d and f molecular orbitals. Recently, the
focus has shifted to molecular-based magnetic materials which involve organic, organometallic and
metal coordination chemistry. There are several different approaches that are commonly used to
synthesize molecular-based magnetic materials which include metal-metal, pure organic, and metalorganic radicals.6 The metal-metal approach uses metalates, such as hexacyanometalates [M(CN)6]3–
and the trisoxalatometalates [M(C2O4)3]3–, due to their ability to form bonds in three directions which
could potentially lead to a three-dimensional magnetic network.7 In 1991, Kinoshita and co-workers
discovered the first pure organic ferromagnet of p-nitrophenyl nitronyl, which also formed an
extended magnetic network.8 These types of organic radicals have also been combined with
paramagnetic transition metals to form one-dimensional ferromagnetic chains, such as
Co(hfac)2(NITPhOMe) (where NITPhOMe is 4'-methoxyphenyl-4,4,5,5-tetramethylimidazoline-1oxyl-3-oxide).9 Single-molecule magnets (SMM) are compounds in which each molecule behaves
like an individual magnet, unlike magnetic network compounds where the molecules behave
collectively
as
a
magnet.
In
1999,
3
one
of
the
first
SMM,
(PPh4)[Mn12O12(O2CPh)16(H2O)4]•8(CH2Cl2), was reported, in which each molecule acts as a
superparamagnet due to the molecule's high-spin ground state and the large zero-field splitting.10
Given the vast possible applications, and the different
synthetic techniques, molecular-based magnets have
become of great interest over the last several decades.
Electrical conduction occurs through the flow of
electrons, and is directly proportional to the number of
electrons per unit volume. Chemical bonds give rise to
three different types of electron bands.
The core
electrons that are not involved in bonding form the core
band, the electrons that are involved in bonding form the
valence band, and the outer orbitals form the conduction
Figure 1.2.1: Schematic illustration of
band gaps for conductors,
semiconductors , and insulators.
band. Electrical conduction only occurs through the flow of electrons in the conduction band.
Therefore, materials that have a very small or no energy difference between the valence band and the
conduction band are conductors, materials that have a small energy difference are semiconductors,
and materials that have a large energy difference are insulators11(Figure 1.2.1).12
4
Conductive polymers combine the desirable properties of molecular-based materials with those of
conducting materials. Traditionally, conductive polymers have been comprised of organic materials
which contain a continuous conjugated network of
overlapping molecular orbitals that produce valence
and conduction bands.
As with the traditional
inorganic
materials,
conducting
an
organic
conductive polymer becomes highly conductive when
an electron is removed from the valence band or
added to the conduction band.
In the unoxidized
form, almost all conductive polymers exhibit low
electron mobility and therefore are semiconductors.
However,
partial oxidation or reduction of these
polymers creates unfilled bands, which significantly
increases electron mobility and conductivity which
can reach the ‘metallic’ conduction range (Figure
1.2.2)1 This conductivity can be further tuned by
chemical manipulation of the polymer backbone, by
Figure 1.2.2: Conductivity of some metals
and conjugated polymers.
the nature and the degree of oxidizing and reducing agents, and by blending with other polymers.
There has been explosive growth in conducting polymer research due to the fact that these materials
are lightweight, processible, flexible, and can be used for a wide variety of commercial applications
such as rechargeable batteries, light emitting diodes, photovoltaics, membranes, electronic noses and
sensors, chemical separation, and heterogeneous catalysis.14
5
Recent interest has increased in doping conducting coordination polymers with transition metals in
order to increase their conductivity. In 2001 Zhong and co-workers, synthesized a 1-D silver(I)
coordination
polymer
of
2,5-bis(4’,5’-bis(methylthio)-1’,3’-dithiol-2’-ylidene)-1,3,4,6-
tetrathiapentalene (TTM-TTP), which increased the conductivity of the free ligand from σ(25°C) <
10-12 S cm-1 to 7.1 x 10-6 and 0.85 S cm-1 with further iodine doping.13 A few years later in an effort
to assemble an electrochromic device with chirooptical properties, two different Fe(II) coordination
polymers
-
TPT[FeIITPT]n(PF6)2n
(TPT=terpyridine-phenyl-terpyridine)
and
CTPCT-
[FeIICTPCT]n(PF6)2n (CTPCT=chiral terpyridine-phenyl-chiral terpyridine) - and one Cu(I) polymer
- PDP[CuIPDP]n(BF4)n (PDP=phenanthroline-dodecane-phenanthroline) - were synthesized in order
to understand the effect of the bridging ligand and the metal center on the optical properties.14 In the
last year, coordination polymers have been used to develop photoelectrical chemical cells, lighttransmitting electrical-conductors, and solid electrolytic capacitors15,16,17 which shows how versatile
the electronic properties can be made by changing the backbone of polymer, changing the metal
doping agent, and changing the coordination environment.
Because of the useful properties of these materials and the fact that they can be used for a wide
variety of applications, conductive coordination polymers have been and will continue to be a
valuable topic of research.
6
1.3 Supramolecular Complexes
Supramolecular chemistry is a relative young field of study that encompasses the chemistry of
molecular assemblies and the forces that govern them.18 It can be described as “the chemistry
beyond the molecule,” which entails the association of two or more chemical species held together
by intermolecular interactions.
These interactions include hydrogen bonding, hydrophobic
interactions, coordination, electrostatic interactions, dispersion interactions, and solvophobic effects
(the tendency of solute particles to cluster as the attractive interaction between solvent particles
increases). An important feature of these interactions is that their properties are different (often
better) than the sum of the individual components. There are three main categories that
supramolecular chemistry can be classified into: 1) molecular recognition in which one molecule
associates with a partner molecule; 2) chemical control and design of specific shapes of
supramolecular complexes; 3) the chemistry of assembling a supramolecular complex of various
sizes from numerous molecules.18
In 1967 C.J. Pedersen reported that a crown ether showed molecular recognition which was the first
artificial molecule to do so.18 In the next several years, Donald J. Cram developed the host-guest
chemistry for metal cations which pioneered the field of molecular recognition.19 Jean-Marie Lehn’s
work in the late 1970’s focusing on molecular assemblies and intermolecular interactions20 was the
birth of what is now the field of supramolecular chemistry, and in 1987, the Nobel Prize in Chemistry
was awarded to Pedersen, Cram, and Lehn for their early pioneering work in the supramolecular
field. Since then, a tremendous amount of research has been done using non-covalent interactions to
synthesize a vast amount of intricate structures with useful properties. The recent drastic increase in
nanochemistry research and development is based on the understanding of the non-covalent
intermolecular interactions that were first explored by supramolecular chemists.20
7
One of the most common synthetic approaches in producing predictable supramolecular networks is
to combine organic ligands (spacers), with transition metal ions (nodes). These coordination
polymers, or metal-organic frameworks (MOF’s)
have become an increasingly popular and
important area of study, with such potential uses
as conductive and magnetic materials, catalytic
surfaces, and gas adsorbant materials.21 In 2006,
Manno and co-workers reported a 3D layered
supramolecular
structure
of
Figure 1.3.1.Packing view down c axis of
[Co(dpyo)(tp)(H2O)2]n[Co(H2O)6]2+ (dotted
lines indicate H-bonds, uncoordinated tp
dianions colored in black).
[Co(dpyo)(tp)(H2O)2]n, [Co(H2O)6]2+ , [dpyo
=
4,4’-dipyridylN,N’-dioxide],
[tp
=
terephthalate dianion] which showed very
Figure 1.3.2. The supramolecular structure of
showing
the
Fe[(p-HC2C6H4)B(3-Mepz)3]2,
alternating sheets of molecules containing the
two Fe(II), connected via CH-π interactions
(dotted lines).
8
interesting intermolecular hydrogen bonding
interactions. The 1D polymer is formed by
hexacoordinated Co(II) ion nodes bridged by
a µ-4,4-dpyo oxygen and a tp carboxylate group. The tp dianions, water molecules, and cationic
[Co(H2O)6]2+ octahedra are H-bonded to the chain of [Co(dpyo)(tp)(H2O)2]n, forming a tightly
connected 3D architecture.22 (Figure 1.3.1)
Polypyrazolylborates have also been used as organic spacers for supramolecular molecules.
Grandjean and co-workers report a structure of Fe[(p-HC2C6H4)B(3-Mepz)3]2, which contains a set
of CH-π interactions involving a pyrazolyl ring hydrogen and the π-electron cloud of the alkynyl
group. The overall structure contains stacked layers of two independent Fe(II) sites held together by
the CH-π interactions which provide the 3D supramolecular structure.23 (figure 1.3.2)
Another structure containing polypyrazolylborates
as spacers utilizes π•••Cl•••π interactions to form a
supramolecular
architecture.
bis[hydrotris(pyrazolyl)borato]
The
complex
magnesium(II)
chloroform disolvate, reported by Garcia-Baez,
(figure
1.3.3)
contains
π•••Cl•••π
interactions
between each Cl of the chloroform solvent and two
pyrazole rings in the same neighboring molecule.
Figure 1.3.3: The three-dimensional network
structure of [hydrotris (pyrazolyl) borato]
magnesium(II) built up through π•••Cl•••π
interactions.
These interactions are continued throughout the
lattice forming a 3D network.24
Recently, supramolecular complexes are being used as functional materials showing molecular
recognition, host-guest chemistry, ion exchange, catalysis, electrical conductivity, magnetism, optics,
9
and forming the basis for nanochemistry.25
Due to the enormous possible functionality and
application, supramolecular chemistry will continue to be a rapidly growing field of research.
1.4 Polypyrazolylborates
Polypyrazolylborates, or scorpionates, have been a very popular class of inorganic ligands for the
past four decades, since their discovery by Trofimenko in the 1960’s.3a The ease with which these
ligands can be synthesized with various substituents, allows for a wide variety of steric and electronic
properties.3 There are three types of polypyrazolylborates, which differ in the number of pyrazoles
bound to the boron through one of the nitrogens of the pyrazole ring (Figure 1.4.1).
R3
R4
R5
R5
R5
R5
R5
H2
B
R4
N
R4
N
N
N
R4
N
R3
R4
N
Bp
R5
R3
R5
R5
R4
N
R3
Tp
N
R4
N
N
R3
B
N
N
R3
R5
N
H
B
N
R4
N
N
R3
R3
Figure 1.4.1. The three general types of polypyrazolylborates.
R4
N
N
pzTp
R3
Dihydrobispyrazolylborate (Bp), hydrotrispyrazolylborate (Tp), and tetrakispyrazolylborate (pzTp)
are all monoanionic multi-dentate ligands. They are relatively easy to synthesize with a variety of
substituents in the 3, 4, and 5-positions of the pyrazole ring leading to different electronic and steric
properities. An abbreviation convention was developed to represent different substituted
polypyrazolylborates.3b TpR is used to represent a Tp ligand containing the R group in the 3-position
of the pyrazole ring. If there is the same R group in the 3 and 5-positions of the pyrazole ring, then
TpR2 is used. When all three substituents are different, then the R groups are numbered with the
1,4R2,5R3
corresponding pyrazole positions and separated by commas, Tp3R
. The same rules apply to
dihydrobispyrazolylborate (Bp) and tetrakispyrazolylborate (pzTp) and this convention will be used
throughout this thesis.
10
Previous work with Tp metal complexes has shown metal complexes with either a 2:1 or a 1:1
ligand:metal ratio, giving rise to “sandwich” and “half-sandwich” complexes, respectively (figure
1.4.2).
R5
R5
R5
R4
H
B
N
N
R4
Early work with unsubstituted Tp
R4
N
N
N
R5
R4
R3
R3
N
N
N
R3
X
Z
Y
N
R5
R5
R3
M
R4
Half-sandwich
sandwich as well as
half-
sandwich metal complexes for a
N
N
R4
R4
N
N
R3
N
N
B
H
N
R4
R3
H
B
N
R3
M
R3
(1st generation) ligands revealed
R5
N
R3
R4
R5
large
number
of
transition
metals.3a-c,26 The ease with which
substituents are added to the
R5
Sandwich
pyrazole
Figure 1.4.2: The “Sandwich" and “Half-Sandwich"
complexes.
ring
has
lead
to
numerous 2nd generation Bp and
Tp metal complexes showing a wide variety of steric and electronic properties. In 1987, Trofimenko
first used bulky phenyl and tert-butyl groups in the 3-position of the pyrazole ring of the Tp ligand.27
Due to the increased steric effects, the metal-nitrogen
bond lengths increased, the cone angle or “pocket” of the
Tp ligand widened, and only the half sandwich metal
complexes were isolated. These ligands were shown to
prevent dimerization and bis-chelate formation. As a
result, it was possible
to synthesize half-sandwich
complexes for many transition metals using coordinating
ligands to complete the coordination sphere, e.g., (Tpt-
11
Figure 1.4.3. Structure of Mn(tppb),
tppb = TpPh showing bis-chelation and
a non-isomerized metal Tp complex.
Bu
)Co(NCS).27 In 1990, Eichhorn, et al., showed that, in the absence of a strong coordinating ligand,
Fe(II) and Mn(II) sandwich complexes with a phenyl substituent in the 3-position of all three
pyrazoles in both Tp ligands (Figure 1.4.3) could be isolated, indicating that the phenyl group alone
does not always provide enough steric bulk to hinder bis-chelate formation.28 However, the bulkier
Tpt-Bu ligand does seem to prevent the sandwich complex formation even in the absence of a strong
coordinating ligand, since none of these complexes have been reported.
Two
R
N
N
N
later
the
Trofimenko's
group
N
R 2
M
synthesized Co(HB(3-isopropylpyrazol-l-yl)2 (5-
N
N
N
N
R
years
H
B
H
B
R 2
M
R
isopropylpyrazol-l-yl))2 that underwent a 1,2-
R
R
N
N
N
N
2
B
H
N
N
N
borotropic shift (figure 1.4.4) in order to relieve
N
2
B
H
R
Figure 1.4.4. Ligand isomerization through
1,2 borotropic shift.
the steric hindrance and form a sandwich
complex.29
This isomerization occurs through
rotation of one of the pyrazole rings such that the
bulky substituent moves to the 5-position.
Even though scorpionates have been among the most widely used ligands, those containing strong
electron withdrawing substituents have not been the focus of many studies. Early work by Dias
showed the effects of CF3 substituents at the 3- and 5-position of the Tp ligand in the copper complex
Tp(CF3)2Cu(CO). As a result of the six CF3 groups withdrawing electron density from the copper, the
π-back-bonding is decreased and therefore the C-O IR stretching frequency is almost as high as in
free CO.30 Dias also reported that the increased degree of fluorination causes the Cu-C bond to
elongate and the differences in the structural and spectroscopic parameters of fluorinated and nonfluorinated systems are primarily a result of ligand electronic effects.31
12
Over the last several years, our group has been investigating scorpionate ligands containing
cont
the CN
substituent in the 4-position
position of the pyrazole ring. The cyano group has a strong electron-withdrawing
electron
character, as well as the ability to coordinate to a metal. This allows the scorpionate to form various
coordination polymers in which two ccyanoscorpionate
yanoscorpionate complexes are bound to the metal ion through
the cyano groups, as well as complexes in
which the pyrazole is only coordinated to the
metal through the pyrazole N atoms.3
Trofimenko and coworkers
ers first synthesized
Bp4CN in 2000. Homoleptic metal complexes
were not synthesized due to the strong
tendency to form coordination polymers in
which the CN group was coordinated to the
metal.32
In
2001,
our
group
isolated
homoleptic metal complexes of cyanosubstituted bispyrazolylborates with phenyl
Figure 1.4.5: The structure of ((TpPh,4CN)2Mn
sandwich complex.
substituents in the 3-position
position of the pyrazole
ring.33
TpPh,4CN
complexes
were
also
synthesized with Fe, Mn, or Co producing sandwich complexes with the 1,2 borotropically shifted
ligands - two Tp ligands complete
mplete the octahedral coordination sphere of the metal ((F
Figure 1.4.5). The
electron withdrawing CN group apparently weakens the σ-donor
donor ability of the pyrazole N atoms,
making TpPh,4CN a weaker ligand and allowing for more facile dissociation of one pyrazole from the
metal than in the non-cyano
cyano analogues, which enables the ligand to undergo the borotropic shift and
produce the less sterically congested product.5c
13
Figure 1.4.6: the extended structure of {CuTpPh,4CN}n.
Using the scorpionate BpPh,4CN, it was possible to produce {(CF3COO)4Rh2(BpPh,4CN)2Cu}n, a
coordination polymer in which Cu is coordinated in the pyrazole pocket and the Rh dimer is bound to
the cyano group.5b Recently, one dimensional Cu(I) coordination polymers were synthesized with
both TpPh,4CN and Tpt-Bu,4CN. These polymers were crystallographically characterized and showed
identical structures, with the Cu coordinated to the three pyrazole N atoms of one Tp and the N atom
of the cyano group from another Tp (figure 1.4.6). This was the first confirmation of the
cyanoscorpionates’ ability to form coordination polymers.34
The research in this thesis focuses on the synthesis and characterization of new metal complexes
using TpPh,4CN and Tpt-Bu,4CN in order to develop coordination polymers with useful magnetic,
conductive, and/or structural properties. The sandwich and half-sandwich metal complexes have
been well documented for various scorpionate ligands. Recently the cyanoscorpionates’ ability to
form coordination polymers through the CN group has been realized. It is our goal to combine both
of these aspects in order to form coordination polymers consisting of multinuclear metal species.
14
This in turn could lead to species displaying communication between the different metal ions through
the fully conjugated pathway of the Tp-coordinated metals and the cyano-bridged metals (figure
1.4.7). This pathway would allow for electron mobility between the metals,
leading to the
development of molecular based magnetic as well as conductive materials. The ability of the CN
group to coordinate to the metal that is already bound in the Tp pocket can lead to a wide variety of
coordination and packing motifs, making cyanoscorpionates very useful in developing molecular
hosts as well as 2- and 3-dimensional supramolecular networks.
N
N
NC
M2
CN
M1L4
N
R
N
NC
R3
3
R3
R3
N
N
N
R3
R
H
B
NC
M2
N
N
B
H
R
Figure 1.4.7: A cyanoscorpionate structure showing the two
different types of metal nuclei.
15
R3
N
N
CN
N
CN
CHAPTER 2:
CYAOSCORPIOATE METAL COMPLEXES
2.1 Introduction
Trispyrazolylborate ligands containing the CN substituent in the 4-position of the pyrazole ring, have
two advantageous properties. The cyano group has a strong electron-withdrawing character, as well
as the ability to coordinate to the metal. This allows the scorpionate to form various coordination
polymers in which two cyanoscorpionate complexes are bound to the metal ion through the cyano
groups, as well as complexes in which the pyrazole is only coordinated to the metal through the
pyrazole N atoms.
In 1987, Trofimenko and co-workers reported the synthesis of TpPh and Tpt-Bu and their metal
complexes with a 1:1 ligand-to-metal ratio. They suggested that these ligands were incapable of
supporting the more common 2:1 sandwich complexes because of the steric bulk of the substituents
in the 3-position of the pyrazole rings and therefore could only form the half sandwich complexes.27
Subsequently, TpPh2M complexes of FeII and MnII were reported in the absence of a suitably
coordinating counterion.28 Recently, Zhao and Eichhorn reported sandwich complexes of TpPh,4CN
with divalent Fe, Mn, and Co, in which the ligands have undergone isomerization to place one phenyl
substituent in the 5-position.5c They have also attempted to synthesize Tpt-Bu,4CNCoX complexes
which gave a product with a peak in the mass spectrum of m/z=972.5, indicating a complex with the
formula [(Tpt-Bu,4CN)2Co], which is surprising because no sandwich complexes have ever been
reported with the non-cyano analog, Tpt-Bu.5d Purification and crystal growth were unsuccessful for
the Tpt-Bu,4CNCoX complexes.
Zhao and Eichhorn also reacted the Tpt-Bu,4CN ligand with
Mn(CF3SO3)2·2CH3CN and Fe(CF3SO3)2·2CH3CN in a 2:1 ratio in dry THF under inert atmosphere.
Both the Mn and the Fe products showed IR stretches consistent with B-H and CN groups, however
for the Fe complex, the B-H stretch disappeared after exposure to the air for a few days.
16
Crystallization was unsuccessful for the Mn complex as well as the Fe complex. Described below is
the continuation of the effort to synthesize Tpt-Bu,4CN and TpPh,4CN metal complexes in order to
understand the steric and electronic effects of the bulky and electron-withdrawing substituents, with
the ultimate goal of constructing coordination polymers with useful properties.
17
2.2 KTpt-Bu,4C and KTpPh,4C
Tris(4-cyano-3-tert-butylpyrazolyl)borate is
a
second
generation
scorpionate
that
provides a bulky substituent at the 3position,
and
an
electron
withdrawing
substituent at the 4-position which has the
the ability to coordinate to a metal. The
synthesis was accomplished by a literature
preparation reported by Zhao using a
modification of the reported synthesis from
Tupper and Bray.5c
Figure 2.2.1: ORTEP drawing of the coordination
sphere of KTpt-Bu,4CN shown at the 50% probability
level. H atoms have been omitted for clarity.
X-ray quality crystals of potassium hydrotris(4-cyano-3-tert-butylpyrazolyl)borate were grown by
the slow evaporation of a methanol/toluene solution, and an ORTEP35 drawing of the full
coordination sphere is shown in Figure 2.2.1 ; selected bond distances and angles are in Table 2.2.1.
We recently reported the structure of TlTpt-Bu,4CN,5c in which the Tl is coordinated to the N
atoms of all three pyrazoles of one Tp ligand and which crystallizes in the rhombohedral space group
R3m. By contrast, the K atom in KTpt-Bu,4CN has bonding interactions with four symmetry-related
Tpt-Bu,4CN ligands. The first ligand binds to the K via two pyrazole rings, involving a normal sigma
interaction with N8 and a π-type interaction with N4 and N5. The second ligand binds through one
pyrazole (N2) and the other two ligands bind through a single cyano N atom (N6 and N9,
respectively). The overall geometry around K is thus square pyramidal, with N6 in the apical
18
position. Reported structures for K salts of Tp ligands display numerous binding motifs, including η5bound pyrazole rings and pyrazole N atoms bridging between two K atoms.36
Table 2.2.1: Bond Lengths (Å) and Angles (deg.) for
K–N5
3.156(3)
K–N8
K–N6’
2.846(4)
K–N9’
B–N1
1.527(5)
B–N4
C3≡N3
1.150(5)
C11≡N6
N5–K–N8
85.66(8)
N5–K–N2’
N6’–K–N5
73.76(10)
N6’–K–N8
N9’–K–N5
87.66(10)
N9’–K–N8
N6’–K–N9’
110.01(11)
N1–B–N4
106.6(3)
N1–B–N7
C2–C3≡N3
178.3(5)
C10–C11≡N6
KTpt-Bu,4CN
2.921(3)
2.781(4)
1.542(5)
1.142(5)
167.49(9)
79.17(10)
166.63(11)
K–N2’
K-N4
B–N7
C19≡N9
N8–K-N2’
N6’–K–N2’
N9’–K–N2’
2.889(3)
3.315(4)
1.539(5)
1.139(5)
96.11(9)
118.75(10)
87.98(10)
111.0(3)
178.6(5)
N4–B–N7
C18–C19≡N9
109.1(3)
179.2(4)
The K-N bond lengths reported for KTp complexes involving sigma-type interactions span a range
from 2.886 – 2.969 Å,37 consistent with the bonds to N2 and N8 in KTpt-Bu,4CN. The only reported
structure with an η2 interaction has bond lengths of 2.907 and 3.208 Å, again consistent with those
seen in KTpt-Bu,4CN.37b
Potassium hydrotris(4-cyano-3-phenylpyrazolyl)borate is a second generation scorpionate that
provides a different bulky substituent at the 3-position than KTpt-Bu,4CN, and still maintains an
electron withdrawing substituent at the 4-position which has to the ability to coordinate to a metal.
The synthesis was accomplished by a literature preparation reported by Zhao using a modification of
a reported synthesis from Tupper and Bray.5c
19
X-ray quality crystals of potassium hydrotris(4cyano-3-phenylpyrazolyl)borate were grown by
the slow evaporation of a methanol/toluene
solution, and an ORTEP35 drawing of the full
coordination sphere
is shown in Figure 2.2.2 ;
selected bond distances and angles are in Table
2.2.2. KTpPh,4CN crystallizes in the trigonal space
Figure 2.2.2: ORTEP drawing of the
coordination sphere of KTpPh,4CN shown at the
50% probability level. H atoms have been
omitted for clarity.
group P-3, with both the K and B atoms on a
crystallographic 3-fold axis and is isostructural
with the Tl analog.5c The K ion is coordinated by
the three available pyrazole N atoms of the Tp ligand. In addition, there are three short contacts K···N
(2.885 Å) between the K atom and N atoms from the CN substituents of three adjacent Tp ligands.
There is also a short contact between the K atom and the B-H group of the Tp ligand directly beneath
it (3.235 Å).
Table 2.2.2: Bond Lengths (Å) and Angles (deg.) for
K–N
2.885(3)
K–N≡C
B-N
1.540(4)
C≡N
N–K–N
72.12(10)
N–B–N
C2–C3≡N3
177.0(2)
20
KTpPh,4CN
2.896(3)
1.145(5)
111.7(2)
2.3 Tpt-Bu,4C Complexes of Co, Mn, and i
In order to follow up on the surprising mass spectrometric result indicating the existence of
(Tpt-Bu,4CN)2Co,
Co(ClO4)2,
KTpt-Bu,4CN
Mn(ClO4)2,
was
and
reacted
with
Ni(cyclam)(ClO4)2
(cyclam=1,4,8,11-tetraazacyclotetradecane) in a 1:2
ratio, producing new octahedral metal complexes.
The isostructural complexes (Tpt-Bu,4CN)2Co(H2O)4
and (Tpt-Bu,4CN)2Mn(H2O)4 were crystallized directly
by slow evaporation of the methanolic reaction
solution, while
(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2
(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2,
Bu,4CN
)2Ni(cyclam)
and
,
(Tpt-
were isolated by layering a
solution of KTpt-Bu,4CN in methanol on top of a
solution of the metal salt in 50% aqueous
methanol. Unlike the previously synthesized
sandwich complexes, the crystal structures of these
complexes showed none of the pyrazole N atoms
Figure 2.3.2: ORTEP drawings of: (Tpt-Bu,4CN)2
Co(MeOH)2(H2O)2 (top), (Tpt-Bu,4CN)2Co(H2O)4
(middle), and (Tpt-Bu,4CN)2Ni(cyclam) (bottom).
The Mn structures possess the identical
coordination motif as the Co complexes. Shown
at the 50% probability level. H atoms have been
omitted for clarity.
Figure 2.3.1: The “Inverted-Sandwich”
complex.
21
Table 2.3.1: Bond Lengths (Å) and Angles (deg).
(Tpt-Bu,4C)2Co
(H2O)4
(Tpt-Bu,4C)2Mn
(H2O)4
(Tpt-Bu,4C)2Co(MeOH)2
(H2O)2
(Tpt-Bu,4C)2Mn(MeOH)2
(H2O)2
(Tpt-Bu,4C)2i(cyclam)
2.158(4)
2.256(2)
2.150(2)
2.263(3)
2.131(2)
2.049(3)
2.159(5)
2.122(2)
2.203(3)
1.528(8)
B-NH-bomd
C-C≡Ncoord
M-Ncyano
M-Ncyclam
2.068(2), 2.070(2)
M-Owater
M-OMeOH
B-Nnon-H-bond
C-C≡Nuncoord
N-B-NH-bond
N-B-Nnon-Hbond
2.0650(17)
2.145(2)
1.520(5)
2.0541(19)
1.529(4)
2.142(3)
1.533(5)
1.540(3)
1.548(6), 1.554(6)
1.551(4), 1.555(4)
1.545(4), 1.551(3)
1.542(5), 1.548(5)
1.547(4),1.552(4)
174.4(6)
175.5(4)
175.1(3)
176.2(4)
178.2(3)
178.3(5), 178.8(3)
179.1(3), 179.4(5)
177.7(7), 178.9(5)
178.7(3),179.5(3)
178.3(8),179.1(5)
105.8(4)
105.6(3)
106.3(2)
107.2(3)
106.7(2), 107.7(2)
111.3(4), 111.4(4)
111.2(3), 111.5(2)
110.4(2), 111.0(2)
110.1(3),110.7(3)
111.8(2)
coordinated to the metal. Rather, each Tp ligand is coordinated to the metal only through one of the
CN groups, with two Tp anions coordinated trans to each other around the metal center forming an
“inverted-sandwich” complex (Figure 2.3.2).
The four Co and Mn complexes are essentially isostructural except for the differences in coordinated
solvent molecules. All four crystallize on an inversion center in the monoclinic space group P21/n
and (Tpt-Bu,4CN)2Ni(cyclam) crystallizes on an inversion center in the triclinic space group P 1 along
with a methanol molecule of solvation. Selected bond distances and angles are given in Table 2.3.1
and
ORTEP drawings of (Tpt-Bu,4CN)2Co(H2O)4, (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2, and (Tpt-
Bu,4CN
)2Ni(cyclam) are shown in Figure 2.3.2. The five complexes each display a pseudooctahedral
coordination geometry with the cyano N atoms of two Tpt-Bu,4CN ligands in the axial positions and
with the equatorial plane comprised of either four methanol ligands, two methanol and two water
ligands, or the four N atoms of the cyclam ligand. This coordination geometry is reminiscent of that
reported by Gardinier and coworkers for Fe(dmso)4 (HB(mtdaMe)3)2.38
22
The
four
Co
and
Mn
complexes all display an intricate
intermolecular H-bonding network
that results in chains of hydrogen
bound molecules (Figure 2.3.3).
There
are
intermolecular
three
different
H-bonding
interactions present. The free N
Figure 2.3.3: H-bonding network of
(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2. H-bonds shown as dashed
lines.
atom of one pyrazole interacts with
the O atom of a coordinated
methanol or water from a symmetry related molecule
(1/2-x,-1/2+y,1/2-z) with N···O distances ranging from
2.774-2.857 Å. (N8···O1 in Figure 2.3.4). The cyano N
atom from the same pyrazole interacts with the O atom
of a symmetry related coordinated water (-1/2+x,1.5-y,1/2+z) with N···O distances ranging from 2.779-2.808 Å
(N9···O2
in
Figure
2.3.4).
These
two
H-bond
interactions form chains along the b-direction of the
crystal lattice (Figure 2.3.3). The free N atom of the
pyrazole whose cyano group is coordinated interacts
with the O atom of a symmetry related coordinated
23
Figure 2.3.4: The H-bonding interaction
scheme for an individual Tpt-Bu,4CN ligand
for (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2,. Hbonds shown as dashed lines. H atoms
have been removed for clarity.
water molecule (1/2-x,-1/2+y,1/2-z) with N···O distances ranging from 2.888-2.946 Å (N2···O2 in
Figure 2.3.4). This interaction, along with the M-N bond to the cyano N atom, forms chains along
two coplanar body diagonals of the unit cell (Figure 2.3.3).
The H-bonding network thus holds two of the pyrazole rings such that the free N atoms are
directed toward the B-H vector and away from the normal tridentate binding pocket. Along with the
steric hindrance of the bulky t-butyl groups, the H-bonding contributes towards favoring this
coordination mode over formation of the sandwich complex. The hydrogen bonding manifests itself
in a comparison of the bond lengths and angles involving B-N bonds to pyrazole rings of the same
ligand. The four Co and Mn Tpt-Bu,4CN structures that display the extensive hydrogen bonding
interaction network also show differences in bond angles and distances involving atoms of the same
type. The shorter M-O bond in (Tpt-Bu,4CN)2Co(H2O)4
and (Tpt-Bu,4CN)2Mn(H2O)4 is to the water
molecule that is involved in two different H-bonds, indicating an increase in electron density for the
M-O bond with the increase of H-bonds. The shorter B-N bond in each ligand is to the pyrazole that
is not involved in any H-bonding, while the other two B-N bonds are somewhat longer, suggesting
that the H-bonds pull electron density out of the B-N bond. The N-B-N bond angles between the two
pyrazoles that are involved in the hydrogen bonding interaction are smaller than the other two N-B-N
bond angles (110.1-111.5 °). The C-C≡N bond angles for the cyano groups coordinated to the metal
deviate significantly from linearity.
24
Figure 2.3.5: H-bonding interaction scheme for (Tpt-Bu,4CN)2Ni(cyclam). H-bonds shown as
dashed lines. Hydrogen atoms have been removed for clarity.
(Tpt-Bu,4CN)2Ni(cyclam) does not have as extensive a hydrogen bonding network. However the
uncoordinated methanol molecule is involved in a H-bond (N···N 2.995-3.009 Å) with a cyclam N
atom from one complex molecule and with a pyrazole N atom from a neighboring complex molecule
(Figure 2.3.5).
The crystal symmetry produces interactions between each cyclam and two
neighboring molecules, resulting in a H-bound chain of molecules with two methanol-mediated Hbonds between each pair of molecules.
The structures of these complexes demonstrate an important characteristic of the
cyanoscorpionates. Whereas the non-cyano Tpt-Bu ligands are unable to form sandwich complexes,
the alternative binding mode available to the cyanoscorpionates opens up a new structural motif for
isolation of compounds with a 2:1 ligand-to-metal ratio. These complexes also represent a piece of
the heterometallic coordination polymers envisioned in Figure 1.4.7, specifically demonstrating the
ability to coordinate two cyanoscorpionate ligands to a central ML4 unit via the cyano N atoms.
ESI-MS
characterization
of
(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2
and
(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2 reveals the ability of these complexes to oligomerize. In positive ion
detection mode, the spectra show peaks at 971.2 m/z for the Co complex and 967.9 m/z for the Mn
complex which correspond to the molecular ion peak without the coordinated water and methanol,
([Tpt-Bu,4CNMTpt-Bu,4CN]+). In addition, peaks at 1486.1 m/z and 1478.2 m/z correlate to oligomers
25
formed by addition of an MTp unit to the Co and Mn complexes, respectively [Tpt-Bu,4CNMTptBu,4CN
MTpt-Bu,4CN]+. MS-MS analysis of the peaks at 1486.1 m/z and 1478.2 m/z gives fragmentation
that does not contain the molecular ion peak, but does contain a peak corresponding to [TptBu,4CN
MTpt-Bu,4CNMpzt-Bu,4CN]+. There are many ways that one could draw structures corresponding to
the peaks at 1486 and 1478, two of which are shown in Figure 2.3.6. These and other combinations
of pyrazole-bound and cyano-bound metal atoms cannot easily be distinguished on the basis of their
mass spectra and fragmentation patterns.
B
N
NC
N
N
B
N
N
N
CN M NC
N
N
B
NC
N
N
N
N
N
B
N
N
CN M NC
N
N
N
N
N
N
N
B
N
N
CN M NC
N
N
N
N
N
CN
N
M
N
NC
N
N
N
B
N
N
CN
Figure 2.3.6. Two possible oligimerization patterns for (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2 and
(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2. Tert-butyl groups have been omitted from the drawings.
26
CN
2.4 on-isomerized (TpPh, 4C)2Co
As described in section 1.4, both sandwich and half-sandwich complexes of the TpPh ligand have
been isolated, while similar complexes isolated with the TpPh,4CN ligand contained the 1,2borotropically shifted ligand. In the preparation of the Co complex of TpPh,4CN, the reaction of
KTpPh,4CN with Co(ClO4)2 produced a purple powder which showed B-H and CN stretches similar to
the ones previously reported by Zhao.5d Crystals were unable to be grown directly from this material;
instead they were grown by layering a solution of KTpPh,4CN in methanol on top of a solution of the
metal salt in solution of methanol/CH2Cl2, producing pink X-ray quality crystals of the complex
containing the isomerized ligand and showing a B-H stretch that was shifted to the 2520 cm-1
region.5c It was believed that the purple
solid is a complex of the non-isomerized
ligand, and isomerization occurs upon
crystal growth. Following
preparation,5c
the
purple
the literature
solid
was
produced, giving B-H stretch of 2489cm-1
which is 31 cm-1 lower than the reported
1,2 borotropically shifted (TpPh,4CN*)2Co
sandwich complex. Light purple crystals
were grown by slow evaporation of a 80/20
mixture of methanol/toluene. The crystal
structure confirms the presence of a nonisomerized ligand (Figure 2.4.1), but only
Figure 2.4.1: ORTEP drawing of non-isomierized
[Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)] sandwich complex.
The dashed lines shows the Co-HB interaction.
27
one of the ligands adopts the normal
tridentate coordination mode. The second
ligand coordinates through only two pyrazole N atoms.
The third pyrazole ring is rotated away from the pocket leaving a bi-dentate ligand and positioning
the B-H group in the sixth coordination site with an agostic bonding interaction distance of 2.501Å.
Formulated as Co(κ3-TpPh,4CN)(κ2-TpPh,4CN), this structure is very similar to that of [Co(κ3-TpPh)(κ2TpPh)] reported in 1997 by Kremer-Ach and co-workers.39 The molecule crystallizes on an inversion
Table 2.4.1: Selected bond distances (Å) and angles (°)
Co(κ3-TpPh,4C)(κ2-TpPh,4C)
Co(κ3-TpPh)(κ2-TpPh)
2.097(7), 2.1227(6), 2.102(7)
2.103(2), 2.138(2), 2.199(2)
2.098(7) 2.225(7)
2.124(2), 2.201(2)
Co-H
2.501(7)
2.17(2)
B-N
1.531(12), 1.525(10), 1.539(12),
1.568(12), 1.473(11), 1.531(11)
1.546(4), 1.531(4) ,1.538(4)
Nκ3-Co-Nκ3
91.5(2), 82.4(3), 92.6(2)
94.1(1), 89.0(1),83.7(1)
Nκ2-Co-Nκ2
91.8(3)
96.0(1)
102.7(2), 103.2(2),162.3(2)
99.2(1), 102.5(1), 165.4(1),
91.8(3), 164.5, 94.6
90.4(1), 165.7(1), 86.9(1)
Nκ3-B-Nκ3
109.8(7), 109.3(7), 107.7(7)
110.6(2), 109.4(2), 108.4(2)
Nκ2-B-Nκ2
113.6(7), 109.6(8), 109.2(2)
110.6(2), 111.2(3), 113.0(3)_
Co-N
Nκ2-Co-Nκ3
1.536(4), 1.528(4), 1.510(4)
center in the triclinic space group P 1 along with 2.4 toluene molecules of solvation. The Co is in a
pseudo-square pyramidal coordination geometry with the pyrazole nitrogens of the tridentate Tp
ligand occupying the axial and two equatorial positions, while the nitrogens of the bidentate ligand
occupy the other two equatorial postions. Selected bond distances and angles for Co(κ3-TpPh,4CN)(κ2TpPh,4CN) as well as the previously reported Co(κ3-TpPh)(κ2-TpPh) are listed in Table 2.4.1.
The non-isomerized Co(κ3-TpPh,4CN)(κ2-TpPh,4CN) sandwich complex
is an intermediate in the
synthesis of the 1,2-borotropically shifted complex. It appears the crystal lattice is stabilized by the
28
multiple toluene molecules incorporated into the lattice, allowing for quality crystal growth.
Referring to Figure 2.4.2, the top toluene molecule is disordered in a 70:30 ratio through a 180°
rotation with respect to the centroid of the ring. The middle toluene has an occupancy of 0.4 with
multiple disorder parts, making it unable to be modeled completely. The bottom toluene contains no
disorder and is at full occupancy.
Figure 2.4.2: Mercury drawings of Co(κ3-TpPh,4CN)(κ2-TpPh,4CN): a) showing the multiple
toluene molecules incorporated into the lattice. b) Mercury space-filling plot showing how the
toluene molecules pack to stabilized the lattice.
29
2.5 Inverted-sandwich Complex (TpPh,4C)2Mn
Realizing that TpPh,4CN can form
N
sandwich complexes, and Tpt-Bu,4CN
can
form
N
inverted-sandwich
N
N
N
N
complexes, attempts to synthesize
B
N
N
N
N
B
N
H
both 3-phenyl-4-cyanopyrazole and
3-tert-butyl-4-cyanopyrazole
N
H
a heteropyrazolylborate were made
in which the Tp ligand contains
N
N
N
N
N
N
Figure 2.5.1: The two possible heteropyrazolylborate
containing 3-phenyl and 3-tert-butyl-4CN pyrazole.
in
either a 1:2 or 2:1 ratio, respectively (Figure 2.5.1). The synthesis of KTpPh,4CN is achieved by a dry
melt of 4-cyano-3-phenylpyrazole with KBH4 in a 4:1 molar ratio at 230°C for 2 hours, and the
synthesis of KTpt-Bu,4CN is achieved by a dry melt of 3-tert-butyl-4-cyanopyrazole with KBH4 in a
4:1 molar ratio at 210°C for 1 hours. Therefore, a dry melt of 4-cyano-3-phenylpyrazole, 3-tert-butyl4-cyanopyrazole, and KBH4 in a 2:2:1 molar ratio at 220°C for 1.5 hours was performed to attempt to
synthesize the desired heteropyrazolylborate. After several washings with CH3CN and hot toluene,
separation and purification was attempted by column chromatography. The fraction containing the
compound showing a blue shifted B-H stretch (2464 cm-1) and a CN stretch (2231 cm-1) in the IR
spectrum was dried leaving a light yellow waxy solid. The solid was unable to be further purified
and was thought to be a mixture of potassium (4-cyano-3-phenylpyrazolyl)(bis(3-tert-butyl-4cyanopyrazolyl))borate
and
potassium
bis(4-cyano-3-phenylpyrazolyl)(3-tert-butyl-4-cyano
pyrazolyl)borate.
30
Layering a solution of this
waxy solid in methanol on top
of
a
solution
of
Mn(ClO4)2·6H2O in a test
tube
produced
crystals,
which
colorless
were
surprisingly identified as the
inverted sandwich complex
(TpPh,4CN)2Mn(MeOH)2(H2O)2.
Figure 2.5.2: ORTEP drawing of (TpPh,4CN)2Mn(MeOH)2
(H2O)2 . Hydrogen atoms have be excluded for clarity.
(Figure 2.5.2).
The molecule
crystallizes on an inversion
center in the triclinic space group P 1 along with a water molecule of solvation. As with the inverted
sandwich complexes containing Tpt-Bu,4CN, this complex shows none of the pyrazole N atoms
coordinated to the metal. Each Tp ligand is coordinated to the metal only through one of the CN
groups, with two Tp anions coordinated trans to each other around the metal. The complex shows a
pseudooctahedral coordination geometry with the cyano N atoms of two TpPh,4CN ligands in the axial
positions and with the equatorial plane comprised of two methanol and two water ligands making it
isostructural to the (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2. Since this complex was isolated from a ligand for
which the composition was not well established, a rational synthesis was then performed by layering
KTpPh,4CN on top of Mn(ClO4)2·6H2O which produced an almost identical structure except there were
four coordinated methanol molecules around the Mn. Selected bond distances and angles for both
complexes are given in Table 2.5.1.
31
(TpPh,4CN)2Mn(MeOH)2(H2O)2
Table 2.5.1: Bond Lengths (Å) and Angles (deg).
(TPh,4C)2Mn(MeOH)2(H2O)2
(TpPh,4C)2Mn(MeOH)4
M-Ncyano
2.258(5)
2.241(4)
M-Owater
2.118(6)
M-OMeOH
2.157(6)
2.135(3), 2.182(3)
B-Nnon-H-bond
1.539(11)
1.521(6)
B-NH-bomd
1.530(11), 1.525(12)
1.551(6), 1.557(5)
C-C≡Ncoord
176.7(8)
178.4(4)
C-C≡Nuncoord
176.3(10), 177.5(17)
H-bonding network between the nonbonded nitrogen of the pyrazole ring
and the coordinated
methanol and
water molecules as well as the
uncoordinated
water
molecule
177.8(8), 179.3(3)
NH-bond-B-NH-bond
110.7(6)
110.2(4)
NH-bond-B-Nnon-H-bond
109.3(7), 109.9(7),
109.5(3), 109.7(3)
(Figure2.5.3).
possesses an elaborate intermolecular
There are a total of five different
intermolecular H-bonding interactions
involving three
different TpPh,4CN ligands. One TpPh,4CN ligand contains a Hbonding interaction between the free N atom of one pyrazole
and the O of a coordinated methanol from a symmetry
related molecule (-1+x,y,z) with a N···O distance of 2.760 Å.
(N2···O1 in Figure 2.5.3). The same TpPh,4CN ligand also
contains an intermolecular H-bonding interaction between
the free N atom of another pyrazole and the O of a
coordinated water from a symmetry related molecule (-
Figure 2.5.3: The H-bonding
interaction
scheme
for
Ph,4CN
)2Mn(MeOH)2(H2O)2,. H(Tp
bonds shown as dashed lines.
1+x,y,z) with a N···O distance of 2.785 Å. (N5···O2 in
Figure 2.5.3).
This water molecule is also involved in a H-bonding interaction with the
uncoordinated water molecule with an O···O distance of 2.677 Å (O2···O101 in Figure 2.5.3). The
uncoordinated water participates in two other H-bonding interactions with cyano N atoms from two
32
different Tp ligands (N6···O10, 2.924 Å; N9···O101, 3.028 Å in Figure 2.5.3). All five H-bonding
interactions create a very elaborate network that expands in all three directions. (Figure 2.5.4).
b-direction
a-direction
c-direction
Figure 2.5.4: The H-bonding network for (TpPh,4CN)2Mn(MeOH)2(H2O)2, showing expansion in all
three directions. H-bonds shown as dashed lines. H atoms have been removed for clarity.
33
(TpPh,4CN)2Mn(MeOH)4 has a less extensive H-bonding network than (TpPh,4CN)2Mn(MeOH)2(H2O)2,
due to the lack of the water of crystallization. There are four different intermolecular hydrogen
bonds, two between the free N atom of one pyrazole and the O of a coordinated methanol from a
symmetry related molecule (-1+x,y,z) with a N···O distance range of 2.689-2.768 Å. The other two
are also between the free N atom of one pyrazole and the O of a coordinated methanol from a
symmetry related molecule (1+x,y,z) with a N···O distance range of 2.689-2.768 Å. These H-bonding
interactions lead to expansion in only one direction (Figure 2.5.5)
Figure 2.5.5: The H-bonding network for (TpPh,4CN)2Mn(MeOH)4, showing expansion in only one
direction. H-bonds shown as dashed lines. H atoms have been removed for clarity.
Unlike
the
(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2
analog,
the
hydrogen
bonding
of
(TpPh,4CN)2Mn(MeOH)2(H2O)2 does not manifest itself in a comparison of the bond lengths and
angles involving B-N bonds to pyrazole rings of the same ligand, nor show differences in bond
angles and distances involving atoms of the same type. The three different H-bonding interactions
involving the water of crystallization, seem to nullify the other H-bonding interaction effects that are
very prevalent in (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2. For (TpPh,4CN)2Mn(MeOH)4 there is a shorter B-N
bond in each ligand to the pyrazole that is not involved in any H-bonding, while the other two B-N
bonds are somewhat longer, suggesting that the H-bonds pull electron density out of the B-N bond.
34
However, the other effects that were seen with (Tpt-Bu,4CN)2Mn(H2O)4, were not prevalent in the
(TpPh,4CN)2Mn(MeOH)4 analog.
When examining the synthetic differences between isolating the sandwich complex with isomerized
ligands and the inverted sandwich complex for (TpPh,4CN)2Mn, the solvent appears to be the
determining factor for dictating which complex is obtained. Using a dry, non-coordinating solvent,
such as tetrahydrofuran, the sandwich complex is formed. This seems to be the result of the lack of
H-bonding interactions and their geometric effects. Coordinating solvents such as methanol and
water not only fill coordination sites around the metal, but also provide H-bonding interactions that
contribute towards favoring the inverted sandwich complex over formation of the sandwich complex.
35
2.6 Conclusion
The Tpt-Bu,4CN ligand allows for the isolation of metal complexes with Co2+, Mn2+, and Ni2+ that
display a new coordination motif for the cyanoscorpionates – one in which the only coordinated N
atom comes from the cyano group. These complexes show extended H-bonding networks which,
along with the steric requirements of the tert-butyl substituent, explain the isolation of these
complexes rather than the sandwich and half-sandwich complexes isolated with other scorpionate
ligands. In our quest for rationally designed two- and three-dimensional coordination polymers based
on the cyanoscorpionate ligands, these molecules represent one piece of the desired structure,
demonstrating the ability of a metal ion to link two cyanoscorpionate ligands.
The crystal structure of the non-isomerized Co(κ3-TpPh,4CN)(κ2-TpPh,4CN) sandwich complex was
obtained showing one of the pyrazole rings from only one of the Tp ligands is rotated away from the
pocket leaving a bi-dentate ligand and the boron hydrogen contained within the pocket providing an
agostic bonding
interaction.
This structure is believed to be an intermediate for the 1,2-
borotropically shifted sandwich complex of (TpPh,4CN)2Co. The incorporation of multiple toluene
molecules seems to stabilize the lattice in order for X-ray quality crystals to grow.
A new coordination motif was realized for the (TpPh,4CN)2Mn which showed the inverted sandwich
structure. Even though the primary structure and coordination environment were identically to the
analogous (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2, the H-bonding interactions
produce an intricate 3-
dimensional network not before seen, however, the interactions did not manifest themselves in a
comparison of the bond lengths and angles involving B-N bonds to pyrazole rings of the same ligand,
nor show differences in bond angles and distances involving atoms of the same type. Synthesis of
36
this inverted sandwich complex by rational means, produced an identical complex except for four
MeOH molecules coordinated to the metal, instead of two MeOH and two H2O. This complex
(TpPh,4CN)2Mn(MeOH)4 did show shortening of the B-N bond in each ligand to the pyrazole that is
not involved in any H-bonding, while the other two B-N bonds are somewhat longer, however, the
entire network showed expansion only in one direction.
These new complexes are an exciting start to the possibility of combining the two types of
cyanoscorpionates along with the different synthetic approaches in order to develop the desired
coordination polymers with two different types of metal nuclei, as shown in Figure 1.4.7. In pursuit
of this goal, the next step would be to attempt the coordination of metal ions in the pyrazolylborate
pockets of the inverted sandwich compounds, which will be discussed in the next chapter.
37
2.7 Experimental
2.7.1 General
Unless otherwise stated, all solvents and reagents were used as received from Aldrich, Acros, and
Fisher Scientific without further purification. Tert-butylcyanoacetate was obtained from TCI. When
specified, dry solvents were distilled from sodium/benzophenone (tetrahydrofuran and toluene) or
calcium hydride ( methylene chloride and acetonitrile). Air-sensitive compounds were manipulated
in a Vacuum Atmospheres Inc. Nexus One drybox, equipped with a variable temperature freezer, or
on a double manifold Schlenk line using standard Schlenk techniques. IR spectra were recorded on
a Nicolet Avatar 360 FTIR. Electrospray mass spectra were obtained on a Finnigan LCQ DECA
spectrometer. NMR spectra were obtained using either a Varian Mercury 300MHz NMR or Varian
Inova 400MHz NMR. Elemental analyses were obtained from M-H-W Laboratories, Phoenix, AZ.
For the X-ray structures, crystals were selected under a polarizing microscope, affixed to a nylon
cryoloop using oil (Paratone-n, Exxon), and mounted in the cold stream of a Bruker Kappa-Apex-II
area-detector diffractometer.
The temperature at the crystal was maintained at 150 K using a
Cryostream 700EX low-temperature apparatus (Oxford Cryosystems).
The unit cells were
determined from the setting angles of the reflections collected in 36 frames of data. Data were
measured using graphite mono-chromated molybdenum Kα radiation (λ= 0.71073 Å) collimated to a
0.6 mm diameter and a CCD detector at a distance of 50 mm from the crystal with a combination of
phi and omega scans. A scan width of 0.5 degrees and scan time of 10 seconds were employed.
Data collection, reduction, structure solution, and refinement were performed using the Bruker
Apex2 suite (v2.0-2).40 All available reflections to 2θmax = 52° were harvested and corrected for
Lorentz and polarization factors with Bruker SAINT (v6.45).41 Reflections were then corrected for
absorption, interframe scaling, and other systematic errors with SADABS 2004/1.42 The structures
were solved (direct methods) and refined (full-matrix least-squares against F2) with the Bruker
38
SHELXTL package (v6.14-1).43 All non-hydrogen atoms were refined using anisotropic thermal
parameters. Hydrogen atoms were included at idealized positions and were not refined.
2.7.2 Potassium hydrotris(3-tert-butyl-4-cyanopyrazolyl)borate, KTpt-Bu,4C.
Potassium borohydride (1.17 g, 0.021 mol) and 3-tert-butyl-4-cyanopyrazole (12.64 g, 0.091 mol)
were combined in a round-bottom flask fitted with a reflux condenser and slowly heated to 210 oC
for one hour. At 150 oC the 3-tert-butyl-4-cyanopyrazole began to melt and bubbles began to form.
The reaction mixture was allowed to cool, and the resulting powder was washed with boiling toluene
to yield KTpt-Bu,4CN as a white solid (9.97g, 0.0201 mol, 95.2%). IR (KBr, cm-1): 2461(νBH, m)
2231(νCN, s). ESI-MS (MeOH, negative detection): m/z = 148.3 [pzt-Bu,4CN]-, 456.4 [Tpt-Bu,4CN]- (major
peaks); 603.5 [pzt-Bu,4CNTpt-Bu,4CN]- (minor peak). X-ray quality crystals were grown from slow
evaporation of a 80/20 methanol/toluene solution. X-ray data collection and structure solution
parameters are listed in Table A1.
2.7.3 Potassium hydrotris(4-cyano-3-phenylpyrazolyl)borate, KTpPh,4C.
Potassium borohydride (1.24 g, 0.023 mol) and 4-cyano-3-phenylpyrazole (15.43 g, 0.085 mol) were
combined in a round-bottom flask fitted with a reflux condenser and slowly heated to 230 oC for two
hours. At 150 oC the 4-cyano-3-phenylpyrazole began to melt and bubbles began to form. The
reaction mixture was allowed to cool, and the resulting powder was dissolved in acetonitrile, filtered,
and the solvent was removed under reduced pressure. The product was washed with boiling toluene
to yield KTpPh,4CN as a pale yellow solid (10.25g, 0.0199 mol, 86.5%). IR (KBr, cm-1): 2446(νBH, m)
2228(νCN, s). X-ray quality crystals were grown from slow evaporation of a 80/20 methanol/toulene
solution. X-ray data collection and structure solution parameters are listed in Table A1.
39
2.7.4 Tetraaquabis(hydrotris(3-tert-butyl-4-cyanopyrazolyl)borato)cobalt(II), [(Tpt-Bu,4C)2Co
(H2O)4].
To a solution of Co(ClO4)2·6H2O (0.370g, 1.01 mmol) in 100 mL of methanol was added dropwise a
solution of KTpt-Bu,4CN (1.00 g, 2.02 mmol) in methanol. The pink solution immediately turned to a
cloudy light orange mixture, which was allowed to stir for 18 hours. The mixture was filtered to
remove a white precipitate, and the solvent was removed under reduced pressure to give 0.975 g of
light pink solid. The solid was washed with deionized water and dried under reduced pressure to
give a light pink solid (0.641 g, 0.598 mmol, 59.2%). IR (cm-1, KBr pellet): 2494(νBH, w), 2232(νCN,
s), Elemental Analysis, Found (Calc’d for C48H70N18B2O4Co·4H2O): C, 51.18 (51.67); H, 6.30
(7.05); N, 22.12 (22.60). X-ray quality crystals were grown from slow evaporation of a methanol
solution. X-ray data collection and structure solution parameters are listed in Table A1.
2.7.5
Tetraaquabis(hydrotris(3-tert-butyl-4-cyanopyrazolyl)borato)manganese(II),
[(Tpt-Bu,4C)2Mn(H2O)4].
To a solution of Mn(ClO4)2·6H2O (0.362g, 1.01 mmol) in 100 mL of methanol was added dropwise
a solution of KTpt-Bu,4CN (1.00 g, 2.02 mmol) in methanol. The colorless solution immediately turned
cloudy and was allowed to stir for 18 hours.
The mixture was filtered to remove the white
precipitate, and the solvent was removed under reduced pressure to give 0.814 g of white solid. The
solid was washed with deionized water and dried under reduced pressure yielding 0.722 g of [(Tpt)2Mn(H2O)4] (0.676 mmol, 66.9%). IR (cm-1, KBr pellet): 2490(νBH, w), 2240(νCN, s). X-ray
Bu,4CN
quality crystals were grown by slow evaporation of a methanol solution. X-ray data collection and
structure solution parameters are listed in Table A1.
40
2.7.6
Diaquabis(hydrotris(3-tert-butyl-4-cyanopyrazolyl)borato)bis(methanol)cobalt(II),
[(Tpt-Bu,4C)2Co(MeOH)2(H2O)2].
In a test tube, a solution of KTpt-Bu,4CN (0.2 g, 0.404 mmol) in 15 mL of methanol was layered on
top of a solution of Co(ClO4)2·6H2O (0.074 g, 0.202 mmol) in 15 mL of 50/50 MeOH/H2O. After
allowing the solutions to diffuse together for one week, the cover was removed and the solvent
allowed to slowly evaporate for 72 hours, producing light pink X-ray quality crystals of (Tpt)2Co(MeOH)2(H2O)2 (0.0749 g, 0.070 mmol, 34.6%). IR (cm-1, KBr pellet): 2480(νBH, w),
Bu,4CN
2233(νCN, s), ESI-MS (MeOH, positive and negative detection): m/z = 148.3[pzt-Bu,4CN]-, 366.1[BptCo]+, 456.4[Tpt-Bu,4CN]-, 515.2 [Tpt-Bu,4CNCo]+, 1177.2[Tpt-Bu,4CNCoTpt-Bu,4CNCopzt-Bu,4CN]+,
Bu,4CN
1486.1[Tpt-Bu,4CNCoTpt-Bu,4CNCoTpt-Bu,4CN]+,(major
peaks);
603.3[Tpt-Bu,4CNpzt-Bu,4CN]-,
662.7[Tpt-
Bu,4CN
Copzt-Bu,4CN]+, 971.2[Tpt-Bu,4CNCoTpt-Bu,4CN]+ (minor peaks) Elemental Analysis, Found (Calc’d
for C50H74N18B2O4Co): C 55.52, (56.03); H 6.79, (6.96); N 23.45 (23.52) X-ray data collection and
structure solution parameters are listed in Table A1.
2.7.7 Diaquabis(hydrotris(3-tert-butyl-4-cyanopyrazolyl)borato)bis(methanol)
manganese(II), [(Tpt-Bu,4C)2 Mn(MeOH)2(H2O)2] . In a test tube, a solution of KTpt-Bu,4CN (0.2 g,
0.404 mmol) in 15 mL of methanol was layered on top of a solution of Mn(ClO4)2·6H2O (0.073 g,
0.202 mmol) in 15 mL of 50/50 MeOH/H2O. After allowing the solutions to diffuse together for a
week, the cover was removed and the solvent allowed to slowly evaporate for 72 hours, producing
colorless X-ray quality crystals of (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2 (0.129 g, 0.121 mmol, 59.9%). IR
(cm-1, KBr pellet): 2521(νBH, w), 2238(νCN, s). ESI-MS (MeOH, positive and negative detection):
m/z = 306.9 [Bpt-Bu,4CN]-, 362.0[Bpt-Bu,4CNMn]+, 456.2[Tpt-Bu,4CN]-, 511.2[Tpt-Bu,4CNMn]+, 1478.2[TptMnTpt-Bu,4CNMnTpt-Bu,4CN]+ (major peaks); 603.3[Tpt-Bu,4CNpzt-Bu,4CN]-, 660.0[Tpt-Bu,4CNMnpzt-
Bu,4CN
Bu,4CN +
] , 967.9[Tpt-Bu,4CNMnTpt-Bu,4CN]+, 1116.9[[Tpt-Bu,4CNMnTpt-Bu,4CNMnpzt-Bu,4CN]+ (minor peaks).
41
Elemental Analysis, Found (Calc’d for C48H70N18B2O4Mn·3H2O): C 53.48, (53.53); H 6.69 (7.19); N
22.20 (22.47). X-ray data collection and structure solution parameters are listed in Table A1.
2.7.8
Bis(hydrotris(3-tert-butyl-4-cyanopyrazolyl)borato)(1,4,8,11-Tetraazacyclotetra-
decane)nickel(II), [(Tpt-Bu,4C)2i(cyclam)]·MeOH. In a test tube, a solution of KTpt-Bu,4CN (0.2 g,
0.404 mmol) in 15 mL of methanol was layered on top of a solution of Ni(cyclam)(ClO4)2 (0.081 g,
0.202 mmol) in 15 mL of 50/50 MeOH/H2O. After allowing the solutions to diffuse together for a
week, the cover was removed and the solvent allowed to slowly evaporate for 72 hours, producing
light green X-ray quality crystals of [(Tpt-Bu,4CN)2Ni(cyclam)] (0.107 g, 0.121 mmol, 47.5%). IR
(cm-1, KBr pellet): 2501 (νBH, w), 2223 (νCN,s) ESI-MS (MeOH negative detection): m/z 306.4 [BptBu,4CN -
] , 456.2[Tpt-Bu,4CN]-,
603.3[Tpt-Bu,4CNpzt-Bu,4CN]-. Elemental Analysis, Found (Calc’d for
C58H86N22B2Ni·2H2O·CH3OH): C 57.01, (57.16); H 7.11 (7.64); N 24.89 (24.89). X-ray data
collection and structure solution parameters are listed in Table A1.
2.7.9 Bis(hydrotris(4-cyano-3-phenylpyrazolyl)borato)cobalt(II), Co(κ3-TpPh,4C)(κ2-TpPh,4C).
To a solution of Co(ClO4)2·6H2O (0.659g, 1.80 mmol) in 100 mL of methanol was added dropwise a
solution of KTpPh,4CN (2.00 g, 3.60 mmol) in methanol. The pink solution turned immediately to a
cloudy purple mixture, and was allowed to stir for 18 hours. The solution was filtered and the solvent
was removed under reduced pressure to yield a dark purple solid. The solid was re-dissolved in
methanol, filtered, and the solvent was removed under reduced pressure to yield Co(κ3-TpPh,4CN)(κ2TpPh,4CN) (1.24g, 1.12 mol, 62.3%). IR (KBr, cm-1): 2489(νBH, m) 2235(νCN, s). X-ray quality crystals
were grown from slow evaporation of a 80/20 methanol/toluene solution. X-ray data collection and
structure solution parameters are listed in Table A1.
42
2.7.10 Diaquabis(hydrotris(4-cyano-3-phenylpyrazolyl)borato)bis(methanol)
manganese(II), [(TpPh,4C)2 Mn(MeOH)2(H2O)2]. Potassium borohydride (1.08 g, 0.020 mol), 4cyano-3-phenylpyrazole (6.76 g, 0.040 mol) , and 3-tert-butyl-4-cyanopyrazole (5.96 g, 0.040 mol)
were combined in a round-bottom flask fitted with a reflux condenser and slowly heated to 220 oC
for 1.5 hours. At 150 oC the pyrazoles began to melt and bubbles began to form. The reaction mixture
was allowed to cool, and the resulting powder was dissolved in acetonitrile, filtered, and the solvent
was removed under reduced pressure. The product was washed with boiling toluene, dried, and
chromatographed using a silica gel column (100-200 mesh) with starting mobile phase of 80/20
hexanes/ethyl acetate. The mobile phase ratio of hexanes/ethyl acetate was slowly decreased to
20/80. The desired product was the last fraction (12th) to elute from the column. The solvent was
removed under reduced pressure to yield a very pale yellow solid (5.25g). IR (KBr, cm-1): 2446(νBH,
m) 2228(νCN, s). In a test tube, a solution of this pale yellow product (0.2 g) in 15 mL of methanol
was layered on top of a solution of Mn(ClO4)2·6H2O (0.073 g, 0.202 mmol) in 15 mL of 50/50
MeOH/H2O. After allowing the solutions to diffuse together for a week, the cover was removed and
the solvent allowed to slowly evaporate for 72 hours, producing colorless X-ray quality crystals of
(TpPh,4CN)2Mn(MeOH)2(H2O)2 IR (cm-1, KBr pellet): 2513 (νBH, w), 2230 (νCN,s) X-ray data
collection and structure solution parameters are listed in Table A1.
2.7.11
Bis(hydrotris(4-cyano-3-phenylpyrazolyl)borato)tetrakis(methanol)manganese(II),
[(TpPh,4C)2Mn(MeOH)4]. In a test tube, a solution of KTpPh,4CN (0.224 g, 0.404 mmol) in 15 mL of
methanol was layered on top of a solution of Mn(ClO4)2·6H2O (0.073 g, 0.202 mmol) in 15 mL of
50/50 MeOH/H2O.
After allowing the solutions to diffuse together for a week, the cover was
removed and the solvent allowed to slowly evaporate for 72 hours, producing very small colorless
crystals that did not diffract. The product was removed from the test tube, dissolved in methanol in a
small vial, placed inside a larger vial containing diethyl ether, and tightly capped. After 72 hours x43
ray quality crystals of (TpPh,4CN)2Mn(MeOH)4 were produced. IR (cm-1, KBr pellet): 2512(νBH, w),
2235(νCN, s). X-ray data collection and structure solution parameters are listed in Table A1.
44
CHAPTER 3:
METAL COORDIATIO POLYMERS
3.1 Introduction
Coordination polymers are a class of materials that possess 1-, 2-, and 3-dimensional networks that
are composed of metal-organic backbones joined through coordination and hydrogen bonds, as well
as other secondary interactions.25a These types of polymers are good candidates for molecule-based
materials because they can be synthesized by less expensive, lower energy methods, and are
comprised largely of light molecular weight elements which contain desirable physical, magnetic,
and electronic properties. Over the last decade, coordination polymers have been studied for a wide
variety of commercial applications such as rechargeable batteries, light emitting diodes,
photovoltaics, membranes, electronic noses and sensors, chemical separation, and heterogeneous
catalysis.14 Their properties are easily tunable by changing the backbone of the polymer, changing
the metal doping agent, changing the coordination environment, and blending with other polymers.11
The recent explosive growth in supramolecular and nanochemistry is based on the understanding of
the non-covalent intermolecular interactions. One of the most common synthetic approaches in
producing predictable supramolecular networks is to combine organic ligands (spacers) with
transition metal ions (nodes).18 Recently, supramolecular complexes are being used as functional
materials showing molecular recognition, host–guest chemistry, ion exchange, catalysis, electrical
conductivity, magnetism, and optics, as well as forming the basis for nanochemistry.23
The cyanoscorpionate ligands that are the subject of this research have the ability to form various
coordination polymers in which two cyanoscorpionate complexes are bound to the metal ion through
the cyano groups, as well as complexes in which the pyrazole is only coordinated to the metal
45
through the pyrazole N atoms.30 Recently, one dimensional Cu(I) coordination polymers were
synthesized with both TpPh,4CN and Tpt-Bu,4CN.34 These polymers were crystallographically
characterized and showed identical structures with the Cu coordinated to the three pyrazole N atoms
of one Tp and the N atom of the cyano group from another Tp. The cyanoscorpionates’ ability to
form coordination polymers can lead to a wide variety of coordination and packing motifs, making
cyanoscorpionates very useful in developing useful molecule-based materials as well as 1-, 2- and 3dimensional supramolecular networks.
46
3.2 Cu(I) Coordination Polymers
Previous work in our group showed the cyanoscorpionates’ ability to form coordination polymers
through the cyano group by producing (TpPh,4CNCu)n and (Tpt-Bu,4CNCu)n (Figure 3.2.1). This polymer
was crystallographically characterized and showed the Cu coordinated to the three pyrazole N atoms
of one Tp and the N of the cyano group from another Tp. The polymers display a zigzag motif, with
approximately 90o corners defined by the angle between the coordinated CN group and its symmetryrelated partner within the asymmetric unit. This was the first conformation of the cyanoscorpionates’
ability to form coordination polymers.34
Figure 3.2.1: Mercury drawing showing five units of the extended structures of {CuTpPh,4CN}n
(left) and {CuTpt-Bu,4CN}n (right). Atom colors – Cu (orange), N (blue), B (pink), C (grey).
Figure 3.2.2 shows views looking down
the direction of the chains, revealing the
well-defined channel formed by two
adjacent chains. The phenyl substituents
dissect this channel (Figure 3.2.2a), but the
channel in the t-butyl derivative (Figure
3.2.2b) is much more open, with a closest
distance of 4.211 Ǻ between methyl
carbon atoms across the channel. Because
(a)
(a)
(b)
(b)
Figure 3.2.2: Mercury drawings directed down the
channels of (a) {TpPh,4CNCu}n and (b) {TptBu,4CN
Cu}n Atom colors – Cu (orange), N (blue), B
(pink), C (grey).
47
of this open space, during an attempt to synthesize a mixed-metal block coordination polymer
involving Tpt-Bu,4CN, we isolated crystals of {[Tpt-Bu,4CNCu}][MeCN]}n in which acetonitrile
molecules have been trapped in the channels (Figure 3.2.3).
Figure 3.2.3: Mercury drawing (left) of the top view of {[Tpt-Bu,4CNCu][MeCN]}n showing the
acetonitrile molecules and the protruding methyl groups in space-filling format (dark grey and
dark blue), and Mercury drawing (right) of the {Tpt-Bu,4CNCu}n with the arrow showing the
channel containing the acetonitrile.
A similar structure has also been characterized with encapsulated methanol molecules. {[TptBu,4CN
Cu][MeCN]}n crystallizes on a inversion center in the monoclinic space group C2/c. Selected
bond angles and distances are in Table 3.2.1. The pseudotetrahedral coordination environment of the
Cu(I) ion includes the three pyrazole N atoms of a Tpt-Bu,4CN ligand and is completed by a cyano N
atom of another Tpt-Bu,4CN ligand. The bond between Cu and the cyano N for {[TptBu,4CN
Cu][MeCN]}n is shorter than those to the pyrazole N atoms as was seen for the {Tpt-Bu,4CNCu}n.
With the isolation of the inverted sandwich complexes described in Chapter 2, attempts were made
to insert metal ions into the pyrazole pockets of these complexes in order to produce the desired
heterometallic coordination polymers. Multiple attempts were made with all three inverted sandwich
complexes and a wide variety of Cu(I) species (Figure 3.2.4). All attempts produced the same two
48
previously synthesized polymers, {[Tpt-Bu,4CNCu][MeCN]}n and {[Tpt-Bu,4CNCu][MeOH]}n, depending
on the reaction and crystallization solvents.
Table 3.2.1: Bond Lengths (Å) and Angles (deg.)
{[Tpt-Bu,4CNCu][MeCN]}n
{Tpt-Bu,4CNCu}n
Cu–Npyrazole
2.053(2), 2.135(2), 2.148(19)
2.043(2), 2.151(3), 2.155(3)
Cu-Ncyano
1.888(2)
1.882(3)
B-N
1.533(3), 1.536(3), 1.540(3)
1.531(4), 1.532(5), .529(5)
C≡N
1.142(4), 1.143(3), 1.146(3)
1.149(4), 1.143(5), 1.149(4)
N-Cu-N
90.26(8), 92.23(7), 130.91(8), 94.01(8),
120.85(9), 119.27(8)
90.34(10), 92.27(10),131.39(11), 94.06(10), 120.51(11),
118.97(11)
N-B-N
110.9(2), 109.8(2), 107.75(19)
111.3(3), 110.2(3), 107.8(3)
C-C≡N
176.2(3), 175.5(3), 173.9(3)
176.0(4), 177.1(6), 174.1(3)
Figure 3.2.4: The reaction scheme for the various attempts to produce the desired heterometallic
coordination polymer, which all resulted in previously synthesized Cu(I) polymers.
The {[Tpt-Bu,4CNCu][MeCN]}n crystals are essentially isostructural with the unsolvated polymer,
indicating this compound maintains its structure even after the guest molecule has been removed - an
attractive feature which is less common among reported structures.44 This feature suggests the
possibility that two- or three-dimensional polymeric species involving the cyanoscorpionate ligands
of Tpt-Bu,4CN might be useful small molecule carriers as well as hosts in catalytic systems.
49
3.3 Ag(I) Coordination Polymers {Tpt-Bu,4CAg}n (Ag-1)
Since all attempts to insert Cu(I) into the pyrazole pockets of the inverted sandwich complexes
produced the {Tpt-Bu,4CNCu}n with the same 1-D polymer motif, we chose to try the same type of
heterometallic coordination polymer synthesis with a different metal. Ag(I) seemed to be a logically
choice, sense the Ag+ will be in charge balance with the [Tpt-Bu,4CN]- in a 1:1 ratio, Ag will tolerate a
tetrahedral geometry, and Ag is a good size to fit in the pocket of the Tpt-Bu,4CN ligand. The first
attempt was made by trying to coordinate Ag+ in the pocket of the inverted sandwich complex (TptBu,4CN
)2Co(MeOH)2(H2O)2, using AgNO3 as the silver source, and methanol/water as the reaction
solvent. The resulting product was isostructural to the Cu(I) polymer without the encapsulated
solvent molecule. {Tpt-Bu,4CNAg}n (Ag-1) crystallizes on a inversion center in the monoclinic space
group C2/c (Figure 3.3.1) The pseudotetrahedral coordination environment of the Ag(I) ion includes
the three pyrazole N atoms of a Tpt-Bu,4CN ligand and is completed by a cyano N atom of another
TpR,4CN ligand. The bond between the Ag and the cyano N for {Tpt-Bu,4CNAg}n is shorter than those
(a)
(b)
Figure 3.3.1: a) Mercury drawing of the monomer for Ag-1 . b) Mercury drawing showing
five units of the extended structure of {Tpt-Bu,4CNAg}n for Ag-1. Atom colors – Ag (bright
pink), N (blue), B (light pink), C (grey).
50
to the pyrazole N atoms, as was seen for {Tpt-Bu,4CNCu}n. However, all of the Ag-N bonds are
approximately 0.2 Å longer than the analogous Cu-N bond, which makes sense due to the larger Ag
size. Selected bond angles and distances are in Table 3.3.1.
Table 3.3.1: Bond Lengths (Å) and Angles (deg.) for Ag-1
(Ag-1)
{Tpt-Bu,4CNCu}n
M–Npyrazole
2.301(12), 2.390(12), 2.392(12)
2.043(2), 2.151(3), 2.155(3)
M-Ncyano
2.157(15)
1.882(3)
B-N
1.513(19), 1.533(2), 1.545(2)
1.531(4), 1.532(5), 1.529(5)
C≡N
1.138(19), 1.135(2),1.137(2)
1.149(4), 1.143(5), 1.149(4)
84.1(4),85.7(4),138.5(5),
90.34(10), 92.27(10),131.39(11),
87.76(4), 123.3(5), 121.74(5)
94.06(10), 120.51(11), 118.97(11)
N-B-N
113.5(12), 112.6(12), 107.0 (11)
111.3(3), 110.2(3), 107.8(3)
C-C≡N
177.8(2), 176.2(19), 167.3(13)
176.0(4), 177.1(6), 174.1(3)
N-M-N
51
3.4 Ag(I) Coordination Polymers (Ag-2)
In order to attempt the synthesis of the silver polymer by rational means, AgNO3 was reacted with
KTpt-Bu,4CN,
the
which
produced
{Tpt-
Bu,4CN
Ag}n with the same monomeric unit as
before, but with a different chain elongation
motif and tertiary structure (Ag-2). The
compound crystallizes on a general position in
the orthorhombic space group Cmc21, with
Figure 3.4.1: A Mercury drawing of
the
monomeric unit of Ag-2. The silver pyrazolate
is on the far left. Atom colors – Ag (bright pink),
N (blue), B (light pink), C (grey).
selected bond lengths and angles in Table 3.4.1.
The structure (Figure 3.4.1) features a (TtBu,4CN
Ag)3 trimeric unit in which the central Tp ligand coordinates through two of its cyano N atoms
to the Ag atoms of the two outer Tpt-Bu,4CNAg moieties. An additional Ag ion, binds to one cyano N
atom of the outer Tpt-Bu,4CNAg moieties of two neighboring trimeric units, creating a 1-dimensional
chain of the formula {(Tpt-Bu,4CNAg)3Ag}n extending in the a-direction of the crystal. The bridging
Ag atom, in turn, is coordinated by a pyrazole N atom of a disordered pyrazolate ion. The cyano N
Tabel 3.4.1Bond Lengths (Å) and Angles (deg.) for Ag-2
atom of this pyrazolate binds to the
Ag atom of the central Tpt-Bu,4CNAg
Ag–Npyrazole
2.301(12), 2.390(12), 2.392(12)
Ag-Ncyano
2.157(15)
B-N
1.513(19), 1.533(2), 1.545(2)
chain in the b-direction of the
C≡N
1.138(19), 1.135(2),1.137(2)
crystal (Figure 3.4.2), resulting in a
N-Ag-N
84.1(4),85.7(4),138.5(5),
87.76(4), 123.3(5), 121.74(5)
2-dimensional polymeric sheet.
N-B-N
113.5(12), 112.6(12), 107.0 (11)
C-C≡N
177.8(2), 176.2(19), 167.3(13)
of a trimeric unit in the neighboring
52
a-direction
b-direction
Figure 3.4.2: Mercury drawing of the 2-D network of Ag-2. Atom colors – Ag (bright pink),
N (blue), B (light pink), C (grey).
c-direction
Figure 3.4.3: Mercury drawing of a) 2-dimensional polymeric
network of Ag-2. b) The channels formed by the stacking of the 2D sheets, extending in the a-direction. Atom colors – Ag (bright
pink), N (blue), B (light pink), C (grey).
53
3.5 Ag(I) Coordination Polymers (Ag-3)
Reaction
Table 3.5.1: Bond Lengths (Å) and Angles (deg) for Ag-3
Ag–Npyrazole
2.244(11), 2.327(9), 2.307(10),
2.346(10), 2.363(6),
Ag-Ncyano
2.293(10), 2.167(14), 2.313(9)
B-N
1.51(2), 1.55(2), 1.531(13),
1.533(12), 1.561(13), 1.520(13),
1.554(17)
C≡N
1.149(13), 1.55(16), 1.136(12),
1.165(11), 1.16(2), 1.124(7),
1.142(16)
N-Ag-N
89.0(4), 130.3(3), 114.5(4), 115.7(3),
124.1(3), 87.5(3), 126.0(6), 137.1(4),
84.5(4), 121.7(4), 86.1(4), 85.7(3)
N-B-N
109.0(8), 111.2(8), 107.7(7),
107.3(7), 109.3(8), 112.3(8),
109.3(15), 109.8(10), 111.2(11)
C-C≡N
176.7(13), 179.4(18), 178.0(2),
177.9(9), 177.2, 178.7(12), 178.5(8)
of
the
(Tpt-Bu,4Cn)2Co(MeOH)2
(H2O)2
inverted sandwich complex with
AgNO3,
produced
a
different
polymeric elongation motif.
polymeric
compound
The
(Ag-3)
crystallizes on an inversion center
in the triclinic space group P 1
containing two Tpt-Bu,4CN, two pztTpt-Bu,4CN, and 4 Ag+ ions in
Bu,4CN
the repeat unit (Figure 3.5.1).
Selected bond lengths and angles
are given in Table 3.5.1.
pseudotetrahedral
The
coordination
environment for Tpt-Bu,4CNAg is made up
of the three pyrazole nitrogens and a
cyano nigtrogen from a pzTpt-Bu,4CN
ligand.
The
pseudotetrahedral
coordination environment for pzTptBu,4CN
Ag is made up of two pyrazole
nitrogens from the bidentate pzTp
Figure 3.5.1: Mercury drawing of the repeat unit of
Ag-3. Atom colors – Ag (bright pink), N (blue), B
(light pink), C (grey).
ligand, a cyano N atom from the
symmetry related pzTp ligand, and a cyano nigtrogen form a neighboring Tpt-Bu,4CN ligand. This latter
54
interaction, occuring from both of the symmetry related pzTpAg moieties, results in the formation of
a one-dimensional chain in the b-direction of the crystal (Figure 3.5.2a). The packing of these chains
in the a-direction results in channels with dimensions 7.2 Å x 22.5
Å (Figure 3.5.2b).
b-direction
a-direction
(a)
(b)
Figure 3.5.2: Mercury drawing of a) the polymeric chain of Ag-3 with growth in the b-direction.
b) A view down the b-axis showing the channels formed by the packing in the a-direction.
55
3.6 Ag(I) Coordination Polymers (Ag-4)
Crystals of Ag-4 were produced
from a reaction of (Tp
)2Mn
Table 3.6.1: Bond Lengths (Å) and angles (deg) for Ag-4.
t-Bu,4CN
Ag–Npyrazole
2.324(8), 2.341(8), 2.364(8)
(MeOH)2(H2O)2 and AgSbF6. The
Ag-Ncyano
2.158(9)
compound crystallizes on a general
B-N
1.524(14), 1.545(15), 1.547(14)
position in the orthorhombic space
C≡N
1.207(18), 1.212(18), 1.103(14)
group P43212 with selected bond
N-Ag-N
129.8(3), 130.9(4), 86.2(3), 124.1(4),
82.0(3), 88.2(3)
N-B-N
111.5(8), 109.6(9), 110.0(8)
C-C≡N
179.1(17), 174.9(16), 177.4(13),
lengths and angles in Table 3.6.1
The
pseudotetrahedral
coordination environment of the
Ag(I) ion includes the three pyrazole N atoms of a Tpt-bu,4CN ligand and is completed by a cyano N
atom of another Tpt-bu,4CN ligand (Figure 3.7.1). This compound has only one Tpt-Bu,4CNAg in the
asymmetric unit, as with Ag-1, , but possesses very high symmetry and forms a helical, rather than
zig-zag, polymer chain.
a
b
Figure 3.6.1 Mercury drawing of a) The monomeric unit for Ag-4. b) five
monomers linked in a helical shape looking down the polymer chain. Atom colors –
Ag (bright pink), N (blue), B (light pink), C (grey).
56
The helical chains stack together in an “out of phase wave” fashion providing a 2-D sheet with
alternating large and small holes.
Figure 3.6.2: Mercury drawing of A-4 showing the stacking of the
helical polymer chains.
57
3.7 Experimental
3.7.1. General. See section 2.7.1.
3.7.2 Synthesis of {[Tpt-Bu,4CCu][MeC]}n and {[Tpt-Bu,4CCu][MeOH]}n
In the glove box, 0.058 g of CuOPh (0.374mmol) was dissolved in dried and degassed methanol, and
then 0.2g (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2 (0.187mmol) in dried and degassed methanol was slowly
added. The solution immediately turned from a light orange to a cloudy green. A light green solid
was filtered, half of the product was dissolved in acetonitrile and slow evaporation from this solution
produced X-ray quality crystals of {[Tpt-Bu,4CNCu][MeCN]}n. IR (cm-1, KBr pellet): 2478(νBH, w),
2233(νCN, s). The other half of the solution was dissolved in methanol and slow evaporation from
this solution produced X-ray quality crystals of {[Tpt-Bu,4CNCu][MeOH]}n. IR (cm-1, KBr pellet):
2486(νBH, w), 2234(νCN, s). X-ray data collection and structure solution parameters are listed in Table
A1.
3.7.3 Synthesis of Ag-1
In a test tube, a solution of AgNO3 (0.063 g, 0.374 mmol) in 15 mL of methanol was layered on top
of a solution of (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2 (0.2 g, 0.187 mmol) in 15 mL of 50/50 MeOH/H2O.
After allowing the solutions to diffuse together for one week, the cover was removed and the solvent
allowed to slowly evaporate for 72 hours, producing colorless X-ray quality crystals of Ag-1. IR
(cm-1, KBr pellet): 2468(νBH, w), 2229(νCN, s). X-ray data collection and structure solution
parameters are listed in Table A1.
58
3.7.4 Synthesis of Ag-2
In a test tube, a solution of KTpt-Bu,4CN (0.2 g, 0.404 mmol) in 15 mL of methanol was layered on
top of a solution of AgNO3 ( 0.137 g, 0.808 mmol) in 15 mL of 50/50 MeOH/H2O. After allowing
the solutions to diffuse together for one week, the cover was removed and the solvent allowed to
slowly evaporate for 72 hours, producing colorless X-ray quality crystals of Ag-2. (IR (cm-1, KBr
pellet): 2496(νBH, w), 2230(νCN, s), X-ray data collection and structure solution parameters are listed
in Table A1.
3.7.5 Synthesis of Ag-3 To a solution of AgNO3 (0.137 g, 0.808 mmol) in methanol, a solution of
KTpt-Bu,4CN (0.2 g, 0.404 mmol) in methanol was slowly added. The light pink solution turned
immediately a cloudy brown and was stirred for 18 hrs. After filtration, half of the light brown solid
was dissolved in THF, and after 24 hrs of slow evaporation X-ray quality crystals of Ag-3 were
produced. IR (cm-1, KBr pellet): 2479(νBH, w), 2227(νCN, s ). X-ray data collection and structure
solution parameters are listed in Table A1.
3.7.6 Synthesis of Ag-4
In a test tube, a solution of AgSbF6 (0.129 g, 0.374 mmol) in 15 mL of methanol was layered on top
of a solution of (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2 (0.2 g, 0.187 mmol) in 15 mL of 50/50 MeOH/H2O.
After allowing the solutions to diffuse together for one week, the cover was removed and the solvent
allowed to slowly evaporate for 72 hours, producing colorless X-ray quality crystals of Ag-4. X-ray
data collection and structure solution parameters are listed in Table A1.
59
3.8 Conclusion.
The {[Tpt-Bu,4CNCu]}n compounds were isolated with CH3CN and CH3OH encapsulated in the lattice.
The unsolvated polymer was previously synthesized, indicating this compound can maintain its
structure even after the guest molecule has been removed which is an attractive feature that suggests
the possibility that two- or three-dimensional polymeric species involving the cyanoscorpionate
ligands of {Tpt-Bu,4CNCu}n might be useful as small molecule carriers as well as hosts in catalytic
systems.
Multiple attempts were made to try to incorporate a Cu+ species in the Tp pocket of the inverted
sandwich complexes. Each attempt resulted in decomposition of the inverted sandwich complex and
the formation of the {Tpt-Bu,4CNCu}n with the same 1-D polymeric network. The same type of
heterometallic coordination polymer synthesis was attempted using Ag+. Multiple attempts with Ag+
also caused the decomposition of the inverted sandwich complexes, however, 1- and 2-D polymers
were formed with various polymeric networks. Changing the reaction conditions slightly produced
very different secondary and tertiary structures as well as holes and channels within these networks.
From a supramolecular standpoint, these new polymers produce exciting insight into possible guest
host molecules as well as other supramolecular networks.
60
CHAPTER 4:
METAL PYRAZOLE COMPLEXES.
4.1. Introduction
The scorpionate ligands have been widely used for the last four decades3 due to the ease with
which these ligands can be synthesized with various ring substituents. Although there have been
numerous reports of the synthesis from pure scorpionate ligands of metal complexes containing
coordinated pyrazole molecules (sometimes mixed scorpionate/pyrazole complexes)5, there has
not been a great deal of study on the degradation of scorpionates. In 2002, Graziani and coworkers reported the degradation (deboronation) of Tl[pzTpt-Bu] to give trans-FeCl2(Hpzt-Bu)4
when reacted with FeCl2.45 They also discovered that increased steric crowding around the
boron atom reduces the stability of the scorpionate with respect to B-N cleavage. Bieller et al.
followed up this work with a study of the degradation reactions of scorpionates in the presence of
transition metal halide salts (MX2) to give pyrazole derivatives, and suggested that another
reason for the deboronation of scorpionates may be due to the difference in Lewis acidity of the
metal center and the boron center in the pyrazolyl borate.46 Earlier work in our group showed
possible scorpionate degradation reactions of TlTpt-Bu,4CN with Rh2(CF3COO)4 and reacting
TlTpPh,4CN with Ni(cyclam)(ClO4)2. In the current studies, we have also seen the degradation of
scorpionates, with a variety of metal salts and scorpionate metal complexes. Chapter 3 presented
attempts to introduce Cu(I) or Ag(I) in the Tp pocket of the inverted sandwich complexes,
resulting in isolation of the various Cu and Ag polymers containing Tp ligands. In this chapter
are described related reactions of transition metals with KTpt-Bu,4CN and the inverted sandwich
scorpionate complexes {(Tpt-Bu,4CN)2M(L)4} which showed deboronation to form various metal
pyrazole complexes and polymers.
61
4.2. Reaction of (Tpt-Bu,4C)2Co(MeOH)2(H2O)2 with CuSPh
In an attempt to introduce a Cu(I) in the Tp pocket of the inverted sandwich complex (TptBu,4CN
)2Co(MeOH)2(H2O)2, scorpionate deboronation occurred resulting in formation of the
polymer {(Hpz)4Cu(ClO4)}n. The anion is presumed to be from the Co salt that was used in the
synthesis of the inverted sandwich complex. The compound {(Hpz)4Cu(ClO4)}n crystallizes on
an inversion center in the monoclinic space group C2/c, with selected bond lengths and angles
given in Table 4.2.1.
Table 4.2.1: Bond Lengths (Å) angles (deg) for {(Hpz)4Cu(ClO4)}n
Cu–N
2.324(8), 2.341(8), 2.364(8)
Cu-O
2.158(9)
O-Cu-O
164.3(3)
C≡N
1.207(18), 1.212(18), 1.103(14)
N-Cu-N
C-C≡N
octahedral coordination of the
Cu(I) includes four N atoms from
the
129.8(3), 130.9(4), 86.2(3),
124.1(4), 82.0(3), 88.2(3)
179.1(17), 174.9(16), 177.4(13),
The
neutral
pyrazoles
in
the
equatorial positions, and two O
atons
from
the
bridging
perchlorate ions in the axial positions (Figure 4.2.1). The
coordinated pyrazole N atoms are those which were
bound to B in the Tp reagent (i.e., the N furthest from the
t-butyl substituent). The O···Cu···O angle is 164.3° which
is a significant deviattion from a true octahedral
geometry. One of the tert-butyl groups (lower right in
Figure 4.2.1) is disordered through multiple parts;
therefore it was unable to be modeled correctly because
of the multiple q-peaks for one atom at various
positions. These 4 carbon atoms were, therefore, refined
62
Figure 4.2.1: ORTEP drawing of the
monomer
{(Hpz)4Cu(ClO4)}n
coordination environment. H atoms
have been left out for clarity.
with isotropic thermal parameters. Each (Hpz)4Cu is bridged by a perchlorate anion forming a 1D polymeric chain. (Figure 4.2.2a).
There are three intermolecular hydrogen bonding
interactions between two O atoms of the perchlorate and the N of three different pyrazoles:
O2···N2 is 2.818 Å; O2···N11 is 2.771 Å; O4···N5 is 2.778Å. These interactions cause each
pyrazole involved to rotate towards the O atom about the Cu-N bond, and cause the two
neighboring monomers to form a staggered conformation which is continued through the entire
polymer (Figure 4.2.2b). Overall, this Tp degradation product, {(Hpz)4Cu(ClO4)}n, exhibits
interesting supramolecular properties through the bridging perchlorate anion that is also involved
in H-bonding interactions, and the staggered conformation forced by the steric bulk of the tertbutyl groups.
c-direction
a
b
Figure 4.2.2: a) Mercury drawing of three monomer units of{(Hpz)4Cu(ClO4)}n
extending in the c-direction. b) Mercury drawing looking down the Cu-Cu vector
showing the staggered conformation of two monomer units and the H-bonding
interactions (as dashed lines).
63
4.3. Reaction of [(Tpt-Bu,4C)2i(cyclam)]·MeOH with [Cu(CH3C)4]PF6 and aSPh
Another attempt to introduce a Cu(I) in the Tp pocket of an inverted sandwich complex, this time
[(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH, resulted in scorpionate deboronation and formation of the
polymer {(Hpz)4Cu(PF6)}n.
The
Table 4.3.1: Bond Lengths (Å) angles (deg) for {(Hpz)4Cu(PF6)}n
compound crystallizes on a four-fold
rotation axis in the tetragonal space
group P4/n with selected bond
Figure 4.3.1: ORTEP drawing of the
monomer {(Hpz)4Cu(PF6)}n coordination
evnironment. H atoms have been left out
for clarity.
Cu–N
Cu-F
C≡N
N-Cu-N
C-C≡N
2.015
2.256(4), 2.314(4)
1.142(4)
177.06(14), 89.962(4)
177.7(3)
Figure 4.3.2: Mercury drawing of three
monomer units of {(Hpz)4Cu(PF6)}n
extending in the c-direction. H atoms have
been left out. Atom colors – Cu (dark
orange), N (blue), B (light pink), C (grey), P
(light organe), F (yellow)
lengths and angles in Table 4.3.1
The
octahedral coordination of the Cu(I) includes
four N atoms from the pyrazoles in the equatorial positions, and two F atoms from the bridging
PF6 ions in the axial poisitons (Figure 4.3.1). Each (Hpz)4Cu is bridged by a PF6 anion forming
a 1-D polymeric chain. Unlike the {(Hpz)4Cu(ClO4)}n, there are no H-bonding interactions,
therefore the pyrazoles are not rotated with respect to the Cu-N, and two neighboring monomers
line up in the eclipsed conformation. This is consistent with the crystallographically imposed 4fold symmetry.(Figure 4.3.3)
64
Figure 4.3.3: Mercury drawing looking down the c-axis
showing the eclipsed conformation. H-atoms have been
removed for clarity.
65
4.4. Reaction of KTpt-Bu,4C with Mn(CF3COO)2
After realizing the importance of a non-coordinating anion, as well as dry solvents,
Mn(CF3COO)2
was
reacted
with
KTpt-Bu,4CN
in
dry
methanol
to
yield
{(Hpzt-
Bu,4CN
)2Mn(CF3COO)2}n.
Table 4.4.1: Bond Lengths (Å) angles (deg) for {(HpztBu,4CN
)2Mn(CF3COO)2}n.
Mn–Npyrazole
Mn–Ncyano
Mn-O
C≡N
N-Mn-N
C-C≡N
2.243(3)
2.232(4)
2.118(3)
1.147(6)
180.00(1), 91.91(12), 88.04(12)
178.2(5)
Figure 4.4.1: ORTEP drawing of the monomer
{(Hpz)2Mn(CF3COO)2}n
coordination
environment. H atoms have been left out for clarity.
The octahedral coordination environment of the
Mn(II) includes N atoms from two pyrazoles, N atoms
compound
crystallizes
This
on
an
inversion center in the monoclinic
space group P21/c with selected bond
distances and angles in Table 4.4.1.
Figure 4.4.2: Mercury drawing of five
monomer
units
of
{(Hpz)2Mn
(CF3COO)2}n creating a 2-D network. .
Atom colors – Mn (bright pink), N
(blue), B (light pink), C (grey), O (red),
F (yellow)
from the cyano groups of two other pyrazoles, and O atoms from two triflate (CF3COO-) anions
(Figure 4.4.1). The infared spectrum of this compound shows two bands for the CN stretch, at
66
2234 and 2261 cm-1. This is unexpected, as all CN groups are identical in this complex. Chain
elongation occurs through the pyrazole N as well as the cyano N creating a 2-D conjugated
polymer (Figure 4.4.2). There are also two intramolecular H-bonding interactions between O of
the (CF3COO)- and the unbound pyrazole N with a N···O distance of 2.686 Å (Figure 4.4.3)
Figure 4.4.3: Mercury drawing showing
the intramolecular H-bonding interactions
of {(Hpz)2Mn(CF3COO)2}n.
67
4.5. Reaction of [(Tpt-Bu,4C)2i(cyclam)]·MeOH with CuCl2
In an attempt keep from producing the {[Tpt-Bu,4CNCu]}n, CuCl2 was reacted with the inverted
sandwich complex[(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH. As was seen by Graziani and Bieller,45,46
using a metal halide salt caused Tp degradation through deboronation and produces [(HpztBu,4CN
)2CuCl(η-Cl)]2 dimer. The molecule is a Cu(II) dimer, which crystallizes on an inversion
center in the monoclinic space group P21/n - selected bond distances and angles are in Table
4.5.1 The Cu(II) coordination environment is square pyramidal, which includes two pyrazole
N’s, one bridging Cl, and one
Table 4.5.1: Bond Lengths (Å) angles (deg) for [(Hpz)4Cu2]Cl4
Cu–N
Cu–Cl
C≡N
N-Cu-N
Cl-Cu-Cl
C-C≡N
2.0061(17), 2.0116(18)
2.2786 (5), 2.2966(6), 2.6779(6)
1.142(3)
167.58(7)
173.21(3)
179.2(3)
non-bridging Cl in the equatorial
positions, and the other bridging
Cl in the axial position (Figure
4.5.1), with the long axial Cu-Cl bond
distance of 2.678 Å. Zhao and Eichhorn
previously
reported
a
similar
pseudodimer,47 in which both Cl atoms are
terminal and the Cu atoms are bridged by
the N from the cyano groups with an axial
Cu-Ncyano distance of 2.812 Å. The N-CuN linear distortion (167.5°) is due to the
steric interaction between the CN group
of
one
pyrazole
from
one
Figure 4.5.1: ORTEP drawing of the monomer’s
[(Hpz)4Cu2]Cl4 dimer coordination environment.
H atoms have been left out for clarity.
Cu(II)
monomer and the tert-butyl group of the pyrazole from the other.
68
4.6. Reaction of (Tpt-Bu,4C)2Co(MeOH)2(H2O)2 with AgBF4
In an attempt to incorporate a Ag(I) species in the Tp pocket of (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2,
degradation of the Tp occurred resulting in a silver pyrazolate polymer, {[(pztBu,4CN
)3Ag3]}n·CH3CN. The compound crystallizes on an inversion center in a triclinic space
group P1 triangular monomer unit (Figure 4.6.1a) is made up of three pyrazolates bridged by
three Ag(I) ions in a linear geometry through each of the pyrazole nitrogens. Two monomer
units are bridged by coordination of a cyano N atom (N9) from one monomer to a Ag atom
(Ag2) from a symmetry related monomer (Fig. 4.6.1b) to create a dimeric Ag6 unit. These
dimeric units are further associated by Ag-Ag interactions (Ag1-Ag2’, 3.15 Å) to produce a 1-D
chain (Fig. 4.6.2).
(a)
(b)
Figure 4.6.1: a) ORTEP drawing of the monomer of {[(pzt-bu,4CN)3Ag3]}n. b) Mercury
drawing of two units showing the different Ag coordination environments.
69
Table 4.6.1: Bond Lengths (Å) angles (deg). {[(pzt-Bu,4CN)3Ag3]}n·CH3CN
Ag–Ag
3.1496(8)
Ag-Npyrazole
2.093(5), 2.125(4), 2.107(5), 2.124(5), 2.101(5),
2.112(5)
Ag-Ncyano
2.667
C≡Nunbound
1.129(8), 1.153(9)
C≡Nmetal bound
1.142(8)
N-Ag-N
170.23(19), 171.24(19), 175.09(19)
Ag-Ag-Ncyano
C-C≡N
145.6
179.5(8), 179.1(8), 178.2(7)
Figure 4.6.2: Mercury drawing of chain elongation for {[(pzt-Bu,4CN)6Ag6]}n·CH3CN
70
4.7. Experimental
4.7.1. General. See section 2.7.1.
4.7.2. Synthesis of {(Hpzt-Bu,4C)4Cu(ClO4)}n
CuSPh (0.032g, 0.187mmol) was placed in 15 mL CHCl3 in a round bottom flask, and (TptBu,4CN
)2Co(MeOH)2(H2O)2 (0.1g, 0.093mmol) in 15mL of methanol was slowly added. The
yellow solution turned a pale green after 1 hour of stirring, and cloudy after 18 hours stirring.
After filtration, the green solution was allowed to slowly evaporate producing light green X-ray
quality crystals of {(Hpzt-Bu,4CN)4Cu(ClO4)}n IR (cm-1, KBr pellet): 2227(νCN, s). X-ray data
collection and structure solution parameters are listed in Table A1.
4.7.3. Synthesis of {(Hpzt-Bu,4C)4Cu(PF6)}n
Under Ar atmosphere, NaSPh (0.004g, 0.027 mmol) and [Cu(CH3CN)4]PF6 (0.010g, 0.027
mmol) were combined in dry and degassed 80/20 methanol/acetonitrile in a round bottom flask.
[(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH (0.065g, 0.055mmol) was slowly added to the flask.
Immediately, the solution turned a cloudy yellow, and after 24 hrs stirring, the solution was a
cloudy organge. After filtration the light yellow solution was allowed to slowly evaporate,
producing X-ray quality crystals of {( Hpzt-Bu,4CN)4Cu(PF6)}n. IR (cm-1, KBr pellet): 2227(νCN, s).
X-ray data collection and structure solution parameters are listed in Table A1.
4.7.4. Synthesis of {(Hpzt-Bu,4C)2Mn(CF3COO)2}n Under inert atmosphere, a solution of KTptBu,4CN
(0.2 g, 0.404 mmol) in dry and degassed methanol was slowly added to a solution of
71
Mn(CF3COO)2·2CH3CN (0.29g, 0.808 mmol) in dry and degassed methanol. The colorless
solution turned immediately a cloudy light brown and was stirred for 18 hrs. After filtration, the
colorless solution was allowed to slowly evporate for 36 hrs producing X-ray quality crystals of
{(Hpzt-Bu,4CN)2Mn(CF3COO)2}n. IR (cm-1, KBr pellet): 2234, 2261 (νCN, s). X-ray data collection
and structure solution parameters are listed in Table A1.
4.7.5. Synthesis of the [(Hpzt-Bu,4C)2CuCl(η-Cl)]2 dimer.
In a test tube, CuCl2 (0.044g, 0.328mmol) in 15 mL of methanol was layered on top of a solution
of (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2 (0.2g, 0.164mmol) in 15 mL of 50/50 MeOH/H2O.
After
allowing the solutions to diffuse together for one week, the cover was removed and the solvent
allowed to slowly evaporate for 72 hours, producing light turquoise colored X-ray quality
IR (cm-1, KBr pellet): 2227 (νCN, s). X-ray data
crystals of [(Hpzt-Bu,4CN)2CuCl(η-Cl)]2 dimer.
collection and structure solution parameters are listed in Table A1.
4.7.6. Synthesis of {[(pzt-Bu,4C)3Ag3]}n·CH3C
A solution of (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2 (0.2, 0.187 mmol) in methanol was slowly added
to a solution of AgBF4 (0.073g, 0.374 mmol) in methanol. The solution immediately turned a
cloudy brown and after 18 hrs of stirring, a dark red solid was filtered off. The solid was
dissolved in CH3CN and after 24 hrs of slow evaporation, red X-ray quality crystals of {[(pzt)6Ag6]}n·CH3CN were produced. IR (cm-1, KBr pellet): 2229 (νCN, s). X-ray data collection
Bu,4CN
and structure solution parameters are listed in Table A1.
72
4.8. Conclusion
Graziani and Bieller were among the first to study the degradation of scorpionates.
They
reported deboronation reactions of scorpionates when reacted with metal halide salts. Another
possible reason for scorpionate degradation is the difference in Lewis acidity of the metal center
and the boron center in the pyrazolyl borate.46 In attempting to form heterometallic metal
complexes by incorporating a metal in the newly recognized inverted sandwich complexes,
multiple Tp degradation products were synthesized. By changing the bridging anion from ClO4to PF6- in the {[(Hpzt-Bu,4CN)4Cu]X}n polymers, the conformation goes from staggered for {(HpztBu,4CN
)4Cu(ClO4)}n with three different intermolecular H-bonding interactions to eclipsed for
{(Hpzt-Bu,4CN)4Cu(PF6)}n
not
showing
any
H-bonding
interactions.
The
{(Hpzt-
Bu,4CN
)2Mn(CF3COO)2}n polymer exhibits chain elongation occurring through the pyrazole N’s
as well as the cyano N’s creating a 2-D conjugated polymer with the potential of interesting
metal spin coupling. There was also a Tp degradation polymer that possesses three different Ag
coordination environments within the same monomer producing two different monomer linkages
within the same 1-D polymeric chain. These products not only give more information on the Tp
degradation process, but they also possess very interesting primary and secondary structures that
can be used in building supramolecular frameworks.
73
Chapter 5
Conclusion
Continuation of the work on developing molecular based materials using scorpionate ligands, has
provided a new coordination motif for Co2+, Mn2+, and Ni2+ metal complexes using Tpt-Bu,4CN.
These new complexes showed the inverted sandwich coordination in which
the ligand is
coordinated to the metal only through one of the CN groups. This is an important step in forming the
desired heterometallic coordination polymer in which there is a metal bound in the pocket of the Tp,
as either a half-sandwich or sandwich complex, and another metal bridging two Tp ligands together
in an inverted-sandwich motif. This type of coordination polymer not only has the potential to
possess the desired physical properties of a molecular based material, but also the electronic and
magnetic properties which could be used in a wide variety of commercial applications.
Another exciting discovery was made when the inverted sandwich complex was synthesized for
(TpPh,4CN)2Mn.
After examining the different synthetic conditions, it was realized that the
coordination motif is solvent dependant. When using non-coordinating dry solvents that are unable
to participate in hydrogen bonding, the sandwich complex is formed. However, using solvents such
as methanol and water, you have solvent coordination to the metal which leads to H-bonding
interactions that help force the complex into the inverted sandwich motif.
In attempting Cu+ insertion into the Tp pocket of each type of inverted sandwich complexes, the
M-Ncyano was broken and the previously synthesized {[Tpt-Bu,4CNCu]}n polymer was formed.
However, these polymers were isolated with CH3CN and CH3OH encapsulated in the lattice,
making them possible candidates for small molecule carriers as well as hosts in catalytic systems.
74
Attempting the same type of metal insertion using Ag+, produced not only an isostructural compound
to the copper polymer, but also produced various 1-D and 2-D {Tpt-Bu,4CNAg}n polymeric networks
containing different types of holes and channels. From a supramolecular standpoint, these new
polymers have the potential to be used as guest-host molecules as well as other supramolecular
frameworks.
We have seen the (TpPh,4CN)2Mn form both types of complexes, and by using our new knowledge of
the solvent dependant coordination motifs, the H-bonding interaction effects, and the cyano group's
coordination ability, I believe it is only a matter of time before the right reaction conditions are
discovered and our desired heterometallic polymers are synthesized. Because of this potential,
cyanoscorpionates have a promising future in developing useful molecular-based and supramolecular
materials.
75
REFERECES
76
LIST OF REFERECES
1
Skotheim, T.A. Handbook of Conducting Polmers, 2nd edn, CRC, 1986
a) Tanaka, D.; Kitagawa, S. MRS Bull. 2007, 32, 540-543. (b) Mueller, U.; Schubert, M.M.; Yaghi,
O.M.; Handbook of Heterogeneous Catalysis (2nd Edition) Ertl, G. (ed.), 2008, 247-262. (c)
Rowsell, J.L. C.; Yaghi, O.M. Angew. Chem., Int. Ed. 2005, 44, 4670-4679.
2
a) Trofimenko, S. J. Am. Chem. Soc. 1966, 88, 1842. b) Trofimenko, S. Chem. Rev. 1993, 93, 943.
c) Trofimenko, S., Scorpionates: The Coordination Chemistry of Polypyrazolylborates Ligands.
Imperial College Press: London, 1999.
3
a) Dias, H. V. R.; Wang, Z. Inorg. Chem. 2000, 39, 3724. b) Dias, H. V. R.; Jin, W. Inorg. Chem.
2000, 39, 815.
4
a) Siemer, C.J.; Goswami, N.; Kahol, P.K.; VanStipdonk, M.J.; Eichhorn, D. M. Inorg. Chem.
2001, 40, 4081. b) Siemer, C.J.; VanStipdonk, M.J.; Kahol, P.K.; Eichhorn, D.M. Polyhedron 2004,
23, 235. c) Zhao, N.; Vanstipdonk, M.J.; Bauer, C.; Eichhorn, D.M. Inorg. Chem. 2007, 46, 8662. d)
Zhao, N. Ph.D Dissertation. Wichita State University, 2005
5
Gatteschi, D.; Sessoli, R.; Villain, J., Molecular 3anomagnets, Oxford University Press: Oxford
2006.
6
a) Akhriff, Y.; Server-Carrio, J.; Sancho, A.; Garcýa-Lozano, J.;Escriva, E.; Folgado, J. V.; Soto,
L.; Inorg. Chem. 1999, 38,1174; b) Coronado, E.; Curreli, S.; Gimenez-Saiz, C.; GómezGarcia, C. J.; Synth. Met. 2005, 154, 245. c). Amabilino, D. B.; Vaciana, J. Magnetism: Molecules
toMaterials II: Molecule-Based Materials., Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim;
2002, ch. 1.
7
Tamura, M.; Nakazawa, Y.; Shiomi, D.; Nozawa, K.; Hosokoshi, Y.; Ishikawa, M.; Takahashi, M.;
Kinoshita, M., Chemical Physics Letters , 1991, 186(4-5), 401-4.
8
Caneschi, A.; Gatteschi, D.; Lalioti, N.; Sangregorio, C.; Sessoli, R.; J. Chem. Soc., Dalton
Trans. 2000, 21, 3907.
9
Sheila M. J.; Aubin, Z. S.; Pardi, P.; Krzystek, J.; Folting, K.; Brunel, L.; Rheingold, A .L.;
Christou, G.; Hendrickson, D. N. Inorg. Chem. 1999, 38, 5329-5340.
10
Mitchel, B. S. An Introduction to Materials Engineering and Science for Chemical and Materials
Engineers, John Wiley and Sons, 2004, ch. 6.
11
12
www.hsc.csu.edu.au/engineering_studies/telecommunications/2517/Semiconductors.html
Zhong, J. C.; Misaki, Y.; Munakata, M.; Kurado-Sowa, T.; Maekawa M.; Suenaga, Y.; and
Konaka, H. Inorg. Chem. 2001, 40, 7098-7098.
13
14
Bernhard, S.; Goldsmith, J. I.; Takada, K.; and Adruna, H.D. Inorg. Chem., 2003, 42,4389-4393.
77
15
Okamoto, S. PCT Int. Appl. 2009, WO2009013942 A1 20090129
Nomura, K.; Inagaki, Y.; Sasaki, H.; and Kuriki, T. Jpn. Kokai Tokkyo Koho 2008,
JP2008288067 a 20081127
16
17
Sawano, T. Jpn. Kokai Tokkyo Koho 2008, JP 2008288310 A 20081127
Ariga, K.; Kunitake, T. Supra molecular Chemistry-Fundamentals and Applications, Springer
Berlin Heidelberg, New York, 2006, Ch 1.
18
19
Cram, D.J.; and Cram, J.M. Science, 1974, 183, 803.
Seed, J. W.; Turner, D.R.; and Wallace, K.J. Core Concepts in Supramolecular Chemistry and
3anochemistry. John Wiley & Sons, Ltd, 2007, Ch 1.
20
a) Tanaka, D.; Kitagawa, S.; MRS Bull. 2007, 32, 540-543. (b) Mueller, U.; Schubert, M.M.;
Yaghi, O.M.; Handbook of Heterogeneous Catalysis (2nd Edition) Ertl, G. (ed.) 2008, 247-262. (c)
Rowsell, J.L. C.; Yaghi, O.M.; Angew. Chem., Int. Ed. 2005, 44, 4670-4679.
21
Manna, S.C.; Zangrando, E.; Ribas, J.; and Chaudhur, N.R. Dalton Transactions, 2007, 13831391.
22
Grandjean, F.; Reger, D.L.; Gardinier, J.R.; Germmill, W.R.; Smith, M.D.; Shahin, A.M.; Long
G.J.; and Rebbouh, L. J. Am. Chem. Soc, 2006, 127, 2303-2316.
23
Garcia-Baez, E.V.; Ballinas-Lopez, M. G.; Padilla-Martinez, P.; Martinez-Martinez, F.J.; and
Hopfl, H.Acta Cryst, 2006, C62,m132-m135.
24
(a) Eddaoudi, M.; Moler, D. B. ; Li, H.; Chen, B.; Reineke, T. M.; O’Keeffe M.; Yaghi, O. M.
Acc. Chem. Res., 2001, 34, 319; (b) Lin, W. B.; Ma, L.; Evans, O. R. Chem. Commun., 2000, 2263;
(c) Evans, O. R.; Xiong, R.-G.; Wang, Z.; Wong, G. K.; Lin, W. Angew. Chem., Int. Ed., 1999, 38,
536; (d) Noro, S.; Kitagawa, S.; Kondo, M.; Seki, K. Angew. Chem., Int. Ed., 2000, 39, 2081; (e)
Eddaoudi, M. ; Li, H. L.; Yaghi, O. M. J. Am. Chem. Soc., 2000, 122, 1391; (f) Seo, J. S.; Whang,
D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. 3ature, 2000,404, 982; (g) Kahn, O. Acc. Chem.
Res., 2000, 33, 647
25
a) Trofimenko, S. J. Am. Chem. Soc., 1969, 91, 588. b) Trofimenko, S., Scorpionates: The
Coordination Chemistry of Polypyrazolylborates Ligands. 1999, Imperial College Press: London.
26
27
28
Trofimenko, S.; Calabrese, J.C.; and Thompson, J.S. Inorg. Chem., 1987, 26, 1507-1514.
Eichhorn, D. M. and Armstrong, W.H. Inorg. Chem., 1990, 29, 3607-3612.
Trofimenko, S.; Calabrese, J.C.; Domaille, P.J.; and Thompson, J.S. Inorg. Chem. 1989, 28, 10911101
29
30
Dias, H.; Lu, H.; Ratcliff, R.; Simon, G., Inorg. Chem. 1995, 34, 5380-5382.
78
Dias, H. V. R.; Kim, H.-J.; Lu, H.-L.; Rajeshwar, K.; Tacconi, N. R.; Derecskei-Kovacs, A.;
Marynick, D. S. Organometallics 1996, 15, 2994-3003
31
32
Rheingold, A. R.; Incarvito, C. D.; Trofimenko, S. Inorg. Chem. 2000, 39, 5569.
Siemer, C.J.; Goswami, N.; Van Stipdonk, M. J.; Eichhorn, D. M. Inorg. Chem., 2001 40, 40814084.
33
Zhao, N.; Bullinger J.C.; Van Stipdonk, M.J.; Stern, C.L.; Eichhorn, D.M. Inorg. Chem 2008, 47,
5945
34
35
Farrugia, L. J. (1997) ORTEP-3 for Windows, J. Appl. Cryst. 30, 565.
a) Bieller, S.; Bolte, M.; Lerner, H.W.; Wagner, M.; Z. Anorg. Allg. Chem. 2006, 632, 319. (b)
Chisolm, M.H.; Gallucci, J.C.; Yaman, G. Chem. Commun. 2006, 1872.
36
a) Joshi, H.K; Arvin, M.E.; Durivage, J.C.; Gruhn, N.E.; Carducci, M.D.; Westcott, B.L.;
Lichtenberger, D.L.; Enemark, J.H. Polyhedron 2004, 24, 429. b) Batten, S.R.; Duriska, M.B.;
Jensen, P.; Lu, J. Aust. J. Chem. 2007, 60, 72.
37
Silva, R.M.; Gwengo, C.; Lindeman, S.V.; Smith, M.D.; Long, G.J.; Grandjean, F. and Gardinier,
J.R. Inorg. Chem 2008, 47, 7233
38
Kremer-Aach, A.; Kläui, W.; Bell, R.; Strerath, A.; Wunderlich, H.; and Mootz, D. Inorg. Chem
1997, 36, 1552-1563.
39
40
APEX2 User Manual, Bruker AXS, Madison (USA), 2005.
41
SAINT Software Reference Manual, Verson 4, Bruker AXS, Madison (USA), 1994-1996.
42
Sheldrick, G., SADABS (Version 2.03), University of Göttingen, Germany, 2002.
43
SHELXTL, Reference Manual, Version 5.1, Bruker AXS, Madison (USA), 1997.
(a) Noro, S.; Kitagawa, S.; Kondo, M.; Seki, K. Angew. Chem., Int. Ed. 2000, 39, 2082-2084. (b)
Li, H.; Eddaoudi,M.; O’Keeffe, M.; Yaghi, O. M. 3ature 1999, 402, 276-279.
44
45
Graziani, O.; Toupet, L.; Hamon, J. R.; and Tilset, M. Inorg. Chim. Acta 2002, 341, 127.
46
Bieller, S.; Haghiri, A.; Bolte, M.;Bats, J. W.; Wagner, M.; and Hans-Wolfram, L. Inorg.
Chim. Acta 2006, 359, 1559-1572.
47
Zhao, N.; Van Stipdonk, M. J.; Eichhorn, D. M. Polyhedron, 2007, 26, 2449-2454
79
APPEDIX
80
Table A.1: Crystallographic Data.
Compound
KTpt-Bu,4C
KTpPh,4C
Molecular Formula
C24H31N9BK
C30H19N9BK
Formula Weight
495.47
555.44
Diffractometer
Bruker Kappa Apex II
Bruker Kappa Apex II
Radiation/λ, Ǻ
Mo Kα/0.71073
Mo Kα/0.71073
Temperature, K
150
150
Color, Habit
Colorless, Needle
Light Yellow, Prism
Crystal System
Triclinic
Triganol
P-1
P-3
Crystal Size(mm )
0.22 x 0.16 x 0.11
0.24 x 0.19 x 0.13
a, Ǻ
10.4150(7)
14.854(7)
b, Ǻ
12.1648(9)
14.854(7)
c, Ǻ
13.2585(10)
8.007(10)
α, deg
65.342(4)
90.00
β, deg
67.456(4)
90.00
γ, deg
89.465(5)
120.00
1387.09(17)
120.00
2
3
Calcd Density( g cm )
1.186
1.670
Octants Collected
±h,±k,±l
±h,±k,±l
Max. h, k, l
12, 15, 16
18, 18, 9
θ range (°)
1.86-25.99
3.00-25.97
0.220
1.423
Rflns/Unique (Rint)
24897/5402
14788/2002
Obs,[>2σ]/Params
2727/325
1349/124
Robs, Rall
0.0575/0.1508
0.0709/0.2064
GOF
1.005
1.055
0.9768/0.9537
0.8422/0.7282
0.408, -0.400
0.515, -0.344
Space Group
3
3
V, Ǻ
Z
-1
µ, mm
-1
Tmax/Tmin
-3
ρmax/ρmin, e Ǻ
81
Table A.1: Crystallographic Data (cont.).
[(Tpt-Bu,4C)2Co(MeOH)2(H2O)2]
Compound
·0.15MeOH
Molecular Formula
C51.5H74.6N18O4.15B2Co
1076.62
Formula Weight
[(Tpt-Bu,4C)2 Mn(MeOH)2(H2O)2]
C50H74N18O4B2Mn
1067.83
Diffractometer
Bruker KappaApex II
Bruker Kappa Apex II
Radiation/λ, Ǻ
Mo Kα/0.71073
Mo Kα/0.71073
Temperature, K
150
150
Color, Habit
Pink, Block
Colorless, Block
Crystal System
Monoclinic
Monoclinic
Space Group
P21/n
Crystal Size(mm )
0.25 x 0.15 x 0.14
P21/n
0.17 x 0.16 x 0.16
a, Ǻ
14.3036(7)
14.2025(5)
b, Ǻ
12.2765(7)
12.4260(5)
c, Ǻ
18.9815(10)
18.9481(8)
α, deg
90.00
90.00
β, deg
110.584(3)
109.661(2)
γ, deg
90.00
90.00
3120.3(3)
3149.0(2)
2
2
Calcd Density( g cm )
1.141
1.126
Octants Collected
±h,±k,±l
±h,±k,±l
Max. h, k, l
17,15,23
17,15,23
θ range (°)
3.23-26.00
3.13-25.99
0.329
0.263
Rflns/Unique (Rint)
90375/6118
27344/6138
Obs,[>2σ]/Params
3898/378
3345/359
Robs, Rall
0.0487/0.0988
0.0627/0.1387
GOF
1.013
1.006
0.9554/0.9215
0.9594/0.9574
0.296/-0.324
0.825/-0.358
3
3
V, Ǻ
Z
-1
µ, mm
-1
Tmax/Tmin
-3
ρmax/ρmin, e Ǻ
82
Table A.1: Crystallographic Data (cont.).
Compound
[(Tpt-Bu,4C)2Co (H2O)4]
[(Tpt-Bu,4C)2Mn(H2O)4]
Molecular Formula
C48H70N18O4B2Co
C48H70N18O4B2Mn
Formula Weight
1043.77
1039.78
Diffractometer
Bruker Kappa Apex II
Bruker Kappa Apex II
Radiation/λ, Ǻ
MoKα/0.71073
MoKα/0.71073
Temperature, K
150
150
Color, Habit
Pink, block
Colorless, Block
Crystal System
monoclinic
Monoclinic
P21/n
Crystal Size(mm )
P21/n
0.23 x 0.21 x 0.15
0.25 x 0.22 x 0.16
a, Ǻ
13.8292 (5)
13.6542(4)
b, Ǻ
12.2439(4)
12.3496(3)
c, Ǻ
18.8499(7)
18.8416(5)
α, deg
90.00
90.00
β, deg
108.740(2)
107.680(2)
γ, deg
90.00
90.00
3022.52(19)
3027.08(14)
2
2
1.141
Octants Collected
1.147
±h,±k,±l
Max. h, k, l
17,15,23
16,15,23
θ range (°)
3.33-25.99
3.26-26.00
0.338
0.272
Rflns/Unique (Rint)
61658/5916
52779/5938
Obs,[>2σ]/Params
3260/348
3739/350
Robs, Rall
0.0715/0.1450
0.0530/0.0997
GOF
1.012
1.040
0.9514/0.9249
0.9586/0.9340
0.494/-1.189
0.516/-0.312
Space Group
3
3
V, Ǻ
Z
-1
Calcd Density( g cm )
µ, mm
-1
Tmax/Tmin
-3
ρmax/ρmin, e Ǻ
±h,±k,±l
83
Table A.1: Crystallographic Data (cont.).
Compound
[(Tpt-Bu,4C)2i(cyclam)]·MeOH
Co(κ3-TpPh,4C)(κ2-TpPh,4C)·3C7H8
Molecular Formula
C59H90N22OB2Ni
C81H62N18B2Co
Formula Weight
1215.87
1367.49
Diffractometer
Bruker Kappa Apex II
Bruker Kappa Apex II
Radiation/λ, Ǻ
Mo Kα/0.71073
MoKα/0.71073
Temperature, K
150
150
Color, Habit
Light Green, Prism
Purple, Prism
Crystal System
Triclinic
Triclinic
P-1
P-1
Crystal Size(mm )
0.30 x 0.25 x 0.12
0.13 x 0.19 x 0.33
a, Ǻ
10.7200(7)
13.405(4)
b, Ǻ
13.4670(8)
13.434(3)
c, Ǻ
14.0360(9)
21.062(5)
α, deg
106.740(3)
71.98(5)
β, deg
106.833(4)
86.84(2)
γ, deg
107.703(3)
78.99(6)
1683.18(18)
3540.4(14)
1
2
Calcd Density( g cm )
1.180
1.196
Octants Collected
±h,±k,±l
±h,±k,±l
Max. h, k, l
13,16,17
16,15,25
θ range (°)
3.25-25.99
2.04-26.00
0.343
0.83
Rflns/Unique (Rint)
25883/6604
27906/13718
Obs,[>2σ]/Params
4688/408
4828/809
Robs, Rall
0.0502/0.0838
0.1086/0.2838
GOF
1.031
1.141
0.9613/0.9055
0.97693/0.94337
1.437/-0.740
Space Group
3
3
V, Ǻ
Z
-1
µ, mm
-1
Tmax/Tmin
-3
ρmax/ρmin, e Ǻ
0.650/-0.392
84
Table A.1: Crystallographic Data (cont.).
Compound
[(TpPh,4C)2 Mn(MeOH)2(H2O)2]·H2O
[(TpPh,4C)2 Mn(MeOH)4]
Molecular Formula
C62H52N18O5 B2Mn
C64H54N18O4B2Mn
Formula Weight
1205.39
1215.41
Diffractometer
Bruker Kappa Apex II
Bruker Kappa Apex II
Radiation/λ, Ǻ
Mo Kα/0.71073
MoKα/0.71073
Temperature, K
150
150
Color, Habit
Colorless, Prism
Colorless, Prism
Crystal System
Triclinic
Triclinic
P-1
P-1
Crystal Size(mm )
0.19 x 0.23 x 0.24
0.40 x 0.17 x 0.13
a, Ǻ
10.020(10)
10.295(4)
b, Ǻ
13.029(14)
12.951(3)
c, Ǻ
14.574(16)
13.709 (5)
α, deg
115.202(7)
112.69(5)
β, deg
90.893(7)
93.63(2)
γ, deg
95.844(7)
93.88(6)
3
1709.0(3)
1674.5(14)
1
1
Calcd Density( g cm )
1.213
1.148
Octants Collected
±h,±k,±l
±h,±k,±l
Max. h, k, l
12,16,17
12,15,16
θ range (°)
2.78-26.00
2.44-26.00
0.25
0.83
Rflns/Unique (Rint)
22360/6625
21226/6518
Obs,[>2σ]/Params
2645/408
4409/413
Robs, Rall
0.1152/0.2234
0.0762/0.1120
GOF
1.171
1.071
0.95697/0.96977
0.97693/0.94337
0.835/-0.486
1.486/-0.293
Space Group
3
V, Ǻ
Z
-1
µ, mm
-1
Tmax/Tmin
-3
ρmax/ρmin, e Ǻ
85
Table A.1: Crystallographic Data (cont.).
Compound
{[Tpt-Bu,4CCu][MeC]}n
Ag-1
Molecular Formula
C24H31N9BCu·CH3CN
C24H31N9BAg
Formula Weight
560.98
Bruker Kappa Apex II
Mo Kα/0.71073
150
Yellow, Prism
Monoclinic
C2/c
0.37 x0.14 x 0.12
27.0860(13)
14.6756(8)
17.0389(9)
90
117.585(2)
90
6003.1(5)
8
564.24
Diffractometer
Radiation/λ, Ǻ
Temperature, K
Color, Habit
Crystal System
Space Group
Crystal Size(mm3)
a, Ǻ
b, Ǻ
c, Ǻ
α, deg
β, deg
γ, deg
3
V, Ǻ
Z
-1
Bruker Kappa Apex II
MoKα/0.71073
150
Colorless, block
Monoclinic
C2/c
0.123 x 0.171 x 0.241
26.3115(11)
15.5057(7)
17.4284(7)
112.69(5)
90
115.705(3)
6406.8(5)
8
Calcd Density( g cm )
1.241
1.571
Octants Collected
±h,±k,±l
±h,±k,±l
Max. h, k, l
33,18,21
12,15,16
θ range (°)
2.90-26.00
3.05 -26.00
0.760
1.144
Rflns/Unique (Rint)
40245/5872
31693/2820
Obs,[>2σ]/Params
4471/353
2250/361
Robs, Rall
0.0395/0.0844
0.0602/0.0771
GOF
1.038
1.140
0.9143/0.7652
0.9877/0.9588
0.389/-0.357
1.120/-0.923
µ, mm
-1
Tmax/Tmin
-3
ρmax/ρmin, e Ǻ
86
Table A.1: Crystallographic Data (cont.).
Compound
Ag-2
Ag-3
Molecular Formula
C80H103N30B3Ag4
C112H142N42B4Ag4
Formula Weight
1948.78
2551.32
Diffractometer
Bruker Kappa Apex II
Bruker Kappa Apex II
Radiation/λ, Ǻ
Mo Kα/0.71073
MoKα/0.71073
Temperature, K
150
150
Color, Habit
Colorless,Block
Colorless, Block
Crystal System
Orthorhombic
Triclinic
P-1
0.15 x 0.28 x 0.24
a, Ǻ
Cmc2(1)
0.31 x 0.21 x 0.16
30.3366(15)
b, Ǻ
16.5643(9)
15.4032(7)
c, Ǻ
19.3729(10)
23.5189(11)
α, deg
90
76.404(3)
β, deg
90
77.257(3)
γ, deg
90
77.257
V, Ǻ
9735.0(9)
4565.3(4)
Z
8
1
Calcd Density( g cm )
4.428
3.210
Octants Collected
±h,±k,±l
±h,±k,±l
Max. h, k, l
37,20,23
16,18,28
θ range (°)
3.24-26.00
1.68 -26.00
7.146
7.746
Rflns/Unique (Rint)
75031/9733
57214/17894
Obs,[>2σ]/Params
5517/561
9021/748
Robs, Rall
0.0802/0.1526
0.1119/0.2013
GOF
1.195
1.825
0.3943/0.2177
0.6478/0.5477
1.572/-1.008
2.319 /-1.625
Space Group
3
Crystal Size(mm )
3
-1
µ, mm
-1
Tmax/Tmin
-3
ρmax/ρmin, e Ǻ
13.4568(7)
87
Table A.1: Crystallographic Data (cont.).
Compound
Ag-4
Molecular Formula
C24H31N9BAg
Formula Weight
564.24
Diffractometer
Bruker Kappa Apex II
Radiation/λ, Ǻ
Mo Kα/0.71073
Temperature, K
150
Color, Habit
Colorless,Block
Crystal System
Orthorhombic
Space Group
{(Hpz)4Cu(ClO4)}n
C32H44N12OClCu
711.77
Bruker Kappa Apex II
MoKα/0.71073
150
Green, Prism
Monoclinic
C2/c
a, Ǻ
P4(3)2(1)2
0.08 x 0.19 x 0.14
19.2153(8)
b, Ǻ
19.2153(8)
12.8150(15)
c, Ǻ
25.006(2)
13.2000(16)
α, deg
90
90
β, deg
90
98.897(8)
γ, deg
90
90
V, Ǻ
9232.8(10)
7739.8(15)
Z
8
8
Calcd Density( g cm )
4.603
1.210
Octants Collected
±h,±k,±l
±h,±k,±l
Max. h, k, l
23,19,30
56,15,16
θ range (°)
1.71-26.00
3.30 -26.00
3.577
0.68
Rflns/Unique (Rint)
68075/9075
69083/7600
Obs,[>2σ]/Params
5627/332
3060/463
Robs, Rall
0.1048/0.1674
0.0787/0.2275
GOF
1.735
1.002
0.8245/0.77789
0.90425/0.96763
1.620/-0.806
0.627 /-0.642
3
Crystal Size(mm )
3
-1
µ, mm
-1
Tmax/Tmin
-3
ρmax/ρmin, e Ǻ
0.39 x 0.25 x 0.17
46.312(5)
88
Table A.1: Crystallographic Data (cont.).
{(Hpzt-Bu,4C)4Cu(PF6)}n
Compound
Molecular Formula
C32H44N12F6PCu
Formula Weight
805.28
Diffractometer
Bruker Kappa Apex II
Radiation/λ, Ǻ
Mo Kα/0.71073
Temperature, K
150
Color, Habit
Green,Block
Crystal System
Tetragonal
Space Group
{(HpztBu,4C)2Mn(CF3COO)2}n·C7H8
C27H30N6O4F6Mn
671.49
Bruker Kappa Apex II
MoKα/0.71073
150
Colorless, Prism
Monoclinic
P2(1)/c
a, Ǻ
P4/n
0.20 x 0.14 x 0.12
15.0753(3)
b, Ǻ
15.0753(3)
13.485(3)
c, Ǻ
7.9226(4)
13.2000(3)
α, deg
90
90
β, deg
90
116.46(1)
γ, deg
90
90
V, Ǻ
180.53(10)
1752.8
Z
2
2
Calcd Density( g cm )
1.332
1.114
Octants Collected
±h,±k,±l
±h,±k,±l
Max. h, k, l
18,17,9
15,16,14
θ range (°)
3.20-25.99
3.02 -26.00
0.44
0.63
Rflns/Unique (Rint)
30093/1764
36336/3445
Obs,[>2σ]/Params
1399/124
2906/208
Robs, Rall
0.0379/0.0537
0.0668/0.0780
GOF
1.036
1.031
0.96679/0.92360
0.92581/0.88012
0.598/-0.707
0.760 /-0.722
3
Crystal Size(mm )
3
-1
µ, mm
-1
Tmax/Tmin
-3
ρmax/ρmin, e Ǻ
0.17 x 0.25 x 0.40
12.177(3)
89
Table A.1: Crystallographic Data (cont.).
[(Hpzt-Bu,4C)2CuCl(η-Cl)]2
C32H44N12Cl4Cu
802.13
Bruker Kappa Apex II
Mo Kα/0.71073
150
Green, Prism
Monoclinic
Compound
Molecular Formula
Formula Weight
Diffractometer
Radiation/λ, Ǻ
Temperature, K
Color, Habit
Crystal System
Space Group
{[(pzt-Bu,4C)3Ag3]}n·CH3C
C26H30N10Ag3
806.19
Bruker Kappa Apex II
MoKα/0.71073
150
Colorless, block
Triclinic
P-1
0.21 x 0.18 x 0.09
a, Ǻ
P2(1)/n
0.21 x 0.17 x 0.13
6.7432(2)
b, Ǻ
25.1173(9)
11.308(2)
c, Ǻ
12.4387(5)
14.545(3)
α, deg
90
85.900(3)
β, deg
104.995(2)
71.634(3)
γ, deg
90
79.695(3)
V, Ǻ
2035.02
1522.3(5)
Z
2
2
Calcd Density( g cm )
1.223
1.147
Octants Collected
±h,±k,±l
±h,±k,±l
Max. h, k, l
8,30,15
12,13,17
θ range (°)
2.97-26.00
2.37 -26.00
0.33
0.90
Rflns/Unique (Rint)
50924/4000
13518/5911
Obs,[>2σ]/Params
3266/232
4300/362
Robs, Rall
0.0282/0.0405
0.0353/0.0642
GOF
1.002
1.047
0.91807/0.83543
0.88321/0.75589
0.479/-0.349
0.985 /-0.613
3
Crystal Size(mm )
3
-1
µ, mm
-1
Tmax/Tmin
-3
ρmax/ρmin, e Ǻ
9.9139(18)
90
Table A.2: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103)
for KTpt-Bu,4CN. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
B(1)
8827(5)
864(4)
6302(4)
32(1)
C(1)
7569(4)
187(4)
8620(4)
39(1)
C(2)
6601(4)
-805(4)
9614(4)
41(1)
C(3)
6023(5)
-955(4)
10827(4)
48(1)
C(4)
6251(4)
-1561(4)
9149(4)
40(1)
C(5)
5228(4)
-2736(4)
9810(4)
40(1)
C(6)
5310(5)
-3306(4)
8972(4)
50(1)
C(7)
3728(5)
-2471(5)
10301(4)
61(1)
C(8)
5513(5)
-3654(4)
10888(4)
59(1)
C(9)
8609(4)
2946(4)
6399(3)
36(1)
C(10)
9410(4)
3731(4)
6535(3)
36(1)
C(11)
8960(4)
-5210(4)
6700(4)
40(1)
C(12)
10664(4)
3255(4)
6478(3)
36(1)
C(13)
11879(5)
3668(4)
6667(4)
46(1)
C(14)
13102(5)
3003(5)
6333(6)
74(2)
C(15)
11329(6)
3369(5)
8022(5)
79(2)
C(16)
12404(5)
5046(4)
5896(5)
67(2)
C(17)
6750(4)
1144(3)
5613(4)
35(1)
C(18)
6689(4)
1563(3)
4496(3)
32(1)
C(19)
4574(4)
-1653(4)
5701(4)
40(1)
C(20)
8107(4)
1843(3)
3627(3)
32(1)
C(21)
8664(4)
2278(4)
2266(3)
38(1)
C(22)
8180(5)
1233(5)
2049(4)
60(1)
C(23)
8085(5)
3428(4)
1687(4)
51(1)
C(24)
10279(4)
2591(5)
1666(4)
59(1)
K(1)
8123(1)
-1902(1)
6095(1)
37(1)
N(1)
7783(3)
51(3)
7619(3)
35(1)
91
N(2)
6986(3)
-1037(3)
7932(3)
39(1)
N(3)
5522(4)
-1068(4)
11811(4)
69(1)
N(4)
9347(3)
2068(3)
6267(3)
31(1)
N(5)
10624(3)
2255(3)
6305(3)
37(1)
N(6)
8580(4)
-4373(3)
6826(3)
50(1)
N(7)
8105(3)
1162(3)
5424(3)
30(1)
N(8)
8957(3)
1595(3)
4195(3)
32(1)
N(9)
5589(4)
-1719(4)
5843(3)
52(1)
________________________________________________________________________________
Table A.3: Anisotropic displacement parameters (Å2x 103)for KTpt-Bu,4CN. The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
B(1)
34(2)
41(3)
28(3)
-18(2)
-17(2)
11(2)
C(1)
42(3)
53(3)
35(3)
-27(2)
-20(2)
14(2)
C(2)
39(2)
60(3)
32(3)
-25(2)
-20(2)
16(2)
C(3)
51(3)
62(3)
29(3)
-20(2)
-15(2)
20(2)
C(4)
37(2)
50(3)
31(2)
-15(2)
-17(2)
13(2)
C(5)
42(3)
44(3)
31(2)
-13(2)
-17(2)
9(2)
C(6)
52(3)
48(3)
41(3)
-12(2)
-20(2)
1(2)
C(7)
46(3)
74(4)
45(3)
-18(3)
-12(2)
0(2)
C(8)
70(3)
60(3)
40(3)
-12(2)
-29(3)
10(3)
C(9)
37(2)
41(2)
34(2)
-17(2)
-18(2)
12(2)
C(10)
39(2)
37(2)
32(2)
-17(2)
-14(2)
6(2)
C(11)
42(3)
42(3)
33(2)
-16(2)
-15(2)
5(2)
C(12)
43(2)
42(3)
33(2)
-20(2)
-23(2)
10(2)
C(13)
52(3)
50(3)
54(3)
-27(2)
-36(2)
12(2)
C(14)
59(3)
80(4)
125(5)
-60(4)
-64(4)
29(3)
C(15)
101(4)
98(4)
59(4)
-34(3)
-55(3)
2(3)
C(16)
63(3)
63(3)
88(4)
-30(3)
-51(3)
7(3)
C(17)
33(2)
43(2)
34(2)
-23(2)
-13(2)
8(2)
C(18)
28(2)
44(2)
38(2)
-24(2)
-20(2)
13(2)
C(19)
35(2)
58(3)
31(2)
-25(2)
-13(2)
12(2)
92
C(20)
31(2)
40(2)
34(2)
-20(2)
-19(2)
12(2)
C(21)
39(2)
55(3)
31(2)
-24(2)
-21(2)
16(2)
C(22)
75(4)
78(4)
45(3)
-39(3)
-30(3)
19(3)
C(23)
47(3)
63(3)
39(3)
-16(2)
-21(2)
16(2)
C(24)
38(3)
102(4)
28(2)
-22(3)
-14(2)
16(3)
K(1)
31(1)
48(1)
41(1)
-25(1)
-19(1)
13(1)
N(1)
36(2)
44(2)
31(2)
-21(2)
-16(2)
10(2)
N(2)
38(2)
49(2)
35(2)
-22(2)
-17(2)
12(2)
N(3)
73(3)
94(3)
43(3)
-34(2)
-26(2)
33(2)
N(4)
32(2)
40(2)
31(2)
-18(2)
-20(2)
11(2)
N(5)
41(2)
45(2)
35(2)
-21(2)
-23(2)
13(2)
N(6)
51(2)
46(2)
54(3)
-28(2)
-18(2)
14(2)
N(7)
28(2)
43(2)
25(2)
-20(2)
-12(2)
7(1)
N(8)
30(2)
43(2)
29(2)
-19(2)
-15(2)
8(1)
N(9)
31(2)
85(3)
51(2)
-34(2)
-23(2)
16(2)
______________________________________________________________________________
Table A.4: Bond lengths [Å] for KTpt-Bu,4CN.
_________________________________________________________________________________
B(1)-N(1)
1.527(5)
C(6)-H(6C)
0.9800
B(1)-N(7)
1.539(5)
C(7)-H(7A)
0.9800
B(1)-N(4)
1.542(5)
C(7)-H(7B)
0.9800
B(1)-K(1)#1
3.282(5)
C(7)-H(7C)
0.9800
B(1)-H(1A)
1.0000
C(8)-H(8A)
0.9800
C(1)-N(1)
1.339(5)
C(8)-H(8B)
0.9800
C(1)-C(2)
1.373(6)
C(8)-H(8C)
0.9800
C(1)-H(1)
0.9500
C(9)-N(4)
1.342(5)
C(2)-C(3)
1.413(6)
C(9)-C(10)
1.383(5)
C(2)-C(4)
1.419(5)
C(9)-H(9)
0.9500
C(3)-N(3)
1.150(5)
C(10)-C(12)
1.412(5)
C(4)-N(2)
1.341(5)
C(10)-C(11)#2
1.440(6)
C(4)-C(5)
1.487(6)
C(11)-N(6)
1.142(5)
C(5)-C(6)
1.515(5)
C(11)-C(10)#3
1.440(6)
C(5)-C(7)
1.534(6)
C(12)-N(5)
1.333(5)
93
C(5)-C(8)
1.538(5)
C(12)-C(13)
1.509(5)
C(6)-H(6A)
0.9800
C(13)-C(16)
1.521(6)
C(6)-H(6B)
0.9800
C(13)-C(14)
1.523(6)
C(13)-C(15)
1.535(6)
C(22)-H(22B)
0.9800
C(14)-H(14A)
0.9800
C(22)-H(22C)
0.9800
C(14)-H(14B)
0.9800
C(23)-H(23A)
0.9800
C(14)-H(14C)
0.9800
C(23)-H(23B)
0.9800
C(15)-H(15A)
0.9800
C(23)-H(23C)
0.9800
C(15)-H(15B)
0.9800
C(24)-H(24A)
0.9800
C(15)-H(15C)
0.9800
C(24)-H(24B)
0.9800
C(16)-H(16A)
0.9800
C(24)-H(24C)
0.9800
C(16)-H(16B)
0.9800
K(1)-N(9)
2.781(4)
C(16)-H(16C)
0.9800
K(1)-N(6)
2.845(4)
C(17)-N(7)
1.334(4)
K(1)-N(2)
2.889(3)
C(17)-C(18)
1.378(5)
K(1)-N(8)#1
2.921(3)
C(17)-H(17)
0.9500
K(1)-N(5)#1
3.157(3)
C(18)-C(20)
1.414(5)
K(1)-B(1)#1
3.282(5)
C(18)-C(19)#4
1.430(5)
K(1)-N(4)#1
3.314(3)
C(19)-N(9)
1.140(5)
K(1)-N(7)
3.454(3)
C(19)-C(18)#4
1.430(5)
N(1)-N(2)
1.382(4)
C(20)-N(8)
1.327(4)
N(4)-N(5)
1.375(4)
C(20)-C(21)
1.510(5)
N(4)-K(1)#1
3.314(3)
C(21)-C(24)
1.530(6)
N(5)-K(1)#1
3.157(3)
C(21)-C(23)
1.534(5)
N(7)-N(8)
1.380(4)
C(21)-C(22)
1.543(6)
N(8)-K(1)#1
2.921(3)
C(22)-H(22A)
0.9800
_____________________________________________________________________________________________
94
Table A.5: Bond lengths angles [°] for KTpt-Bu,4CN.
_________________________________________________________________________________
N(1)-B(1)-N(7)
111.0(3)
C(5)-C(7)-H(7A)
109.5
N(1)-B(1)-N(4)
106.5(3)
C(5)-C(7)-H(7B)
109.5
N(7)-B(1)-N(4)
109.1(3)
H(7A)-C(7)-H(7B)
109.5
N(1)-B(1)-K(1)#1
157.0(3)
C(5)-C(7)-H(7C)
109.5
N(7)-B(1)-K(1)#1
88.0(2)
H(7A)-C(7)-H(7C)
109.5
N(4)-B(1)-K(1)#1
77.7(2)
H(7B)-C(7)-H(7C)
109.5
N(1)-B(1)-H(1A)
110.0
C(5)-C(8)-H(8A)
109.5
N(7)-B(1)-H(1A)
110.0
C(5)-C(8)-H(8B)
109.5
N(4)-B(1)-H(1A)
110.0
H(8A)-C(8)-H(8B)
109.5
C(5)-C(8)-H(8C)
109.5
K(1)#1-B(1)-H(1A)
49.0
N(1)-C(1)-C(2)
108.2(4)
H(8A)-C(8)-H(8C)
109.5
N(1)-C(1)-H(1)
125.9
H(8B)-C(8)-H(8C)
109.5
C(2)-C(1)-H(1)
125.9
N(4)-C(9)-C(10)
107.7(3)
C(1)-C(2)-C(3)
125.3(4)
N(4)-C(9)-H(9)
126.2
C(1)-C(2)-C(4)
105.9(4)
C(10)-C(9)-H(9)
126.2
C(3)-C(2)-C(4)
128.7(4)
C(9)-C(10)-C(12)
105.6(3)
N(3)-C(3)-C(2)
178.3(4)
C(9)-C(10)-C(11)#2
123.8(4)
N(2)-C(4)-C(2)
109.0(4)
C(12)-C(10)-C(11)#2
130.7(4)
N(2)-C(4)-C(5)
121.7(4)
N(6)-C(11)-C(10)#3
178.6(5)
C(2)-C(4)-C(5)
129.3(4)
N(5)-C(12)-C(10)
109.6(3)
C(4)-C(5)-C(6)
111.4(3)
N(5)-C(12)-C(13)
120.7(3)
C(4)-C(5)-C(7)
108.7(3)
C(10)-C(12)-C(13)
129.6(4)
C(6)-C(5)-C(7)
108.1(3)
C(12)-C(13)-C(16)
110.9(3)
C(4)-C(5)-C(8)
110.3(3)
C(12)-C(13)-C(14)
111.0(4)
C(6)-C(5)-C(8)
109.3(3)
C(16)-C(13)-C(14)
108.8(4)
C(7)-C(5)-C(8)
109.0(4)
C(12)-C(13)-C(15)
107.3(4)
C(5)-C(6)-H(6A)
109.5
C(16)-C(13)-C(15)
108.9(4)
C(5)-C(6)-H(6B)
109.5
C(14)-C(13)-C(15)
109.9(4)
H(6A)-C(6)-H(6B)
109.5
C(13)-C(14)-H(14A)
109.5
C(5)-C(6)-H(6C)
109.5
C(13)-C(14)-H(14B)
109.5
95
H(6A)-C(6)-H(6C)
109.5
H(14A)-C(14)-H(14B)
109.5
H(6B)-C(6)-H(6C)
109.5
C(13)-C(14)-H(14C)
109.5
H(14A)-C(14)-H(14C)
109.5
H(22B)-C(22)-H(22C)
109.5
H(14B)-C(14)-H(14C)
109.5
C(21)-C(23)-H(23A)
109.5
C(13)-C(15)-H(15A)
109.5
C(21)-C(23)-H(23B)
109.5
C(13)-C(15)-H(15B)
109.5
H(23A)-C(23)-H(23B)
109.5
H(15A)-C(15)-H(15B)
109.5
C(21)-C(23)-H(23C)
109.5
C(13)-C(15)-H(15C)
109.5
H(23A)-C(23)-H(23C)
109.5
H(15A)-C(15)-H(15C)
109.5
H(23B)-C(23)-H(23C)
109.5
H(15B)-C(15)-H(15C)
109.5
C(21)-C(24)-H(24A)
109.5
C(13)-C(16)-H(16A)
109.5
C(21)-C(24)-H(24B)
109.5
C(13)-C(16)-H(16B)
109.5
H(24A)-C(24)-H(24B)
109.5
H(16A)-C(16)-H(16B)
109.5
C(21)-C(24)-H(24C)
109.5
C(13)-C(16)-H(16C)
109.5
H(24A)-C(24)-H(24C)
109.5
H(16A)-C(16)-H(16C)
109.5
H(24B)-C(24)-H(24C)
109.5
H(16B)-C(16)-H(16C)
109.5
N(9)-K(1)-N(6)
110.00(11)
N(7)-C(17)-C(18)
107.8(3)
N(9)-K(1)-N(2)
87.98(10)
N(7)-C(17)-H(17)
126.1
N(6)-K(1)-N(2)
118.75(10)
C(18)-C(17)-H(17)
126.1
N(9)-K(1)-N(8)#1
166.64(10)
C(17)-C(18)-C(20)
105.7(3)
N(6)-K(1)-N(8)#1
79.18(10)
C(17)-C(18)-C(19)#4
125.6(4)
N(2)-K(1)-N(8)#1
96.11(9)
C(20)-C(18)-C(19)#4
128.7(3)
N(9)-K(1)-N(5)#1
87.67(9)
N(9)-C(19)-C(18)#4
179.2(4)
N(6)-K(1)-N(5)#1
73.75(10)
N(8)-C(20)-C(18)
109.4(3)
N(2)-K(1)-N(5)#1
167.49(9)
N(8)-C(20)-C(21)
121.8(3)
N(8)#1-K(1)-N(5)#1
85.67(8)
C(18)-C(20)-C(21)
128.7(3)
N(9)-K(1)-B(1)#1
121.17(11)
C(20)-C(21)-C(24)
110.8(3)
N(6)-K(1)-B(1)#1
92.15(11)
C(20)-C(21)-C(23)
110.3(3)
N(2)-K(1)-B(1)#1
128.19(11)
C(24)-C(21)-C(23)
108.6(4)
N(8)#1-K(1)-B(1)#1
47.10(9)
C(20)-C(21)-C(22)
108.1(3)
N(5)#1-K(1)-B(1)#1
46.35(10)
C(24)-C(21)-C(22)
109.3(4)
N(9)-K(1)-N(4)#1
111.46(9)
C(23)-C(21)-C(22)
109.7(3)
N(6)-K(1)-N(4)#1
71.41(9)
C(21)-C(22)-H(22A)
109.5
N(2)-K(1)-N(4)#1
154.37(9)
C(21)-C(22)-H(22B)
109.5
N(8)#1-K(1)-N(4)#1
61.29(8)
H(22A)-C(22)-H(22B)
109.5
N(5)#1-K(1)-N(4)#1
24.38(7)
96
C(21)-C(22)-H(22C)
109.5
B(1)#1-K(1)-N(4)#1
27.04(9)
H(22A)-C(22)-H(22C)
109.5
N(9)-K(1)-N(7)
81.69(10)
N(6)-K(1)-N(7)
167.78(9)
N(5)-N(4)-K(1)#1
71.37(18)
N(2)-K(1)-N(7)
56.42(8)
B(1)-N(4)-K(1)#1
75.3(2)
N(8)#1-K(1)-N(7)
89.96(8)
C(12)-N(5)-N(4)
106.6(3)
N(5)#1-K(1)-N(7)
111.30(8)
C(12)-N(5)-K(1)#1
131.3(2)
B(1)#1-K(1)-N(7)
84.37(9)
N(4)-N(5)-K(1)#1
84.25(18)
N(4)#1-K(1)-N(7)
108.31(7)
C(11)-N(6)-K(1)
156.7(3)
C(1)-N(1)-N(2)
110.3(3)
C(17)-N(7)-N(8)
110.4(3)
C(1)-N(1)-B(1)
128.3(3)
C(17)-N(7)-B(1)
131.7(3)
N(2)-N(1)-B(1)
121.2(3)
N(8)-N(7)-B(1)
117.8(3)
C(4)-N(2)-N(1)
106.6(3)
C(17)-N(7)-K(1)
96.8(2)
C(4)-N(2)-K(1)
135.8(3)
N(8)-N(7)-K(1)
94.89(18)
N(1)-N(2)-K(1)
112.3(2)
B(1)-N(7)-K(1)
82.5(2)
C(9)-N(4)-N(5)
110.5(3)
C(20)-N(8)-N(7)
106.6(3)
C(9)-N(4)-B(1)
127.9(3)
C(20)-N(8)-K(1)#1
145.6(2)
N(5)-N(4)-B(1)
120.7(3)
N(7)-N(8)-K(1)#1
106.93(19)
C(9)-N(4)-K(1)#1
133.7(2)
C(19)-N(9)-K(1)
177.3(3)
_________________________________________________________________________________
Table A.6: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103)
for KTpPh,4CN. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
B(1)
6667
3333
2315(9)
41(2)
C(1)
5995(3)
1393(3)
1967(5)
45(1)
C(2)
5968(3)
588(3)
2886(4)
40(1)
C(3)
5455(3)
-470(3)
2358(4)
42(1)
C(4)
6460(3)
1045(3)
4410(4)
38(1)
C(5)
6689(3)
577(3)
5855(5)
48(1)
C(6)
6306(4)
-481(4)
5989(6)
71(1)
C(7)
6527(5)
-887(4)
7383(7)
91(2)
C(8)
7074(5)
-263(4)
8697(7)
89(2)
97
C(9)
7418(4)
765(4)
8615(6)
75(1)
C(10)
7222(4)
1172(4)
7217(6)
62(1)
K(1)
6667
3333
7048(2)
42(1)
N(1)
6458(2)
2254(2)
2884(3)
38(1)
N(2)
6750(2)
2056(2)
4405(4)
41(1)
N(3)
5007(3)
-1315(3)
1919(4)
51(1)
________________________________________________________________________________
Table A.7: Anisotropic displacement parameters (Å2x 103)for KTpPh,4CN. The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
B(1)
47(2)
47(2)
28(3)
0
0
23(1)
C(1)
47(2)
46(2)
38(2)
-3(2)
-5(2)
22(2)
C(2)
42(2)
41(2)
37(2)
-2(2)
-2(2)
20(2)
C(3)
44(2)
47(2)
35(2)
-1(2)
-5(2)
23(2)
C(4)
38(2)
41(2)
35(2)
-2(1)
1(1)
20(2)
C(5)
54(2)
47(2)
41(2)
0(2)
-6(2)
25(2)
C(6)
91(4)
55(3)
55(3)
-1(2)
-21(2)
29(3)
C(7)
120(5)
53(3)
80(4)
6(3)
-40(3)
27(3)
C(8)
105(4)
71(4)
76(4)
8(3)
-36(3)
34(3)
C(9)
77(3)
80(4)
59(3)
-10(2)
-26(2)
33(3)
C(10)
70(3)
59(3)
59(3)
-9(2)
-22(2)
33(2)
K(1)
47(1)
47(1)
32(1)
0
0
24(1)
N(1)
41(2)
44(2)
30(2)
-3(1)
-1(1)
22(1)
N(2)
45(2)
45(2)
33(2)
0(1)
-1(1)
22(1)
N(3)
61(2)
45(2)
44(2)
-5(2)
-12(2)
24(2)
______________________________________________________________________________
98
Table A.8: Bond lengths [Å] for KTpPh,4CN.
_________________________________________________________________________________
B(1)-N(1)
1.542(4)
C(7)-C(8)
1.369(7)
B(1)-N(1)#1
1.542(4)
C(7)-H(7)
0.9500
B(1)-N(1)#2
1.542(4)
C(8)-C(9)
1.348(8)
B(1)-H(1A)
1.0000
C(8)-H(8)
0.9500
C(1)-N(1)
1.329(5)
C(9)-C(10)
1.372(6)
C(1)-C(2)
1.388(5)
C(9)-H(9)
0.9500
C(1)-H(1)
0.9500
C(10)-H(10)
0.9500
C(2)-C(4)
1.410(5)
K(1)-N(2)
2.886(3)
C(2)-C(3)
1.426(5)
K(1)-N(2)#1
2.886(3)
C(3)-N(3)
1.143(5)
K(1)-N(2)#2
2.886(3)
C(4)-N(2)
1.340(5)
K(1)-N(3)#3
2.898(3)
C(4)-C(5)
1.474(5)
K(1)-N(3)#4
2.898(3)
C(5)-C(10)
1.377(6)
K(1)-N(3)#5
2.898(3)
C(5)-C(6)
1.383(6)
N(1)-N(2)
1.373(4)
C(6)-C(7)
1.383(7)
N(3)-K(1)#4
2.898(3)
C(6)-H(6)
0.9500
_________________________________________________________________________________
Table A.9: Angles [°] for KTpPh,4CN.
_________________________________________________________________________________
N(1)-B(1)-N(1)#1
111.7(2)
C(8)-C(9)-H(9)
120.2
N(1)-B(1)-N(1)#2
111.7(2)
C(10)-C(9)-H(9)
120.2
N(1)#1-B(1)-N(1)#2
111.7(2)
C(9)-C(10)-C(5)
122.9(5)
N(1)-B(1)-H(1A)
107.2
C(9)-C(10)-H(10)
118.5
N(1)#1-B(1)-H(1A)
107.2
C(5)-C(10)-H(10)
118.5
N(1)#2-B(1)-H(1A)
107.2
N(2)-K(1)-N(2)#1
72.14(10)
N(1)-C(1)-C(2)
108.3(3)
N(2)-K(1)-N(2)#2
72.14(10)
N(1)-C(1)-H(1)
125.9
N(2)#1-K(1)-N(2)#2
72.14(10)
C(2)-C(1)-H(1)
125.9
N(2)-K(1)-N(3)#3
86.85(9)
C(1)-C(2)-C(4)
105.1(3)
N(2)#1-K(1)-N(3)#3
79.95(9)
C(1)-C(2)-C(3)
124.2(3)
N(2)#2-K(1)-N(3)#3
149.00(10)
C(4)-C(2)-C(3)
130.5(3)
N(2)-K(1)-N(3)#4
79.95(9)
99
N(3)-C(3)-C(2)
177.0(4)
N(2)#1-K(1)-N(3)#4
149.00(10)
N(2)-C(4)-C(2)
109.6(3)
N(2)#2-K(1)-N(3)#4
86.85(9)
N(2)-C(4)-C(5)
120.7(3)
N(3)#3-K(1)-N(3)#4
112.20(6)
C(2)-C(4)-C(5)
129.7(3)
N(2)-K(1)-N(3)#5
149.00(10)
C(10)-C(5)-C(6)
116.5(4)
N(2)#1-K(1)-N(3)#5
86.85(9)
C(10)-C(5)-C(4)
120.8(4)
C(6)-C(5)-C(4)
122.4(4)
C(5)-C(6)-C(7)
120.4(4)
N(3)#3-K(1)-N(3)#5
112.20(6)
C(5)-C(6)-H(6)
119.8
N(3)#4-K(1)-N(3)#5
112.20(6)
C(7)-C(6)-H(6)
119.8
C(1)-N(1)-N(2)
110.6(3)
C(8)-C(7)-C(6)
121.0(5)
C(1)-N(1)-B(1)
125.1(3)
C(8)-C(7)-H(7)
119.5
N(2)-N(1)-B(1)
124.3(3)
C(6)-C(7)-H(7)
119.5
C(4)-N(2)-N(1)
106.5(3)
C(9)-C(8)-C(7)
119.4(5)
C(4)-N(2)-K(1)
129.8(2)
C(9)-C(8)-H(8)
120.3
N(1)-N(2)-K(1)
112.9(2)
C(7)-C(8)-H(8)
120.3
C(3)-N(3)-K(1)#4
140.8(3)
C(8)-C(9)-C(10)
119.7(5)
_______________________________________________________________________________
Table A.10: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103)for [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2]·0.15MeOH. U(eq) is defined as one third of the trace of the
orthogonalized
Uij
tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
B(1)
2454(2)
2283(2)
3986(1)
23(1)
C(1)
1863(2)
3226(2)
2664(1)
25(1)
C(2)
2246(2)
3304(2)
2091(1)
22(1)
C(3)
1727(2)
3825(2)
1392(1)
23(1)
C(4)
3156(2)
2706(2)
2343(1)
23(1)
C(5)
3875(2)
2483(2)
1942(1)
28(1)
C(6)
4891(2)
2130(3)
2502(2)
45(1)
C(7)
4009(2)
3495(3)
1524(2)
48(1)
C(8)
3443(2)
1564(3)
1380(2)
49(1)
C(9)
951(2)
1404(2)
4185(2)
39(1)
100
C(10)
6(2)
1720(3)
4130(2)
44(1)
C(11)
-663(5)
1114(6)
4386(5)
57(2)
C(12)
-94(2)
2806(2)
3875(1)
32(1)
C(13)
-990(2)
3554(2)
3719(2)
39(1)
C(14)
-813(2)
4604(3)
3364(2)
67(1)
C(15)
-1933(2)
2994(3)
3192(2)
57(1)
C(16)
-1138(2)
3797(3)
4464(2)
64(1)
C(17)
3137(2)
4221(2)
4448(1)
29(1)
C(18)
3670(2)
4686(2)
5131(1)
29(1)
C(19)
3921(2)
5808(3)
5254(2)
41(1)
C(20)
3903(2)
3816(2)
5655(1)
24(1)
C(21)
4458(2)
3854(2)
6494(1)
27(1)
C(22)
3908(2)
4626(2)
6850(2)
42(1)
C(23)
4485(2)
2722(2)
6829(1)
37(1)
C(24)
5521(2)
4264(2)
6650(1)
38(1)
C(25)
-1640(2)
4818(2)
703(2)
42(1)
C(101)
1639(17)
1750(20)
6375(15)
76(5)
C(11A)
-730(20)
860(30)
4070(17)
57(2)
0
20(1)
Co(1)
0
N(1)
2482(1)
2614(2)
3208(1)
22(1)
N(2)
3285(1)
2294(2)
3019(1)
23(1)
N(3)
1248(1)
4227(2)
838(1)
26(1)
N(4)
1381(1)
2248(2)
3976(1)
25(1)
N(5)
742(2)
3126(2)
3789(1)
28(1)
N(6)
-1208(4)
601(6)
4570(6)
91(3)
N(7)
3067(1)
3157(2)
4551(1)
23(1)
N(8)
3539(1)
2895(2)
5296(1)
22(1)
N(9)
4116(2)
6717(2)
5342(1)
60(1)
4130(20)
91(3)
N(6A)
-1284(18)
5000
240(20)
O(1)
-868(1)
4279(2)
534(1)
26(1)
O(2)
151(2)
6323(2)
693(1)
27(1)
1414(11)
2661(15)
5955(10)
O(101)
101
76(5)________________
Table A.11: Anisotropic displacement parameters (Å2x 103) for [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2]
·0.15MeOH. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2
h k a* b* U12 ].
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
B(1)
26(2)
19(2)
21(1)
2(1)
3(1)
-2(1)
C(1)
22(1)
24(2)
23(1)
1(1)
2(1)
3(1)
C(2)
23(1)
23(2)
18(1)
2(1)
2(1)
1(1)
C(3)
23(1)
23(2)
23(1)
-2(1)
7(1)
0(1)
C(4)
23(1)
22(2)
19(1)
-2(1)
2(1)
-2(1)
C(5)
28(1)
32(2)
22(1)
0(1)
7(1)
2(1)
C(6)
32(2)
68(2)
34(2)
3(2)
11(1)
13(2)
C(7)
45(2)
52(2)
55(2)
14(2)
27(2)
4(2)
C(8)
48(2)
59(2)
40(2)
-19(2)
16(1)
0(2)
C(9)
35(2)
30(2)
48(2)
11(1)
12(1)
-5(1)
C(10)
33(2)
46(2)
55(2)
13(2)
18(1)
-7(2)
C(11)
41(2)
60(4)
73(5)
16(3)
22(3)
-6(2)
C(12)
29(2)
38(2)
30(1)
-2(1)
11(1)
-3(1)
C(13)
31(2)
47(2)
43(2)
-4(1)
18(1)
2(1)
C(14)
48(2)
54(2)
106(3)
28(2)
37(2)
21(2)
C(15)
33(2)
75(3)
60(2)
-10(2)
12(2)
4(2)
C(16)
56(2)
84(3)
58(2)
-19(2)
27(2)
5(2)
C(17)
31(2)
23(2)
27(1)
8(1)
3(1)
0(1)
C(18)
31(1)
20(2)
28(1)
0(1)
1(1)
-2(1)
C(19)
39(2)
34(2)
33(2)
5(1)
-7(1)
-3(1)
C(20)
21(1)
24(2)
24(1)
-1(1)
6(1)
3(1)
C(21)
28(1)
28(2)
21(1)
-4(1)
3(1)
3(1)
C(22)
45(2)
47(2)
31(2)
-10(1)
11(1)
5(2)
C(23)
45(2)
38(2)
20(1)
2(1)
2(1)
3(1)
C(24)
33(2)
42(2)
30(1)
-4(1)
0(1)
-2(1)
C(25)
38(2)
44(2)
53(2)
-6(2)
25(1)
1(1)
C(101)
53(8)
97(13)
80(11)
-28(8)
25(8)
10(9)
C(11A)
41(2)
60(4)
73(5)
16(3)
22(3)
-6(2)
102
Co(1)
24(1)
17(1)
16(1)
1(1)
2(1)
0(1)
N(1)
21(1)
24(1)
19(1)
2(1)
3(1)
2(1)
N(2)
22(1)
24(1)
21(1)
0(1)
5(1)
2(1)
N(3)
27(1)
27(1)
21(1)
0(1)
5(1)
1(1)
N(4)
28(1)
23(1)
23(1)
2(1)
7(1)
-2(1)
N(5)
26(1)
30(1)
26(1)
-1(1)
9(1)
1(1)
N(6)
60(2)
97(5)
127(6)
43(4)
47(4)
-10(3)
N(7)
24(1)
22(1)
18(1)
4(1)
3(1)
0(1)
N(8)
25(1)
22(1)
16(1)
3(1)
4(1)
4(1)
N(9)
69(2)
31(2)
53(2)
2(1)
-11(1)
-13(1)
N(6A)
60(2)
97(5)
127(6)
43(4)
47(4)
-10(3)
O(1)
30(1)
19(1)
28(1)
-2(1)
11(1)
-2(1)
O(2)
25(1)
21(1)
26(1)
-3(1)
-2(1)
4(1)
O(101)
53(8)
97(13)
80(11)
-28(8)
25(8)
10(9)
______________________________________________________________________________
Table A.12: Bond lengths [Å] for [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2]·0.15MeOH.
______________________________________________________________________________
B(1)-N(4)
1.528(3)
C(7)-H(7A)
0.9800
B(1)-N(1)
1.546(3)
C(7)-H(7B)
0.9800
B(1)-N(7)
1.552(3)
C(7)-H(7C)
0.9800
B(1)-H(1A)
1.0000
C(8)-H(8A)
0.9800
C(1)-N(1)
1.331(3)
C(8)-H(8B)
0.9800
C(1)-C(2)
1.383(3)
C(8)-H(8C)
0.9800
C(1)-H(1)
0.9500
C(9)-N(4)
1.335(3)
C(2)-C(4)
1.421(3)
C(9)-C(10)
1.376(4)
C(2)-C(3)
1.425(3)
C(9)-H(9)
0.9500
C(3)-N(3)
1.145(3)
C(10)-C(12)
1.408(4)
C(4)-N(2)
1.330(3)
C(10)-C(11)
1.426(7)
C(4)-C(5)
1.504(4)
C(10)-C(11A)
1.47(3)
C(5)-C(7)
1.523(4)
C(11)-N(6)
1.148(7)
C(5)-C(8)
1.526(4)
C(12)-N(5)
1.322(3)
C(5)-C(6)
1.531(3)
C(12)-C(13)
1.519(4)
C(6)-H(6A)
0.9800
C(13)-C(14)
1.516(4)
C(6)-H(6B)
0.9800
C(13)-C(16)
1.531(4)
103
C(6)-H(6C)
0.9800
C(13)-C(15)
1.531(4)
C(14)-H(14A)
0.9800
C(24)-H(24A)
0.9800
C(14)-H(14B)
0.9800
C(24)-H(24B)
0.9800
C(14)-H(14C)
0.9800
C(24)-H(24C)
0.9800
C(15)-H(15A)
0.9800
C(25)-O(1)
1.418(3)
C(15)-H(15B)
0.9800
C(25)-H(25A)
0.9800
C(15)-H(15C)
0.9800
C(25)-H(25B)
0.9800
C(16)-H(16A)
0.9800
C(25)-H(25C)
0.9800
C(16)-H(16B)
0.9800
C(101)-O(101)
1.35(3)
C(16)-H(16C)
0.9800
C(101)-H(10A)
0.9800
C(17)-N(7)
1.330(3)
C(101)-H(10B)
0.9800
C(17)-C(18)
1.375(3)
C(101)-H(10C)
0.9800
C(17)-H(17)
0.9500
C(11A)-N(6A)
1.13(3)
C(18)-C(20)
1.417(3)
Co(1)-O(2)#1
2.0534(18)
C(18)-C(19)
1.423(4)
Co(1)-O(2)
2.0534(18)
C(19)-N(9)
1.147(3)
Co(1)-O(1)
2.0588(18)
C(20)-N(8)
1.328(3)
Co(1)-O(1)#1
2.0588(18)
C(20)-C(21)
1.511(3)
Co(1)-N(3)
2.1495(19)
C(21)-C(23)
1.524(4)
Co(1)-N(3)#1
2.1495(19)
C(21)-C(24)
1.528(4)
N(1)-N(2)
1.376(3)
C(21)-C(22)
1.533(4)
N(4)-N(5)
1.376(3)
C(22)-H(22A)
0.9800
N(7)-N(8)
1.374(2)
C(22)-H(22B)
0.9800
O(1)-H(1C)
0.79(3)
C(22)-H(22C)
0.9800
O(2)-H(11A)
0.77(3)
C(23)-H(23A)
0.9800
O(2)-H(12A)
0.84(3)
C(23)-H(23B)
0.9800
O(101)-H(101)
0.8400
C(23)-H(23C)
0.9800
_________________________________________________________________________________
Table A.13: Bond angles [°] for [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2]·0.15MeOH.
______________________________________________________________________________
N(4)-B(1)-N(1)
111.00(18)
H(7B)-C(7)-H(7C)
109.5
N(4)-B(1)-N(7)
110.4(2)
C(5)-C(8)-H(8A)
109.5
N(1)-B(1)-N(7)
106.2(2)
H(7A)-C(7)-H(7C)
109.5
104
N(4)-B(1)-H(1A)
109.7
H(8A)-C(8)-H(8B)
109.5
N(1)-B(1)-H(1A)
109.7
C(5)-C(8)-H(8C)
109.5
N(7)-B(1)-H(1A)
109.7
H(8A)-C(8)-H(8C)
109.5
N(1)-C(1)-C(2)
108.0(2)
H(8B)-C(8)-H(8C)
109.5
N(1)-C(1)-H(1)
126.0
C(5)-C(8)-H(8B)
109.5
C(2)-C(1)-H(1)
126.0
N(4)-C(9)-H(9)
126.2
C(1)-C(2)-C(4)
105.6(2)
C(10)-C(9)-H(9)
126.2
C(1)-C(2)-C(3)
122.9(2)
C(9)-C(10)-C(12)
105.7(2)
C(4)-C(2)-C(3)
131.3(2)
C(9)-C(10)-C(11)
125.9(4)
N(3)-C(3)-C(2)
175.1(3)
C(12)-C(10)-C(11)
127.7(4)
N(2)-C(4)-C(2)
108.7(2)
C(9)-C(10)-C(11A)
117.6(13)
N(2)-C(4)-C(5)
122.0(2)
C(12)-C(10)-C(11A)
132.2(13)
C(2)-C(4)-C(5)
129.2(2)
C(11)-C(10)-C(11A)
26.0(11)
C(4)-C(5)-C(7)
110.4(2)
N(6)-C(11)-C(10)
177.5(6)
C(4)-C(5)-C(8)
107.9(2)
N(5)-C(12)-C(10)
109.7(2)
C(7)-C(5)-C(8)
109.4(2)
N(5)-C(12)-C(13)
122.3(2)
C(4)-C(5)-C(6)
110.6(2)
C(10)-C(12)-C(13)
128.0(3)
C(7)-C(5)-C(6)
109.2(2)
C(14)-C(13)-C(12)
109.8(2)
C(8)-C(5)-C(6)
109.2(2)
C(14)-C(13)-C(16)
110.1(3)
C(5)-C(6)-H(6A)
109.5
C(12)-C(13)-C(16)
108.6(2)
C(5)-C(6)-H(6B)
109.5
C(14)-C(13)-C(15)
109.7(3)
H(6A)-C(6)-H(6B)
109.5
C(12)-C(13)-C(15)
110.1(2)
C(5)-C(6)-H(6C)
109.5
C(16)-C(13)-C(15)
108.4(2)
H(6A)-C(6)-H(6C)
109.5
(13)-C(14)-H(14A)
109.5
H(6B)-C(6)-H(6C)
109.5
C(13)-C(14)-H(14B)
109.5
C(5)-C(7)-H(7A)
109.5
H(14A)-C(14)-H(14B)
109.5
C(5)-C(7)-H(7B)
109.5
C(13)-C(14)-H(14C)
109.5
H(7A)-C(7)-H(7B)
109.5
H(14A)-C(14)-H(14C)
109.5
C(5)-C(7)-H(7C)
109.5
H(14B)-C(14)-H(14C)
109.5
N(4)-C(9)-C(10)
107.6(3)
C(13)-C(15)-H(15A)
109.5
C(13)-C(15)-H(15B)
109.5
H(23A)-C(23)-H(23B)
109.5
H(15A)-C(15)-H(15B)
109.5
C(21)-C(23)-H(23C)
109.5
C(13)-C(15)-H(15C)
109.5
H(23A)-C(23)-H(23C)
109.5
H(15A)-C(15)-H(15C)
109.5
H(23B)-C(23)-H(23C)
109.5
H(15B)-C(15)-H(15C)
109.5
C(21)-C(24)-H(24A)
109.5
105
C(13)-C(16)-H(16A)
109.5
C(21)-C(24)-H(24B)
109.5
C(13)-C(16)-H(16B)
109.5
H(24A)-C(24)-H(24B)
109.5
H(16A)-C(16)-H(16B)
109.5
C(21)-C(24)-H(24C)
109.5
C(13)-C(16)-H(16C)
109.5
H(24A)-C(24)-H(24C)
109.5
H(16A)-C(16)-H(16C)
109.5
H(24B)-C(24)-H(24C)
109.5
H(16B)-C(16)-H(16C)
109.5
O(101)-C(101)-H(10A)
109.5
N(7)-C(17)-C(18)
108.4(2)
O(101)-C(101)-H(10B)
109.5
N(7)-C(17)-H(17)
125.8
H(10A)-C(101)-H(10B)
109.5
C(18)-C(17)-H(17)
125.8
O(101)-C(101)-H(10C)
109.5
C(17)-C(18)-C(20)
105.3(2)
H(10A)-C(101)-H(10C)
109.5
C(17)-C(18)-C(19)
125.5(2)
H(10B)-C(101)-H(10C)
109.5
C(20)-C(18)-C(19)
129.2(2)
N(6A)-C(11A)-C(10)
170(3)
N(9)-C(19)-C(18)
179.0(3)
O(2)#1-Co(1)-O(2)
180.00(10)
N(8)-C(20)-C(18)
109.2(2)
O(2)#1-Co(1)-O(1)
91.67(8)
N(8)-C(20)-C(21)
122.2(2)
O(2)-Co(1)-O(1)
88.33(8)
C(18)-C(20)-C(21)
128.6(2)
O(2)#1-Co(1)-O(1)#1
88.33(8)
C(20)-C(21)-C(23)
109.8(2)
O(2)-Co(1)-O(1)#1
91.67(8)
C(20)-C(21)-C(24)
109.4(2)
O(1)-Co(1)-O(1)#1
180.00(12)
C(23)-C(21)-C(24)
110.0(2)
O(2)#1-Co(1)-N(3)
89.86(8)
C(20)-C(21)-C(22)
108.9(2)
O(2)-Co(1)-N(3)
90.14(8)
C(23)-C(21)-C(22)
108.8(2)
O(1)-Co(1)-N(3)
86.21(7)
C(24)-C(21)-C(22)
109.9(2)
O(1)#1-Co(1)-N(3)
93.79(7)
C(21)-C(22)-H(22A)
109.5
O(2)#1-Co(1)-N(3)#1
90.14(8)
C(21)-C(22)-H(22B)
109.5
O(2)-Co(1)-N(3)#1
89.86(8)
H(22A)-C(22)-H(22B)
109.5
O(1)-Co(1)-N(3)#1
93.79(7)
C(21)-C(22)-H(22C)
109.5
O(1)#1-Co(1)-N(3)#1
86.21(7)
H(22A)-C(22)-H(22C)
109.5
N(3)-Co(1)-N(3)#1
180.0
H(22B)-C(22)-H(22C)
109.5
C(1)-N(1)-N(2)
110.34(19)
C(21)-C(23)-H(23A)
109.5
C(1)-N(1)-B(1)
131.0(2)
C(21)-C(23)-H(23B)
109.5
N(2)-N(1)-B(1)
118.61(18)
C(4)-N(2)-N(1)
107.27(18)
C(20)-N(8)-N(7)
106.90(18)
C(3)-N(3)-Co(1)
160.4(2)
C(25)-O(1)-Co(1)
124.29(17)
C(9)-N(4)-N(5)
110.5(2)
C(25)-O(1)-H(1C)
113(2)
C(9)-N(4)-B(1)
125.6(2)
Co(1)-O(1)-H(1C)
115(2)
N(5)-N(4)-B(1)
123.7(2)
Co(1)-O(2)-H(11A)
126(2)
106
C(12)-N(5)-N(4)
106.5(2)
Co(1)-O(2)-H(12A)
122.3(17)
C(17)-N(7)-N(8)
110.20(19)
H(11A)-O(2)-H(12A)
110(3)
C(17)-N(7)-B(1)
129.19(19)
C(101)-O(101)-H(101)
109.5
N(8)-N(7)-B(1)
120.19(19)
_________________________________________________________________________________
Table A.14: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103) for [(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2]. U(eq) is defined as one third of the trace of the
orthogonalized Uij tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
B(1)
2484(3)
2306(3)
4015(2)
27(1)
C(1)
1906(3)
3228(3)
2704(2)
26(1)
C(2)
2292(2)
3304(3)
2120(2)
25(1)
C(3)
1789(3)
3826(3)
1430(2)
28(1)
C(4)
3195(2)
2707(3)
2365(2)
25(1)
C(5)
3910(3)
2462(3)
1952(2)
32(1)
C(6)
4061(3)
3459(4)
1531(3)
55(1)
C(7)
3458(3)
1555(4)
1404(2)
55(1)
C(8)
4926(3)
2109(4)
2503(2)
48(1)
C(9)
972(3)
1420(3)
4216(2)
43(1)
C(10)
18(3)
1721(4)
4157(2)
48(1)
C(11)
-665(6)
1134(8)
4413(6)
66(3)
C(12)
-90(3)
2800(3)
3901(2)
35(1)
C(13)
-982(3)
3520(4)
3745(2)
44(1)
C(14)
-1145(4)
3772(4)
4482(3)
72(2)
C(15)
-1925(3)
2968(4)
3220(2)
60(1)
C(16)
-808(3)
4563(4)
3391(3)
67(1)
C(17)
3125(3)
4230(3)
4471(2)
31(1)
C(18)
3652(3)
4689(3)
5150(2)
31(1)
C(19)
3888(3)
5801(4)
5270(2)
43(1)
C(20)
3910(2)
3833(3)
5672(2)
26(1)
C(21)
4476(3)
3876(3)
6504(2)
31(1)
107
C(22)
3924(3)
4622(3)
6873(2)
45(1)
C(23)
5529(3)
4308(3)
6637(2)
46(1)
C(24)
4519(3)
2760(3)
6839(2)
42(1)
C(25)
-1569(3)
4734(4)
847(3)
60(1)
4070(20)
66(3)
0
24(1)
C(11A)
-730(30)
Mn(1)
0
850(40)
5000
N(1)
2518(2)
2629(2)
3238(2)
24(1)
N(2)
3321(2)
2305(2)
3039(2)
26(1)
N(3)
1332(2)
4241(2)
880(2)
34(1)
N(4)
1400(2)
2252(2)
4004(2)
28(1)
N(5)
748(2)
3113(2)
3816(2)
29(1)
N(6)
-1216(5)
636(7)
4610(6)
97(3)
N(7)
3070(2)
3176(2)
4578(1)
23(1)
N(8)
3555(2)
2919(2)
5318(2)
26(1)
N(9)
4060(3)
6699(3)
5362(2)
63(1)
4160(20)
97(3)
N(6A)
-1230(20)
160(30)
O(1)
-890(2)
4237(2)
570(1)
33(1)
O(2)
119(2)
6376(2)
707(1)
31(1)
________________________________________________________________________________
(Å2x
103)
[(Tpt-Bu,4CN)2
Mn(MeOH)2(H2O)2.The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 +
... + 2 h k a* b* U12 ].
Table
A.15:
Anisotropic
displacement
parameters
for
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
B(1)
32(2)
25(2)
21(2)
6(2)
4(2)
2(2)
C(1)
25(2)
25(2)
25(2)
3(2)
2(2)
4(2)
C(2)
28(2)
24(2)
18(2)
1(2)
1(2)
-1(2)
C(3)
29(2)
28(2)
26(2)
-5(2)
7(2)
-1(2)
C(4)
26(2)
26(2)
17(2)
0(2)
0(2)
1(2)
C(5)
32(2)
36(2)
26(2)
0(2)
7(2)
5(2)
C(6)
56(3)
62(3)
58(3)
19(3)
34(2)
7(2)
C(7)
57(3)
69(3)
39(3)
-21(2)
15(2)
2(2)
108
C(8)
35(2)
71(3)
38(2)
8(2)
13(2)
14(2)
C(9)
41(3)
37(3)
46(3)
11(2)
9(2)
-6(2)
C(10)
37(3)
51(3)
56(3)
14(2)
16(2)
-14(2)
C(11)
46(3)
73(6)
78(7)
24(5)
18(5)
-9(4)
C(12)
31(2)
43(3)
31(2)
0(2)
11(2)
-2(2)
C(13)
35(2)
58(3)
41(2)
-1(2)
18(2)
-1(2)
C(14)
60(3)
101(4)
62(3)
-23(3)
30(3)
-3(3)
C(15)
40(3)
80(4)
56(3)
-10(3)
11(2)
3(2)
C(16)
53(3)
60(3)
95(4)
16(3)
34(3)
21(3)
C(17)
33(2)
24(2)
29(2)
6(2)
2(2)
-3(2)
C(18)
36(2)
23(2)
26(2)
0(2)
0(2)
-5(2)
C(19)
47(3)
38(3)
30(2)
2(2)
-7(2)
-4(2)
C(20)
24(2)
26(2)
24(2)
-4(2)
5(2)
2(2)
C(21)
35(2)
33(2)
20(2)
-1(2)
3(2)
7(2)
C(22)
53(3)
47(3)
33(2)
-12(2)
10(2)
6(2)
C(23)
35(2)
60(3)
34(2)
-5(2)
-1(2)
-1(2)
C(24)
54(3)
50(3)
17(2)
-2(2)
4(2)
9(2)
C(25)
54(3)
44(3)
92(4)
-14(3)
40(3)
-3(2)
C(11A)
46(3)
73(6)
78(7)
24(5)
18(5)
-9(4)
Mn(1)
31(1)
19(1)
17(1)
1(1)
1(1)
0(1)
N(1)
26(2)
22(2)
21(2)
3(1)
4(1)
3(1)
N(2)
26(2)
25(2)
23(2)
1(1)
4(1)
3(1)
N(3)
37(2)
36(2)
22(2)
4(2)
2(2)
2(2)
N(4)
31(2)
26(2)
24(2)
2(1)
5(1)
-3(1)
N(5)
31(2)
29(2)
28(2)
-1(1)
9(1)
2(2)
N(6)
67(3)
96(6)
136(8)
39(6)
44(5)
-16(4)
N(7)
27(2)
23(2)
18(2)
2(1)
3(1)
0(1)
N(8)
31(2)
28(2)
16(2)
5(1)
5(1)
5(1)
N(9)
78(3)
32(2)
58(3)
1(2)
-7(2)
-11(2)
N(6A)
67(3)
96(6)
136(8)
39(6)
44(5)
-16(4)
O(1)
46(2)
23(2)
29(2)
-7(1)
12(1)
-7(1)
O(2)
29(2)
25(2)
28(2)
-2(1)
-4(1)
4(1)
______________________________________________________________________________
109
Table A.16: Bond lengths [Å] and angles [°] for [(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2.
______________________________________________________________________________
B(1)-N(4)
1.534(5)
C(7)-H(7B)
0.9800
B(1)-N(1)
1.543(5)
C(7)-H(7C)
0.9800
B(1)-N(7)
1.549(5)
C(8)-H(8A)
0.9800
B(1)-H(1A)
1.0000
C(8)-H(8B)
0.9800
C(1)-N(1)
1.320(4)
C(8)-H(8C)
0.9800
C(1)-C(2)
1.393(4)
C(9)-N(4)
1.328(4)
C(1)-H(1)
0.9500
C(9)-C(10)
1.374(5)
C(2)-C(4)
1.417(5)
C(9)-H(9)
0.9500
C(2)-C(3)
1.419(5)
C(10)-C(12)
1.417(5)
C(3)-N(3)
1.149(4)
C(12)-N(5)
1.313(4)
C(4)-N(2)
1.326(4)
C(12)-C(13)
1.497(5)
C(4)-C(5)
1.506(5)
C(13)-C(16)
1.518(6)
C(5)-C(7)
1.521(5)
C(13)-C(14)
1.523(5)
C(5)-C(6)
1.527(5)
C(13)-C(15)
1.535(6)
C(5)-C(8)
1.533(5)
C(14)-H(14A)
0.9800
C(6)-H(6A)
0.9800
C(14)-H(14B)
0.9800
C(6)-H(6B)
0.9800
C(14)-H(14C)
0.9800
C(6)-H(6C)
0.9800
C(15)-H(15A)
0.9800
C(7)-H(7A)
0.9800
C(15)-H(15B)
0.9800
C(15)-H(15C)
0.9800
C(24)-H(24A)
0.9800
C(16)-H(16A)
0.9800
C(24)-H(24B)
0.9800
C(16)-H(16B)
0.9800
C(24)-H(24C)
0.9800
C(16)-H(16C)
0.9800
C(25)-O(1)
1.389(5)
C(17)-N(7)
1.333(4)
C(25)-H(25A)
0.9800
C(17)-C(18)
1.375(5)
C(25)-H(25B)
0.9800
C(17)-H(17)
0.9500
C(25)-H(25C)
0.9800
C(18)-C(20)
1.414(5)
C(11A)-N(6A)
1.15(4)
C(18)-C(19)
1.422(6)
Mn(1)-O(1)#1
2.140(3)
C(19)-N(9)
1.143(5)
Mn(1)-O(1)
2.140(3)
C(20)-N(8)
1.330(4)
Mn(1)-O(2)
2.144(2)
C(20)-C(21)
1.511(5)
Mn(1)-O(2)#1
2.144(2)
C(21)-C(24)
1.519(5)
Mn(1)-N(3)#1
2.263(3)
C(21)-C(22)
1.527(5)
Mn(1)-N(3)
2.263(3)
110
C(21)-C(23)
1.527(5)
N(1)-N(2)
1.376(4)
C(22)-H(22A)
0.980
N(4)-N(5)
1.381(4)0
C(22)-H(22B)
0.9800
N(7)-N(8)
1.375(4)
C(22)-H(22C)
0.9800
O(1)-H(25)
0.71(4)
C(23)-H(23A)
0.9800
O(2)-H(2A)
0.86(4)
C(23)-H(23B)
0.9800
O(2)-H(2)
0.8400
C(23)-H(23C)
0.9800
Table A.17: Bond l angles [°] for [(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2.
______________________________________________________________________________
N(4)-B(1)-N(1)
110.7(3)
C(16)-C(13)-C(15)
109.3(4)
N(4)-B(1)-N(7)
110.1(3)
C(14)-C(13)-C(15)
108.5(3)
N(1)-B(1)-N(7)
107.1(3)
C(13)-C(14)-H(14A)
109.5
N(4)-B(1)-H(1A)
109.6
C(13)-C(14)-H(14B)
109.5
N(1)-B(1)-H(1A)
109.6
H(14A)-C(14)-H(14B)
109.5
N(7)-B(1)-H(1A)
109.6
C(13)-C(14)-H(14C)
109.5
N(1)-C(1)-C(2)
108.2(3)
H(14A)-C(14)-H(14C)
109.5
N(1)-C(1)-H(1)
125.9
H(14B)-C(14)-H(14C)
109.5
C(2)-C(1)-H(1)
125.9
C(13)-C(15)-H(15A)
109.5
C(1)-C(2)-C(4)
105.0(3)
C(13)-C(15)-H(15B)
109.5
C(1)-C(2)-C(3)
123.5(3)
H(15A)-C(15)-H(15B)
109.5
C(4)-C(2)-C(3)
131.4(3)
C(13)-C(15)-H(15C)
109.5
N(3)-C(3)-C(2)
176.1(4)
H(15A)-C(15)-H(15C)
109.5
N(2)-C(4)-C(2)
109.0(3)
H(15B)-C(15)-H(15C)
109.5
N(2)-C(4)-C(5)
121.8(3)
C(13)-C(16)-H(16A)
109.5
C(2)-C(4)-C(5)
129.0(3)
C(13)-C(16)-H(16B)
109.5
C(4)-C(5)-C(7)
107.5(3)
H(16A)-C(16)-H(16B)
109.5
C(4)-C(5)-C(6)
110.2(3)
C(13)-C(16)-H(16C)
109.5
C(7)-C(5)-C(6)
110.2(3)
H(16A)-C(16)-H(16C)
109.5
C(4)-C(5)-C(8)
110.4(3)
H(16B)-C(16)-H(16C)
109.5
C(7)-C(5)-C(8)
109.7(3)
N(7)-C(17)-C(18)
107.9(3)
C(6)-C(5)-C(8)
108.8(3)
N(7)-C(17)-H(17)
126.1
N(4)-C(9)-C(10)
107.6(4)
C(18)-C(17)-H(17)
126.1
N(4)-C(9)-H(9)
126.2
C(17)-C(18)-C(20)
105.9(3)
111
C(10)-C(9)-H(9)
126.2
C(17)-C(18)-C(19)
125.3(3)
C(9)-C(10)-C(12)
106.0(3)
C(20)-C(18)-C(19)
128.8(3)
N(5)-C(12)-C(10)
108.9(3)
N(9)-C(19)-C(18)
178.8(5)
N(5)-C(12)-C(13)
122.8(3)
N(8)-C(20)-C(18)
108.9(3)
C(10)-C(12)-C(13)
128.3(3)
N(8)-C(20)-C(21)
122.4(3)
C(12)-C(13)-C(16)
110.1(3)
C(18)-C(20)-C(21)
128.7(3)
C(12)-C(13)-C(14)
108.8(3)
C(20)-C(21)-C(24)
109.6(3)
C(16)-C(13)-C(14)
109.1(4)
C(20)-C(21)-C(22)
108.9(3)
C(12)-C(13)-C(15)
110.9(4)
C(24)-C(21)-C(22)
108.5(3)
C(24)-C(21)-C(23)
110.7(3)
O(1)-Mn(1)-O(2)#1
91.51(9)
C(22)-C(21)-C(23)
109.8(3)
O(2)-Mn(1)-O(2)#1
180.00(13)
C(21)-C(22)-H(22A)
109.5
O(1)#1-Mn(1)-N(3)#1
86.16(10)
C(21)-C(22)-H(22B)
109.5
O(1)-Mn(1)-N(3)#1
93.84(10)
H(22A)-C(22)-H(22B)
109.5
O(2)-Mn(1)-N(3)#1
89.92(10)
C(21)-C(22)-H(22C)
109.5
O(2)#1-Mn(1)-N(3)#1
90.08(10)
H(22A)-C(22)-H(22C)
109.5
O(1)#1-Mn(1)-N(3)
93.84(10)
H(22B)-C(22)-H(22C)
109.5
O(1)-Mn(1)-N(3)
86.16(10)
C(21)-C(23)-H(23A)
109.5
O(2)-Mn(1)-N(3)
90.08(10)
C(21)-C(23)-H(23B)
109.5
O(2)#1-Mn(1)-N(3)
89.92(10)
H(23A)-C(23)-H(23B)
109.5
N(3)#1-Mn(1)-N(3)
180.0(2)
C(21)-C(23)-H(23C)
109.5
C(1)-N(1)-N(2)
110.3(3)
H(23A)-C(23)-H(23C)
109.5
C(1)-N(1)-B(1)
130.9(3)
H(23B)-C(23)-H(23C)
109.5
N(2)-N(1)-B(1)
118.8(3)
C(21)-C(24)-H(24A)
109.5
C(4)-N(2)-N(1)
107.3(3)
C(21)-C(24)-H(24B)
109.5
C(3)-N(3)-Mn(1)
158.8(3)
H(24A)-C(24)-H(24B)
109.5
C(9)-N(4)-N(5)
110.3(3)
C(21)-C(24)-H(24C)
109.5
C(9)-N(4)-B(1)
126.1(3)
H(24A)-C(24)-H(24C)
109.5
N(5)-N(4)-B(1)
123.5(3)
H(24B)-C(24)-H(24C)
109.5
C(12)-N(5)-N(4)
107.2(3)
O(1)-C(25)-H(25A)
109.5
C(17)-N(7)-N(8)
110.4(3)
O(1)-C(25)-H(25B)
109.5
C(17)-N(7)-B(1)
128.8(3)
H(25A)-C(25)-H(25B)
109.5
N(8)-N(7)-B(1)
120.6(3)
O(1)-C(25)-H(25C)
109.5
C(20)-N(8)-N(7)
106.9(3)
H(25A)-C(25)-H(25C)
109.5
C(25)-O(1)-Mn(1)
126.6(2)
H(25B)-C(25)-H(25C)
109.5
C(25)-O(1)-H(25)
113(4)
112
O(1)#1-Mn(1)-O(1)
180.00(10)
Mn(1)-O(1)-H(25)
116(4)
O(1)#1-Mn(1)-O(2)
91.51(9)
Mn(1)-O(2)-H(2A)
122(3)
O(1)-Mn(1)-O(2)
88.49(9)
Mn(1)-O(2)-H(2)
109.5
O(1)#1-Mn(1)-O(2)#1
88.49(9)
H(2A)-O(2)-H(2)
126.1
_________________________________________________________________________________
Table A.18. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103) for [(Tpt-Bu,4CN)2Co(H2O)4] U(eq) is defined as one third of the trace of the orthogonalized Uij
tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
B(1)
2355(5)
2744(4)
4008(2)
64(2)
C(1)
1808(3)
1752(3)
2702(2)
53(1)
Co(1)
0
0
0
82(1)
N(1)
2419(3)
2391(3)
3233(2)
54(1)
O(1)
-1073(4)
564(3)
514(2)
113(2)
C(2)
2218(3)
1673(3)
2124(2)
54(1)
N(2)
3242(3)
2721(3)
3033(2)
56(1)
O(2)
169(3)
-1355(2)
665(2)
81(1)
C(3)
1695(4)
1169(3)
1433(2)
62(1)
N(3)
1199(3)
783(3)
881(2)
77(1)
C(4)
3136(3)
2298(3)
2363(2)
53(1)
N(4)
1248(3)
2779(3)
4004(2)
63(1)
C(5)
3879(4)
2539(4)
1951(2)
64(1)
N(5)
615(3)
1892(3)
3812(2)
60(1)
C(6)
4909(4)
2904(5)
2497(3)
87(2)
N(6)
-1623(6)
4393(5)
4477(4)
142(3)
C(7)
4039(5)
1536(5)
1527(3)
99(2)
N(7)
2986(3)
1891(3)
4575(2)
59(1)
C(8)
3435(4)
3473(5)
1399(3)
86(2)
N(8)
3456(3)
2175(3)
5312(2)
59(1)
C(9)
758(6)
3615(4)
4211(3)
83(2)
113
N(9)
4149(3)
-1634(3)
5377(2)
70(1)
C(10)
-213(6)
3272(4)
4148(3)
82(2)
C(11)
-987(7)
3896(5)
4321(4)
114(3)
C(12)
-280(5)
2183(4)
3892(3)
66(1)
C(13)
-1159(4)
1405(4)
3720(3)
68(1)
C(14)
-1333(5)
1104(5)
4453(3)
97(2)
C(15)
-2125(4)
1963(4)
3194(3)
87(2)
C(16)
-921(4)
375(4)
3360(4)
87(2)
C(17)
3098(3)
829(3)
4482(2)
55(1)
C(18)
3654(3)
382(3)
5164(2)
48(1)
C(19)
3929(3)
-728(4)
5287(2)
55(1)
C(20)
3855(3)
1271(3)
5671(2)
51(1)
C(21)
4439(3)
1264(4)
6502(2)
53(1)
C(22)
3929(4)
457(4)
6891(2)
69(1)
C(23)
5538(4)
903(4)
6625(2)
66(1)
C(24)
4407(4)
2400(4)
6823(2)
64(1)
_________________________________________________________________________________
Table A.19: Anisotropic displacement parameters (Å2x 103) for [(Tpt-Bu,4CN)2Co(H2O)4]. The
anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]
_________________________________________________________________________________
U11
U22
U33
U23
U13
U12
_________________________________________________________________________________
B(1)
103(5)
39(3)
25(2)
0(2)
-12(3)
-25(3)
C(1)
68(3)
35(2)
31(2)
-1(2)
-19(2)
-11(2)
Co(1)
126(1)
35(1)
35(1)
-15(1)
-44(1)
32(1)
N(1)
74(3)
40(2)
25(2)
2(1)
-15(2)
-20(2)
O(1)
196(5)
59(2)
31(2)
-16(2)
-37(2)
77(3)
C(2)
73(3)
34(2)
29(2)
-1(2)
-20(2)
4(2)
N(2)
75(3)
43(2)
27(2)
5(2)
-17(2)
-14(2)
O(2)
110(3)
34(2)
50(2)
-9(1)
-43(2)
18(2)
C(3)
86(3)
37(2)
36(2)
-5(2)
-21(2)
15(2)
N(3)
110(3)
43(2)
40(2)
-11(2)
-26(2)
23(2)
C(4)
65(3)
39(2)
31(2)
9(2)
-15(2)
0(2)
114
N(4)
94(3)
41(2)
36(2)
-1(2)
-4(2)
-20(2)
C(5)
68(3)
58(3)
46(3)
13(2)
-10(2)
4(2)
N(5)
89(3)
38(2)
39(2)
2(2)
2(2)
-16(2)
C(6)
69(4)
100(4)
70(3)
18(3)
-9(3)
2(3)
N(6)
218(8)
77(4)
135(5)
-28(4)
63(5)
22(5)
C(7)
111(5)
95(5)
87(4)
-13(4)
26(4)
11(4)
N(7)
87(3)
41(2)
25(2)
3(1)
-15(2)
-26(2)
C(8)
82(4)
95(4)
61(3)
41(3)
-3(3)
9(3)
N(8)
83(3)
49(2)
24(2)
3(2)
-12(2)
-28(2)
C(9)
137(6)
38(3)
53(3)
-8(2)
4(3)
-11(3)
N(9)
71(3)
61(3)
57(2)
6(2)
-8(2)
0(2)
C(10)
124(5)
46(3)
65(3)
-6(2)
18(3)
3(3)
C(11)
175(8)
55(4)
108(5)
-20(4)
41(5)
4(4)
C(12)
95(4)
48(3)
49(3)
3(2)
17(3)
0(3)
C(13)
87(4)
46(3)
74(3)
9(2)
28(3)
-3(3)
C(14)
112(5)
87(4)
103(5)
30(4)
49(4)
17(4)
C(15)
97(4)
64(3)
91(4)
14(3)
19(3)
0(3)
C(16)
85(4)
54(3)
127(5)
-14(3)
42(4)
-16(3)
C(17)
67(3)
48(2)
33(2)
0(2)
-9(2)
-22(2)
C(18)
51(3)
46(2)
35(2)
4(2)
-3(2)
-15(2)
C(19)
51(3)
61(3)
37(2)
2(2)
-6(2)
-7(2)
C(20)
58(3)
53(2)
28(2)
3(2)
-6(2)
-25(2)
C(21)
60(3)
58(3)
29(2)
6(2)
-2(2)
-18(2)
C(22)
77(3)
80(3)
38(2)
18(2)
3(2)
-16(3)
C(23)
66(3)
77(3)
37(2)
-3(2)
-6(2)
-15(3)
C(24)
79(3)
72(3)
27(2)
1(2)
-4(2)
-13(3)
_________________________________________________________________________________
Table A.20: Bond lengths [Å] for [(Tpt-Bu,4CN)2Co(H2O)4].
_________________________________________________________________________________
B(1)-N(4)
1.529(7)
Co(1)-N(3)#1
2.158(4)
B(1)-N(7)
1.549(6)
N(1)-N(2)
1.371(5)
B(1)-N(1)
1.553(6)
O(1)-H(1C)
0.97(4)
B(1)-H(1A)
1.0000
O(1)-H(1B)
0.8400
115
C(1)-N(1)
1.334(4)
C(2)-C(3)
1.414(5)
C(1)-C(2)
1.384(6)
C(2)-C(4)
1.426(6)
C(1)-H(1)
0.9500
N(2)-C(4)
1.329(5)
Co(1)-O(2)
2.047(3)
O(2)-H(2)
0.8400
Co(1)-O(2)#1
2.047(3)
O(2)-H(21A)
0.79(4)
Co(1)-O(1)
2.131(5)
C(3)-N(3)
1.147(5)
Co(1)-O(1)#1
2.131(5)
C(4)-C(5)
1.503(7)
Co(1)-N(3)
2.158(4)
N(4)-C(9)
1.352(7)
N(4)-N(5)
1.369(5)
C(14)-H(14A)
0.9800
C(5)-C(7)
1.520(7)
C(14)-H(14B)
0.9800
C(5)-C(6)
1.531(7)
C(14)-H(14C)
0.9800
C(5)-C(8)
1.534(6)
C(15)-H(15A)
0.9800
N(5)-C(12)
1.342(6)
C(15)-H(15B)
0.9800
C(6)-H(6A)
0.9800
C(15)-H(15C)
0.9800
C(6)-H(6B)
0.9800
C(16)-H(16A)
0.9800
C(6)-H(6C)
0.9800
C(16)-H(16B)
0.9800
N(6)-C(11)
1.182(9)
C(16)-H(16C)
0.9800
C(7)-H(7A)
0.9800
C(17)-C(18)
1.381(5)
C(7)-H(7B)
0.9800
C(17)-H(17)
0.9500
C(7)-H(7C)
0.9800
C(18)-C(19)
1.409(6)
N(7)-C(17)
1.327(5)
C(18)-C(20)
1.416(6)
N(7)-N(8)
1.376(4)
C(20)-C(21)
1.515(5)
C(8)-H(8A)
0.9800
C(21)-C(24)
1.523(6)
C(8)-H(8B)
0.9800
C(21)-C(23)
1.526(7)
C(8)-H(8C)
0.9800
C(21)-C(22)
1.531(6)
N(8)-C(20)
1.323(5)
C(22)-H(22A)
0.9800
C(9)-C(10)
1.375(8)
C(22)-H(22B)
0.9800
C(9)-H(9)
0.9500
C(22)-H(22C)
0.9800
N(9)-C(19)
1.148(6)
C(23)-H(23A)
0.9800
C(10)-C(12)
1.410(7)
C(23)-H(23B)
0.9800
C(10)-C(11)
1.436(10)
C(23)-H(23C)
0.9800
C(12)-C(13)
1.495(7)
C(24)-H(24A)
0.9800
C(13)-C(16)
1.518(7)
C(24)-H(24B)
0.9800
C(13)-C(14)
1.522(7)
C(24)-H(24C)
0.9800
C(13)-C(15)
1.545(7)
116
Table A.21: Bond angles [°] for [(Tpt-Bu,4CN)2Co (H2O)4].
_________________________________________________________________________________
N(4)-B(1)-N(7)
111.3(4)
C(4)-N(2)-N(1)
107.4(3)
N(4)-B(1)-N(1)
111.2(3)
C(3)-C(2)-C(4)
131.7(5)
N(7)-B(1)-N(1)
105.8(4)
Co(1)-O(2)-H(21A)
126(3)
N(4)-B(1)-H(1A)
109.5
H(2)-O(2)-H(21A)
122.9
N(7)-B(1)-H(1A)
109.5
N(3)-C(3)-C(2)
174.5(6)
N(1)-B(1)-H(1A)
109.5
C(3)-N(3)-Co(1)
165.5(5)
N(1)-C(1)-C(2)
108.1(4)
N(2)-C(4)-C(2)
108.9(4)
N(1)-C(1)-H(1)
125.9
N(2)-C(4)-C(5)
122.0(4)
C(2)-C(1)-H(1)
125.9
C(2)-C(4)-C(5)
129.0(4)
O(2)-Co(1)-O(2)#1
180.00(18)
C(9)-N(4)-N(5)
109.8(5)
O(2)-Co(1)-O(1)
86.75(16)
C(9)-N(4)-B(1)
127.8(4)
O(2)#1-Co(1)-O(1)
93.25(16)
N(5)-N(4)-B(1)
122.3(4)
O(2)-Co(1)-O(1)#1
93.25(16)
C(4)-C(5)-C(7)
110.6(4)
O(2)#1-Co(1)-O(1)#1
86.75(16)
C(4)-C(5)-C(6)
110.6(4)
C(7)-C(5)-C(6)
109.1(5)
O(1)-Co(1)-O(1)#1
180.0(2)
O(2)-Co(1)-N(3)
88.89(13)
C(4)-C(5)-C(8)
107.7(4)
O(2)#1-Co(1)-N(3)
91.11(13)
C(7)-C(5)-C(8)
109.9(4)
O(1)-Co(1)-N(3)
88.94(17)
C(6)-C(5)-C(8)
108.7(4)
O(1)#1-Co(1)-N(3)
91.06(17)
C(12)-N(5)-N(4)
107.1(4)
O(2)-Co(1)-N(3)#1
91.11(13)
C(5)-C(6)-H(6A)
109.5
O(2)#1-Co(1)-N(3)#1
88.89(13)
C(5)-C(6)-H(6B)
109.5
O(1)-Co(1)-N(3)#1
91.06(17)
H(6A)-C(6)-H(6B)
109.5
O(1)#1-Co(1)-N(3)#1
88.94(17)
C(5)-C(6)-H(6C)
109.5
N(3)-Co(1)-N(3)#1
180.0(3)
H(6A)-C(6)-H(6C)
109.5
C(1)-N(1)-N(2)
110.4(4)
H(6B)-C(6)-H(6C)
109.5
C(1)-N(1)-B(1)
130.9(4)
C(5)-C(7)-H(7A)
109.5
N(2)-N(1)-B(1)
118.6(3)
C(5)-C(7)-H(7B)
109.5
Co(1)-O(1)-H(1C)
121(3)
H(7A)-C(7)-H(7B)
109.5
Co(1)-O(1)-H(1B)
109.5
C(5)-C(7)-H(7C)
109.5
H(1C)-O(1)-H(1B)
125.3
H(7A)-C(7)-H(7C)
109.5
C(1)-C(2)-C(3)
122.7(4)
H(7B)-C(7)-H(7C)
109.5
C(1)-C(2)-C(4)
105.2(3)
C(17)-N(7)-N(8)
110.1(3)
Co(1)-O(2)-H(2)
109.5
C(17)-N(7)-B(1)
129.3(3)
117
N(8)-N(7)-B(1)
120.3(3)
H(15B)-C(15)-H(15C)
109.5
C(5)-C(8)-H(8A)
109.5
C(13)-C(16)-H(16A)
109.5
C(5)-C(8)-H(8B)
109.5
C(13)-C(16)-H(16B)
109.5
H(8A)-C(8)-H(8B)
109.5
H(16A)-C(16)-H(16B)
109.5
C(5)-C(8)-H(8C)
109.5
C(13)-C(16)-H(16C)
109.5
H(8A)-C(8)-H(8C)
109.5
H(16A)-C(16)-H(16C)
109.5
H(8B)-C(8)-H(8C)
109.5
H(16B)-C(16)-H(16C)
109.5
C(20)-N(8)-N(7)
106.8(3)
N(7)-C(17)-C(18)
108.6(3)
N(4)-C(9)-C(10)
108.0(5)
N(7)-C(17)-H(17)
125.7
N(4)-C(9)-H(9)
126.0
C(18)-C(17)-H(17)
125.7
C(10)-C(9)-H(9)
126.0
C(17)-C(18)-C(19)
125.1(4)
C(9)-C(10)-C(12)
105.9(6)
C(17)-C(18)-C(20)
104.6(4)
C(9)-C(10)-C(11)
126.6(5)
C(19)-C(18)-C(20)
130.2(4)
C(12)-C(10)-C(11)
127.5(7)
N(9)-C(19)-C(18)
179.1(5)
N(6)-C(11)-C(10)
178.5(8)
N(8)-C(20)-C(18)
109.9(3)
N(5)-C(12)-C(10)
109.1(5)
N(8)-C(20)-C(21)
122.0(4)
N(5)-C(12)-C(13)
121.4(4)
C(18)-C(20)-C(21)
128.1(4)
C(12)-C(13)-C(16)
110.4(5)
C(10)-C(12)-C(13)
129.5(6)
C(12)-C(13)-C(14)
108.2(5)
C(20)-C(21)-C(23)
109.5(4)
C(16)-C(13)-C(14)
108.9(4)
C(24)-C(21)-C(23)
111.0(4)
C(12)-C(13)-C(15)
109.5(4)
C(20)-C(21)-C(22)
108.9(3)
C(16)-C(13)-C(15)
110.3(5)
C(24)-C(21)-C(22)
108.8(4)
C(14)-C(13)-C(15)
109.5(5)
C(23)-C(21)-C(22)
109.2(4)
C(13)-C(14)-H(14A)
109.5
C(21)-C(22)-H(22A)
109.5
C(13)-C(14)-H(14B)
109.5
C(21)-C(22)-H(22B)
109.5
H(14A)-C(14)-H(14B)
109.5
H(22A)-C(22)-H(22B)
109.5
C(13)-C(14)-H(14C)
109.5
C(21)-C(22)-H(22C)
109.5
H(14A)-C(14)-H(14C)
109.5
H(22A)-C(22)-H(22C)
109.5
H(14B)-C(14)-H(14C)
109.5
C(21)-C(23)-H(23A)
109.5
C(13)-C(15)-H(15A)
109.5
C(21)-C(23)-H(23B)
109.5
C(13)-C(15)-H(15B)
109.5
H(23A)-C(23)-H(23B)
109.5
H(15A)-C(15)-H(15B)
109.5
C(21)-C(23)-H(23C)
109.5
C(13)-C(15)-H(15C)
109.5
H(23A)-C(23)-H(23C)
109.5
H(15A)-C(15)-H(15C)
109.5
H(23B)-C(23)-H(23C)
109.5
C(20)-C(21)-C(24)
109.4(3)
C(21)-C(24)-H(24A)
109.5
118
C(21)-C(24)-H(24B)
109.5
H(24A)-C(24)-H(24C)
109.5
H(24A)-C(24)-H(24B)
109.5
H(24B)-C(24)-H(24C)
109.5
C(21)-C(24)-H(24C)
109.5
_________________________________________________________________________________
Table A.22: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103) for [(Tpt-Bu,4CN)2Mn(H2O)4]. U(eq) is defined as one third of the trace of the orthogonalized Uij
tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
Mn(1)
5000
5000
0
48(1)
N(1)
7424(2)
2599(2)
3259(1)
43(1)
N(8)
8435(2)
2810(2)
5325(1)
46(1)
N(4)
6226(2)
2204(2)
4027(1)
48(1)
N(2)
8256(2)
2268(2)
3050(1)
44(1)
N(5)
5589(2)
3091(2)
3835(1)
48(1)
N(7)
7965(2)
3092(2)
4595(1)
46(1)
N(3)
6256(2)
4224(2)
927(1)
57(1)
N(9)
9153(2)
6582(2)
5384(2)
63(1)
N(6)
3293(4)
603(3)
4463(2)
106(1)
C(3)
6731(2)
3829(2)
1473(2)
44(1)
C(17)
8083(2)
4145(2)
4501(2)
44(1)
C(1)
6823(2)
3242(2)
2737(1)
43(1)
C(2)
7246(2)
3322(2)
2159(1)
41(1)
C(4)
8160(2)
2690(2)
2383(1)
42(1)
C(21)
9434(2)
3709(2)
6500(2)
46(1)
C(18)
8645(2)
4584(2)
5174(2)
42(1)
C(19)
8930(2)
5681(3)
5297(2)
48(1)
C(24)
9400(3)
2581(3)
6825(2)
56(1)
C(5)
8909(3)
2441(3)
1966(2)
53(1)
C(22)
8934(3)
4508(3)
6901(2)
66(1)
C(9)
5713(3)
1384(3)
4224(2)
61(1)
C(12)
4678(3)
2803(3)
3904(2)
52(1)
119
C(10)
4729(3)
1715(3)
4157(2)
62(1)
C(7)
8453(3)
1528(3)
1412(2)
78(1)
C(23)
10544(3)
4052(3)
6609(2)
60(1)
C(13)
3797(3)
3582(3)
3735(2)
58(1)
C(16)
2826(3)
3030(3)
3224(2)
70(1)
C(8)
9938(3)
2066(4)
2496(2)
73(1)
C(14)
4054(3)
4584(3)
3358(3)
78(1)
C(11)
3944(4)
1088(3)
4328(2)
80(1)
C(6)
9091(4)
3434(4)
1545(3)
89(1)
C(15)
3611(4)
3901(4)
4464(2)
85(1)
C(20)
8845(2)
3705(2)
5681(2)
42(1)
B(1)
7339(3)
2243(3)
4028(2)
49(1)
O(1)
5149(2)
6404(2)
674(1)
57(1)
O(2)
3864(2)
4424(2)
531(1)
75(1)
________________________________________________________________________________
Table A.23: Anisotropic displacement parameters (Å2x 103) for [(Tpt-Bu,4CN)2Mn(H2O)4]. The
anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
Mn(1)
73(1)
24(1)
24(1)
6(1)
-21(1)
-11(1)
N(1)
56(2)
36(1)
25(1)
-1(1)
-7(1)
11(1)
N(8)
63(2)
39(1)
23(1)
-1(1)
-6(1)
15(1)
N(4)
61(2)
38(1)
32(1)
1(1)
-2(1)
9(1)
N(2)
52(2)
39(1)
28(1)
-5(1)
-8(1)
9(1)
N(5)
65(2)
37(1)
35(1)
1(1)
4(1)
8(1)
N(7)
65(2)
36(1)
25(1)
2(1)
-5(1)
13(1)
N(3)
76(2)
42(2)
33(1)
7(1)
-11(1)
-4(1)
N(9)
68(2)
49(2)
58(2)
0(1)
-1(2)
-3(2)
N(6)
134(4)
72(3)
124(3)
34(2)
57(3)
-6(2)
C(3)
56(2)
34(2)
30(2)
0(1)
-7(1)
-5(1)
C(17)
53(2)
39(2)
31(1)
2(1)
-2(1)
10(1)
C(1)
52(2)
34(2)
30(2)
0(1)
-7(1)
7(1)
120
C(2)
50(2)
33(2)
27(1)
-1(1)
-6(1)
1(1)
C(4)
51(2)
34(2)
26(1)
-5(1)
-8(1)
1(1)
C(21)
53(2)
49(2)
26(1)
-4(1)
-3(1)
13(2)
C(18)
46(2)
38(2)
35(2)
-1(1)
1(1)
9(1)
C(19)
49(2)
45(2)
38(2)
0(1)
-3(1)
3(2)
C(24)
66(2)
65(2)
25(1)
1(1)
-2(1)
8(2)
C(5)
56(2)
53(2)
39(2)
-7(1)
-2(2)
-2(2)
C(22)
78(3)
72(2)
37(2)
-14(2)
4(2)
17(2)
C(9)
96(3)
38(2)
45(2)
11(2)
13(2)
0(2)
C(12)
70(2)
43(2)
40(2)
-1(1)
13(2)
-6(2)
C(10)
80(3)
50(2)
53(2)
8(2)
16(2)
4(2)
C(7)
68(3)
95(3)
59(2)
-40(2)
3(2)
0(2)
C(23)
58(2)
65(2)
40(2)
4(2)
-7(2)
5(2)
C(13)
68(2)
46(2)
61(2)
-2(2)
23(2)
5(2)
C(16)
72(3)
59(2)
74(2)
-7(2)
16(2)
0(2)
C(8)
56(2)
96(3)
56(2)
-16(2)
-1(2)
7(2)
C(14)
71(3)
47(2)
120(3)
17(2)
37(3)
14(2)
C(11)
102(3)
55(2)
88(3)
18(2)
35(3)
-3(2)
C(6)
85(3)
94(3)
92(3)
20(3)
34(3)
5(3)
C(15)
92(3)
85(3)
85(3)
-25(2)
39(3)
-5(2)
C(20)
48(2)
42(2)
29(1)
-1(1)
0(1)
14(1)
B(1)
75(3)
33(2)
24(2)
1(1)
-8(2)
13(2)
O(1)
72(2)
32(1)
41(1)
-1(1)
-21(1)
-6(1)
O(2)
117(2)
48(1)
34(1)
6(1)
-16(1)
-40(1)
______________________________________________________________________________
Table A.24. Bond lengths [Å] for [(Tpt-Bu,4CN)2Mn(H2O)4].
_________________________________________________________________________________
Mn(1)-O(1)#1
2.122(2)
C(18)-C(20)
1.415(4)
Mn(1)-O(1)
2.122(2)
C(24)-H(24A)
0.9600
Mn(1)-O(2)#1
2.203(3)
C(24)-H(24B)
0.9600
Mn(1)-O(2)
2.203(3)
C(24)-H(24C)
0.9600
Mn(1)-N(3)
2.256(2)
C(5)-C(6)
1.520(5)
Mn(1)-N(3)#1
2.256(2)
C(5)-C(8)
1.528(4)
121
N(1)-C(1)
1.334(3)
C(5)-C(7)
1.535(4)
N(1)-N(2)
1.374(3)
C(22)-H(22A)
0.9600
N(1)-B(1)
1.551(4)
C(22)-H(22B)
0.9600
N(8)-C(20)
1.325(4)
C(22)-H(22C)
0.9600
N(8)-N(7)
1.373(3)
C(9)-C(10)
1.372(5)
N(4)-C(9)
1.346(4)
C(9)-H(9)
0.9300
N(4)-N(5)
1.376(3)
C(12)-C(10)
1.419(5)
N(4)-B(1)
1.520(5)
C(12)-C(13)
1.498(5)
N(2)-C(4)
1.330(4)
C(18)-C(19)
1.409(4)
N(5)-C(12)
1.338(4)
C(7)-H(7A)
0.9600
N(7)-C(17)
1.330(4)
C(7)-H(7B)
0.9600
N(7)-B(1)
1.555(4)
C(7)-H(7C)
0.9600
N(3)-C(3)
1.145(3)
C(23)-H(23A)
0.9600
N(9)-C(19)
1.152(4)
C(23)-H(23B)
0.9600
N(6)-C(11)
1.162(5)
C(23)-H(23C)
0.9600
C(3)-C(2)
1.416(4)
C(13)-C(14)
1.520(5)
C(17)-C(18)
1.379(4)
C(13)-C(15)
1.522(5)
C(17)-H(17)
0.9300
C(13)-C(16)
1.541(5)
C(1)-C(2)
1.382(4)
C(16)-H(16A)
0.9600
C(1)-H(1)
0.9300
C(16)-H(16B)
0.9600
C(2)-C(4)
1.424(4)
C(16)-H(16C)
0.9600
C(4)-C(5)
1.499(5)
C(8)-H(8A)
0.9600
C(21)-C(20)
1.509(4)
C(8)-H(8B)
0.9600
C(21)-C(22)
1.525(4)
C(8)-H(8C)
0.9600
C(21)-C(23)
1.527(5)
C(14)-H(14A)
0.9600
C(21)-C(24)
1.528(4)
C(14)-H(14B)
0.9600
C(10)-C(11)
1.438(6)
C(14)-H(14C)
0.9600
C(6)-H(6A)
0.9600
C(15)-H(15C)
0.9600
C(6)-H(6B)
0.9600
B(1)-H(1C)
0.9800
C(6)-H(6C)
0.9600
O(1)-H(1B)
0.94(5)
C(15)-H(15A)
0.9600
O(1)-H(2C)
0.95(5)
C(15)-H(15B)
0.9600
O(2)-H(2)
0.8200
122
Table A.25. Bond angles [°] for [(Tpt-Bu,4CN)2Mn(H2O)4].
_________________________________________________________________________________
O(1)#1-Mn(1)-O(1)
180.00(12)
C(17)-N(7)-B(1)
129.1(2)
O(1)#1-Mn(1)-O(2)#1
86.83(9)
N(8)-N(7)-B(1)
120.7(2)
O(1)-Mn(1)-O(2)#1
93.17(9)
C(3)-N(3)-Mn(1)
165.1(3)
O(1)#1-Mn(1)-O(2)
93.17(9)
N(3)-C(3)-C(2)
175.5(4)
O(1)-Mn(1)-O(2)
86.83(9)
N(7)-C(17)-C(18)
108.5(2)
O(2)#1-Mn(1)-O(2)
180.00(9)
N(7)-C(17)-H(17)
125.7
O(1)#1-Mn(1)-N(3)
91.60(9)
C(18)-C(17)-H(17)
125.7
O(1)-Mn(1)-N(3)
88.40(9)
N(1)-C(1)-C(2)
108.3(3)
O(2)#1-Mn(1)-N(3)
90.82(10)
N(1)-C(1)-H(1)
125.9
O(2)-Mn(1)-N(3)
89.18(10)
C(2)-C(1)-H(1)
125.9
O(1)#1-Mn(1)-N(3)#1
88.40(9)
C(1)-C(2)-C(3)
122.7(3)
O(1)-Mn(1)-N(3)#1
91.60(9)
C(1)-C(2)-C(4)
105.4(2)
O(2)#1-Mn(1)-N(3)#1
89.18(10)
C(3)-C(2)-C(4)
131.3(3)
O(2)-Mn(1)-N(3)#1
90.82(10)
N(2)-C(4)-C(2)
108.7(3)
N(3)-Mn(1)-N(3)#1
180.0
N(2)-C(4)-C(5)
121.9(3)
C(1)-N(1)-N(2)
110.0(2)
C(2)-C(4)-C(5)
129.3(3)
C(1)-N(1)-B(1)
130.8(3)
C(20)-C(21)-C(22)
109.2(2)
N(2)-N(1)-B(1)
119.1(2)
C(20)-C(21)-C(23)
109.8(3)
C(20)-N(8)-N(7)
107.0(2)
C(22)-C(21)-C(23)
109.2(3)
C(9)-N(4)-N(5)
109.3(3)
C(20)-C(21)-C(24)
109.6(2)
C(9)-N(4)-B(1)
128.8(3)
C(22)-C(21)-C(24)
108.6(3)
N(5)-N(4)-B(1)
121.8(3)
C(23)-C(21)-C(24)
110.4(3)
C(4)-N(2)-N(1)
107.6(2)
C(17)-C(18)-C(19)
125.2(3)
C(12)-N(5)-N(4)
107.1(3)
C(17)-C(18)-C(20)
105.0(3)
C(17)-N(7)-N(8)
110.0(2)
C(19)-C(18)-C(20)
129.8(3)
N(9)-C(19)-C(18)
178.8(3)
C(21)-C(23)-H(23B)
109.5
C(21)-C(24)-H(24A)
109.5
H(23A)-C(23)-H(23B)
109.5
C(21)-C(24)-H(24B)
109.5
C(21)-C(23)-H(23C)
109.5
H(24A)-C(24)-H(24B)
109.5
H(23A)-C(23)-H(23C)
109.5
C(21)-C(24)-H(24C)
109.5
H(23B)-C(23)-H(23C)
109.5
H(24A)-C(24)-H(24C)
109.5
C(12)-C(13)-C(14)
109.7(3)
H(24B)-C(24)-H(24C)
109.5
C(12)-C(13)-C(15)
108.5(3)
C(4)-C(5)-C(6)
110.7(3)
C(14)-C(13)-C(15)
109.7(3)
123
C(4)-C(5)-C(8)
111.0(3)
C(12)-C(13)-C(16)
109.3(3)
C(6)-C(5)-C(8)
108.8(3)
C(14)-C(13)-C(16)
110.2(3)
C(4)-C(5)-C(7)
107.8(3)
C(15)-C(13)-C(16)
109.3(3)
C(6)-C(5)-C(7)
109.5(3)
C(13)-C(16)-H(16A)
109.5
C(8)-C(5)-C(7)
109.0(3)
C(13)-C(16)-H(16B)
109.5
C(21)-C(22)-H(22A)
109.5
H(16A)-C(16)-H(16B)
109.5
C(21)-C(22)-H(22B)
109.5
C(13)-C(16)-H(16C)
109.5
H(22A)-C(22)-H(22B)
109.5
H(16A)-C(16)-H(16C)
109.5
C(21)-C(22)-H(22C)
109.5
H(16B)-C(16)-H(16C)
109.5
H(22A)-C(22)-H(22C)
109.5
C(5)-C(8)-H(8A)
109.5
H(22B)-C(22)-H(22C)
109.5
C(5)-C(8)-H(8B)
109.5
N(4)-C(9)-C(10)
109.1(3)
H(8A)-C(8)-H(8B)
109.5
N(4)-C(9)-H(9)
125.5
C(5)-C(8)-H(8C)
109.5
C(10)-C(9)-H(9)
125.5
H(8A)-C(8)-H(8C)
109.5
N(5)-C(12)-C(10)
109.4(3)
H(8B)-C(8)-H(8C)
109.5
N(5)-C(12)-C(13)
121.3(3)
C(13)-C(14)-H(14A)
109.5
C(10)-C(12)-C(13)
129.4(3)
C(13)-C(14)-H(14B)
109.5
C(9)-C(10)-C(12)
105.1(3)
H(14A)-C(14)-H(14B)
109.5
C(9)-C(10)-C(11)
126.4(3)
C(13)-C(14)-H(14C)
109.5
C(12)-C(10)-C(11)
128.4(4)
H(14A)-C(14)-H(14C)
109.5
C(5)-C(7)-H(7A)
109.5
H(14B)-C(14)-H(14C)
109.5
C(5)-C(7)-H(7B)
109.5
N(6)-C(11)-C(10)
178.3(5)
H(7A)-C(7)-H(7B)
109.5
C(5)-C(6)-H(6A)
109.5
C(5)-C(7)-H(7C)
109.5
C(5)-C(6)-H(6B)
109.5
H(7A)-C(7)-H(7C)
109.5
H(6A)-C(6)-H(6B)
109.5
H(7B)-C(7)-H(7C)
109.5
C(5)-C(6)-H(6C)
109.5
C(21)-C(23)-H(23A)
109.5
H(6A)-C(6)-H(6C)
109.5
H(6B)-C(6)-H(6C)
109.5
N(4)-B(1)-N(1)
111.5(2)
C(13)-C(15)-H(15A)
109.5
N(4)-B(1)-N(7)
111.2(3)
C(13)-C(15)-H(15B)
109.5
N(1)-B(1)-N(7)
105.6(3)
H(15A)-C(15)-H(15B)
109.5
N(4)-B(1)-H(1C)
109.5
C(13)-C(15)-H(15C)
109.5
N(1)-B(1)-H(1C)
109.5
H(15A)-C(15)-H(15C)
109.5
N(7)-B(1)-H(1C)
109.5
H(15B)-C(15)-H(15C)
109.5
Mn(1)-O(1)-H(1B)
127(3)
N(8)-C(20)-C(18)
109.5(2)
Mn(1)-O(1)-H(2C)
125(3)
124
N(8)-C(20)-C(21)
122.2(3)
H(1B)-O(1)-H(2C)
107(3)
C(18)-C(20)-C(21)
128.4(3)
Mn(1)-O(2)-H(2)
109.5
_____________________________________________________________________________________
Table A.26: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103)for [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH. U(eq) is defined as one third of the trace of the
orthogonalized Uij tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
B(1)
4063(3)
3453(2)
11655(2)
21(1)
C(1)
2747(3)
2321(2)
9515(2)
21(1)
C(2)
2081(3)
2574(2)
8672(2)
20(1)
C(3)
1387(3)
1821(2)
7553(2)
21(1)
C(4)
2211(3)
3702(2)
9187(2)
22(1)
C(5)
1655(3)
4428(2)
8703(2)
28(1)
C(6)
1727(4)
4239(3)
7600(2)
33(1)
C(7)
103(4)
4096(4)
8556(4)
65(1)
C(8)
2586(5)
5691(3)
9466(3)
73(2)
C(9)
1777(3)
3191(2)
12016(2)
23(1)
C(10)
1421(3)
3771(2)
12799(2)
20(1)
C(11)
40(3)
3473(2)
12812(2)
24(1)
C(12)
2718(3)
4738(2)
13561(2)
20(1)
C(13)
2966(3)
5641(2)
14626(2)
26(1)
C(14)
1965(4)
6227(3)
14392(3)
42(1)
C(15)
2613(3)
5054(2)
15363(2)
33(1)
C(16)
4514(3)
6540(2)
15211(2)
33(1)
C(17)
5415(3)
2184(2)
11854(2)
24(1)
C(18)
5046(3)
1057(2)
11711(2)
24(1)
C(19)
6001(3)
518(2)
11853(2)
28(1)
C(20)
3538(3)
583(2)
11413(2)
22(1)
C(21)
2535(3)
-636(2)
11108(2)
29(1)
C(22)
1035(3)
-734(2)
10973(3)
35(1)
C(23)
2443(4)
-1405(3)
10028(3)
44(1)
125
C(24)
3125(4)
-1016(3)
12008(3)
44(1)
C(25)
3236(3)
333(2)
5039(3)
34(1)
C(26)
2393(3)
750(2)
4302(2)
31(1)
C(27)
648(3)
1594(2)
4051(2)
30(1)
C(28)
-481(3)
1770(2)
4440(2)
30(1)
C(29)
-2381(3)
784(2)
4944(2)
31(1)
C(101)
4912(4)
3191(3)
7594(3)
45(1)
N(1)
3220(2)
3223(2)
10452(2)
21(1)
N(2)
2905(2)
4080(2)
10259(2)
24(1)
N(3)
798(2)
1202(2)
6644(2)
24(1)
N(4)
3171(2)
3762(2)
12285(2)
20(1)
N(5)
3769(2)
4729(2)
13240(2)
21(1)
N(6)
-1081(3)
3239(2)
12824(2)
34(1)
N(7)
4217(2)
2355(2)
11659(2)
20(1)
N(8)
3047(2)
1371(2)
11380(2)
22(1)
N(9)
6742(3)
63(2)
11970(2)
38(1)
N(10)
1488(2)
1181(2)
4754(2)
23(1)
N(11)
-1389(3)
678(2)
4415(2)
27(1)
5000
19(1)
6635(2)
35(1)
Ni(1)
O(101)
0
0
4034(2)
3220(2)
________________________________________________________________________________
Table A.27: Anisotropic displacement parameters (Å2x 103)for [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH
The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2 U11 + ... + 2 h k a* b*
U12 ].
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
B(1)
20(2)
20(1)
17(2)
5(1)
5(1)
6(1)
C(1)
24(2)
16(1)
21(2)
4(1)
10(1)
9(1)
C(2)
22(2)
20(1)
17(1)
6(1)
7(1)
9(1)
C(3)
22(2)
19(1)
24(2)
9(1)
10(1)
11(1)
C(4)
25(2)
21(1)
20(2)
7(1)
10(1)
10(1)
C(5)
41(2)
25(1)
20(2)
9(1)
10(1)
19(1)
C(6)
43(2)
34(2)
29(2)
18(1)
14(2)
20(2)
126
C(7)
73(3)
118(4)
75(3)
74(3)
54(2)
76(3)
C(8)
130(4)
26(2)
35(2)
6(2)
-2(2)
36(2)
C(9)
23(2)
18(1)
20(2)
3(1)
4(1)
6(1)
C(10)
21(2)
19(1)
19(1)
7(1)
7(1)
8(1)
C(11)
29(2)
22(1)
20(2)
7(1)
9(1)
12(1)
C(12)
23(2)
22(1)
20(1)
11(1)
10(1)
12(1)
C(13)
29(2)
24(1)
23(2)
5(1)
12(1)
12(1)
C(14)
51(2)
34(2)
38(2)
7(2)
14(2)
28(2)
C(15)
37(2)
34(2)
22(2)
7(1)
12(1)
10(1)
C(16)
36(2)
27(2)
26(2)
2(1)
14(1)
9(1)
C(17)
23(2)
28(1)
17(2)
6(1)
7(1)
12(1)
C(18)
26(2)
30(1)
18(2)
8(1)
8(1)
17(1)
C(19)
26(2)
28(1)
24(2)
7(1)
6(1)
10(1)
C(20)
25(2)
26(1)
15(1)
7(1)
8(1)
13(1)
C(21)
33(2)
29(1)
30(2)
14(1)
14(1)
17(1)
C(22)
31(2)
27(2)
45(2)
15(2)
17(2)
8(1)
C(23)
50(2)
26(2)
49(2)
6(2)
26(2)
11(2)
C(24)
45(2)
51(2)
59(2)
38(2)
28(2)
28(2)
C(25)
27(2)
37(2)
35(2)
8(1)
11(1)
16(1)
C(26)
29(2)
29(2)
30(2)
9(1)
13(1)
8(1)
C(27)
40(2)
23(1)
25(2)
13(1)
9(1)
13(1)
C(28)
41(2)
21(1)
26(2)
10(1)
9(1)
17(1)
C(29)
33(2)
29(2)
30(2)
7(1)
11(1)
20(1)
C(101)
46(2)
39(2)
35(2)
15(2)
6(2)
11(2)
N(1)
26(1)
21(1)
17(1)
7(1)
9(1)
11(1)
N(2)
31(1)
19(1)
20(1)
6(1)
9(1)
12(1)
N(3)
28(1)
22(1)
18(1)
6(1)
5(1)
12(1)
N(4)
22(1)
18(1)
14(1)
3(1)
4(1)
8(1)
N(5)
23(1)
18(1)
16(1)
3(1)
5(1)
8(1)
N(6)
28(2)
38(1)
36(2)
14(1)
14(1)
13(1)
N(7)
19(1)
22(1)
17(1)
5(1)
6(1)
9(1)
N(8)
21(1)
22(1)
22(1)
8(1)
9(1)
9(1)
N(9)
34(2)
37(1)
41(2)
12(1)
10(1)
24(1)
N(10)
25(1)
19(1)
21(1)
7(1)
6(1)
10(1)
N(11)
33(1)
21(1)
18(1)
3(1)
4(1)
13(1)
127
Ni(1)
23(1)
16(1)
15(1)
4(1)
5(1)
10(1)
O(101)
32(1)
28(1)
31(1)
9(1)
9(1)
3(1)
_________________________________________________________________________________
Table A.28: Bond lengths [Å] for [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH.
_________________________________________________________________________________
B(1)-N(7)
1.540(3)
C(6)-H(6A)
0.9600
B(1)-N(4)
1.547(4)
C(6)-H(6B)
0.9600
B(1)-N(1)
1.552(4)
C(6)-H(6C)
0.9600
B(1)-H(1A)
0.9800
C(7)-H(7A)
0.9600
C(1)-N(1)
1.334(3)
C(7)-H(7B)
0.9600
C(1)-C(2)
1.385(4)
C(7)-H(7C)
0.9600
C(1)-H(1)
0.9300
C(8)-H(8A)
0.9600
C(2)-C(3)
1.413(4)
C(8)-H(8B)
0.9600
C(2)-C(4)
1.425(3)
C(8)-H(8C)
0.9600
C(3)-N(3)
1.149(3)
C(9)-N(4)
1.331(3)
C(4)-N(2)
1.325(3)
C(9)-C(10)
1.377(4)
C(4)-C(5)
1.508(3)
C(9)-H(9)
0.9300
C(5)-C(7)
1.519(5)
C(10)-C(12)
1.417(4)
C(5)-C(6)
1.523(4)
C(10)-C(11)
1.419(4)
C(5)-C(8)
1.528(4)
C(11)-N(6)
1.152(4)
C(12)-N(5)
1.332(3)
C(25)-C(26)
1.517(4)
C(12)-C(13)
1.519(4)
C(25)-C(29)#1
1.518(4)
C(13)-C(16)
1.520(4)
C(25)-H(25A)
0.9700
C(13)-C(14)
1.530(4)
C(25)-H(25B)
0.9700
C(13)-C(15)
1.535(4)
C(26)-N(10)
1.472(4)
C(14)-H(14A)
0.9600
C(26)-H(26A)
0.9700
C(14)-H(14B)
0.9600
C(26)-H(26B)
0.9700
C(14)-H(14C)
0.9600
C(27)-N(10)
1.483(3)
C(15)-H(15A)
0.9600
C(27)-C(28)
1.518(4)
C(15)-H(15B)
0.9600
C(27)-H(27A)
0.9700
C(15)-H(15C)
0.9600
C(27)-H(27B)
0.9700
C(16)-H(16A)
0.9600
C(28)-N(11)
1.481(3)
C(16)-H(16B)
0.9600
C(28)-H(28A)
0.9700
128
C(16)-H(16C)
0.9600
C(28)-H(28B)
0.9700
C(17)-N(7)
1.337(3)
C(29)-N(11)
1.480(4)
C(17)-C(18)
1.384(4)
C(29)-C(25)#1
1.518(4)
C(17)-H(17)
0.9300
C(29)-H(29A)
0.9700
C(18)-C(20)
1.422(4)
C(29)-H(29B)
0.9700
C(18)-C(19)
1.426(4)
C(101)-O(101)
1.420(4)
C(19)-N(9)
1.146(3)
C(101)-H(10A)
0.9600
C(20)-N(8)
1.326(3)
C(101)-H(10B)
0.9600
C(20)-C(21)
1.514(4)
C(101)-H(10C)
0.9600
C(21)-C(22)
1.523(4)
N(1)-N(2)
1.372(3)
C(21)-C(23)
1.525(4)
N(3)-Ni(1)
2.131(2)
C(21)-C(24)
1.537(4)
N(4)-N(5)
1.375(3)
C(22)-H(22A)
0.9600
N(7)-N(8)
1.374(3)
C(22)-H(22B)
0.9600
N(10)-Ni(1)
2.070(2)
C(22)-H(22C)
0.9600
N(10)-H(10)
0.9100
C(23)-H(23A)
0.9600
N(11)-Ni(1)
2.068(2)
C(23)-H(23B)
0.9600
N(11)-H(11)
0.9100
C(23)-H(23C)
0.9600
Ni(1)-N(11)#1
2.068(2)
C(24)-H(24A)
0.9600
Ni(1)-N(10)#1
2.070(2)
C(24)-H(24B)
0.9600
Ni(1)-N(3)#1
2.131(2)
C(24)-H(24C)
0.9600
O(101)-H(10D)
0.85(3)
_________________________________________________________________________________
Table A.29: Bond angles [°] for [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH.
_________________________________________________________________________________
N(7)-B(1)-N(4)
111.8(2)
H(7B)-C(7)-H(7C)
109.5
N(7)-B(1)-N(1)
107.7(2)
C(5)-C(8)-H(8A)
109.5
N(4)-B(1)-N(1)
106.7(2)
C(5)-C(8)-H(8B)
109.5
N(7)-B(1)-H(1A)
110.2
H(8A)-C(8)-H(8B)
109.5
N(4)-B(1)-H(1A)
110.2
C(5)-C(8)-H(8C)
109.5
N(1)-B(1)-H(1A)
110.2
H(8A)-C(8)-H(8C)
109.5
N(1)-C(1)-C(2)
107.7(2)
H(8B)-C(8)-H(8C)
109.5
N(1)-C(1)-H(1)
126.1
N(4)-C(9)-C(10)
108.5(2)
C(2)-C(1)-H(1)
126.1
N(4)-C(9)-H(9)
125.7
C(1)-C(2)-C(3)
125.3(2)
C(10)-C(9)-H(9)
125.7
C(1)-C(2)-C(4)
105.3(2)
C(9)-C(10)-C(12)
105.0(2)
129
C(3)-C(2)-C(4)
129.3(2)
C(9)-C(10)-C(11)
126.9(2)
N(3)-C(3)-C(2)
178.7(3)
C(12)-C(10)-C(11)
128.0(2)
N(2)-C(4)-C(2)
109.1(2)
N(6)-C(11)-C(10)
179.5(3)
N(2)-C(4)-C(5)
120.5(2)
N(5)-C(12)-C(10)
109.6(2)
C(2)-C(4)-C(5)
130.3(2
N(5)-C(12)-C(13)
122.8(2)
C(4)-C(5)-C(7)
108.2(2)
C(10)-C(12)-C(13)
127.6(2)
C(4)-C(5)-C(6)
111.0(2)
C(12)-C(13)-C(16)
111.3(2)
C(7)-C(5)-C(6)
109.4(3)
C(12)-C(13)-C(14)
109.6(2)
C(4)-C(5)-C(8)
109.4(2)
C(16)-C(13)-C(14)
109.0(2)
C(7)-C(5)-C(8)
111.0(3)
C(12)-C(13)-C(15)
108.8(2)
C(6)-C(5)-C(8)
107.9(3)
C(16)-C(13)-C(15)
109.5(2)
C(5)-C(6)-H(6A)
109.5
C(14)-C(13)-C(15)
108.6(2)
C(5)-C(6)-H(6B)
109.5
C(13)-C(14)-H(14A)
109.5
H(6A)-C(6)-H(6B)
109.5
C(13)-C(14)-H(14B)
109.5
C(5)-C(6)-H(6C)
109.5
H(14A)-C(14)-H(14B)
109.5
H(6A)-C(6)-H(6C)
109.5
C(13)-C(14)-H(14C)
109.5
H(6B)-C(6)-H(6C)
109.5
H(14A)-C(14)-H(14C)
109.5
C(5)-C(7)-H(7A)
109.5
H(14B)-C(14)-H(14C)
109.5
C(5)-C(7)-H(7B)
109.5
C(13)-C(15)-H(15A)
109.5
H(7A)-C(7)-H(7B)
109.5
C(13)-C(15)-H(15B)
109.5
C(5)-C(7)-H(7C)
109.5
H(15A)-C(15)-H(15B)
109.5
H(7A)-C(7)-H(7C)
109.5
C(13)-C(15)-H(15C)
109.5
H(15A)-C(15)-H(15C)
109.5
H(23B)-C(23)-H(23C)
109.5
H(15B)-C(15)-H(15C)
109.5
C(21)-C(24)-H(24A)
109.5
C(13)-C(16)-H(16A)
109.5
C(21)-C(24)-H(24B)
109.5
C(13)-C(16)-H(16B)
109.5
H(24A)-C(24)-H(24B)
109.5
H(16A)-C(16)-H(16B)
109.5
H(24A)-C(24)-H(24B)
109.5
C(13)-C(16)-H(16C)
109.5
H(24A)-C(24)-H(24B)
109.5
H(16A)-C(16)-H(16C)
109.5
H(24A)-C(24)-H(24B)
109.5
H(16B)-C(16)-H(16C)
109.5
C(21)-C(24)-H(24C)
109.5
N(7)-C(17)-C(18)
107.7(2)
H(24A)-C(24)-H(24C)
109.5
N(7)-C(17)-H(17)
126.1
H(24B)-C(24)-H(24C)
109.5
C(18)-C(17)-H(17)
126.1
C(26)-C(25)-C(29)#1
116.3(2)
C(17)-C(18)-C(20)
105.0(2)
C(26)-C(25)-H(25A)
108.2
C(17)-C(18)-C(19)
126.4(3)
C(29)#1-C(25)-H(25A)
108.2
130
C(20)-C(18)-C(19)
128.7(2)
C(26)-C(25)-H(25B)
108.2
N(9)-C(19)-C(18)
178.2(3)
C(29)#1-C(25)-H(25B)
108.2
N(8)-C(20)-C(18)
110.1(2)
H(25A)-C(25)-H(25B)
107.4
N(8)-C(20)-C(21)
121.3(2)
N(10)-C(26)-C(25)
111.5(2)
C(18)-C(20)-C(21)
128.6(2)
N(10)-C(26)-H(26A)
109.3
C(20)-C(21)-C(22)
110.7(2)
C(25)-C(26)-H(26A)
109.3
C(20)-C(21)-C(23)
108.7(2)
N(10)-C(26)-H(26B)
109.3
C(22)-C(21)-C(23)
108.9(3)
C(25)-C(26)-H(26B)
109.3
C(20)-C(21)-C(24)
109.4(2)
H(26A)-C(26)-H(26B)
108.0
C(22)-C(21)-C(24)
109.2(2)
N(10)-C(27)-C(28)
108.9(2)
C(23)-C(21)-C(24)
109.9(3)
N(10)-C(27)-H(27A)
109.9
C(21)-C(22)-H(22A)
109.5
C(28)-C(27)-H(27A)
109.9
C(21)-C(22)-H(22B)
109.5
N(10)-C(27)-H(27B)
109.9
H(22A)-C(22)-H(22B)
109.5
C(28)-C(27)-H(27B)
109.9
C(21)-C(22)-H(22C)
109.5
H(27A)-C(27)-H(27B)
108.3
H(22A)-C(22)-H(22C)
109.5
N(11)-C(28)-C(27)
108.5(2)
H(22B)-C(22)-H(22C)
109.5
N(11)-C(28)-H(28A)
110.0
C(21)-C(23)-H(23A)
109.5
C(27)-C(28)-H(28A)
110.0
C(21)-C(23)-H(23B)
109.5
N(11)-C(28)-H(28B)
110.0
H(23A)-C(23)-H(23B)
109.5
C(27)-C(28)-H(28B)
110.0
C(21)-C(23)-H(23C)
109.5
H(28A)-C(28)-H(28B)
108.4
H(23A)-C(23)-H(23C)
109.5
N(11)-C(29)-C(25)#1
112.4(2)
N(11)-C(29)-H(29A)
109.1
C(27)-N(10)-Ni(1)
105.62(17)
C(25)#1-C(29)-H(29A)
109.1
C(26)-N(10)-H(10)
107.8
N(11)-C(29)-H(29B)
109.1
C(27)-N(10)-H(10)
107.8
C(25)#1-C(29)-H(29B)
109.1
Ni(1)-N(10)-H(10)
107.8
H(29A)-C(29)-H(29B)
107.9
C(29)-N(11)-C(28)
113.6(2)
O(101)-C(101)-H(10A)
109.5
C(29)-N(11)-Ni(1)
116.61(17)
O(101)-C(101)-H(10B)
109.5
C(28)-N(11)-Ni(1)
106.03(17)
H(10A)-C(101)-H(10B)
109.5
C(29)-N(11)-H(11)
106.7
O(101)-C(101)-H(10C)
109.5
C(28)-N(11)-H(11)
106.7
H(10A)-C(101)-H(10C)
109.5
Ni(1)-N(11)-H(11)
106.7
H(10B)-C(101)-H(10C)
109.5
N(11)#1-Ni(1)-N(11)
180.00(14)
C(1)-N(1)-N(2)
110.7(2)
N(11)#1-Ni(1)-N(10)
94.48(9)
C(1)-N(1)-B(1)
131.5(2)
N(11)-Ni(1)-N(10)
85.52(9)
131
N(2)-N(1)-B(1)
117.7(2)
N(11)#1-Ni(1)-N(10)#1
85.52(9)
C(4)-N(2)-N(1)
107.2(2)
N(11)-Ni(1)-N(10)#1
94.48(9)
C(3)-N(3)-Ni(1)
170.9(2)
N(10)-Ni(1)-N(10)#1
180.00(11)
C(9)-N(4)-N(5)
110.4(2)
N(11)#1-Ni(1)-N(3)
87.12(8)
C(9)-N(4)-B(1)
127.7(2)
N(11)-Ni(1)-N(3)
92.88(8)
N(5)-N(4)-B(1)
121.9(2)
N(10)-Ni(1)-N(3)
89.15(9)
C(12)-N(5)-N(4)
106.5(2)
N(10)#1-Ni(1)-N(3)
90.85(9)
C(17)-N(7)-N(8)
111.1(2)
N(11)#1-Ni(1)-N(3)#1
92.88(8)
C(17)-N(7)-B(1)
127.2(2)
N(11)-Ni(1)-N(3)#1
87.12(8)
N(8)-N(7)-B(1)
121.6(2)
N(10)-Ni(1)-N(3)#1
90.85(9)
C(20)-N(8)-N(7)
106.2(2)
N(10)#1-Ni(1)-N(3)#1
89.15(9)
C(26)-N(10)-C(27)
112.8(2)
N(3)-Ni(1)-N(3)#1
180.0
C(26)-N(10)-Ni(1)
114.81(16)
C(101)-O(101)-H(10D)
103(2)
_________________________________________________________________________________
Table A.30: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103)for Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)·3C7H8. U(eq) is defined as one third of the trace of the
orthogonalized Uij tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
B(1)
2840(7)
565(8)
3287(5)
41(3)
B(2)
2381(7)
4560(8)
1109(5)
41(3)
C(1)
2612(7)
5507(7)
1959(5)
51(3)
C(2)
2796(7)
5234(7)
2642(5)
50(3)
C(3)
2808(9)
5942(8)
3011(5)
63(3)
C(4)
2879(6)
4121(7)
2869(4)
37(2)
C(5)
3076(6)
3416(7)
3560(4)
38(2)
C(6)
3935(8)
3456(8)
3857(5)
62(3)
C(7)
4161(8)
2786(10)
4502(6)
73(3)
C(8)
3514(11)
2153(9)
4830(5)
77(4)
C(9)
2626(9)
2132(8)
4556(5)
62(3)
C(10)
2390(8)
2781(7)
3895(4)
52(3)
132
C(11)
3767(6)
4260(7)
276(4)
45(2)
C(12)
4631(6)
3506(7)
275(4)
41(2)
C(13)
5283(7)
3496(7)
-288(4)
50(3)
C(14)
4668(6)
2728(6)
906(4)
34(2)
C(15)
5472(6)
1816(6)
1154(4)
34(2)
C(16)
6490(6)
1919(7)
995(4)
41(2)
C(17)
7289(6)
1083(8)
1228(4)
50(3)
C(18)
7089(6)
133(7)
1627(4)
46(2)
C(19)
6121(6)
-19(7)
1806(4)
41(2)
C(20)
5312(6)
818(6)
1576(4)
35(2)
C(21)
647(7)
4260(8)
821(5)
56(3)
C(22)
102(7)
3452(8)
1028(5)
59(3)
C(23)
-874(8)
3443(9)
775(5)
78(4)
C(24)
679(6)
2628(7)
1545(4)
42(2)
C(25)
395(6)
1603(7)
1931(4)
41(2)
C(26)
214(6)
912(8)
1590(5)
55(3)
C(27)
-157(7)
-13(8)
1931(6)
60(3)
C(28)
-341(8)
-226(9)
2602(7)
70(3)
C(29)
-144(7)
425(9)
2941(5)
62(3)
C(30)
220(6)
1339(8)
2611(5)
55(3)
C(31)
4697(8)
252(7)
3740(4)
49(3)
C(32)
5502(7)
748(7)
3542(5)
50(3)
C(33)
6455(11)
449(9)
3860(6)
86(4)
C(34)
5191(6)
1613(6)
2971(4)
36(2)
C(35)
5782(6)
2387(7)
2583(4)
39(2)
C(36)
6822(7)
2139(8)
2539(4)
52(3)
C(37)
7373(7)
2887(9)
2184(5)
68(3)
C(38)
6907(7)
3904(9)
1869(5)
68(3)
C(39)
5878(7)
4183(7)
1903(4)
53(3)
C(40)
5304(6)
3435(6)
2252(4)
40(2)
C(41)
2532(6)
-742(7)
2634(4)
39(2)
C(42)
2557(6)
-687(7)
1971(5)
40(2)
C(43)
2281(8)
-1450(9)
1706(5)
59(3)
C(44)
2801(6)
305(7)
1618(4)
36(2)
C(45)
2972(6)
727(7)
887(4)
42(2)
133
C(46)
3489(6)
-12(8)
570(5)
54(3)
C(47)
3690(7)
355(10)
-119(5)
63(3)
C(48)
3372(8)
1382(10)
-473(5)
65(3)
C(49)
2872(7)
2099(8)
-165(5)
56(3)
C(50)
2652(7)
1777(7)
514(4)
46(2)
C(51)
1680(7)
-67(8)
4272(4)
52(3)
C(52)
1719(7)
-1002(8)
4794(4)
53(3)
C(53)
980(8)
-1245(7)
5294(5)
67(3)
C(54)
2628(6)
-1694(7)
4703(4)
45(2)
C(55)
3016(7)
-2770(7)
5135(5)
51(3)
C(56)
2974(7)
-3015(8)
5822(5)
59(3)
C(57)
3355(8)
-4012(9)
6239(5)
70(3)
C(58)
3752(9)
-4791(9)
5965(6)
78(4)
C(59)
3782(9)
-4575(8)
5279(7)
82(4)
C(60)
3440(8)
-3553(8)
4860(5)
69(3)
C(101)
2347(16)
2384(16)
6563(10)
212(9)
C(102)
3184(5)
2583(6)
6904(4)
103(4)
C(103)
4167(6)
2288(6)
6694(3)
89(4)
C(104)
4992(5)
2410(6)
7017(4)
80(3)
C(105)
4834(6)
2828(6)
7549(4)
113(5)
C(106)
3851(7)
3123(6)
7758(3)
130(5)
C(107)
3026(5)
3001(6)
7435(4)
84(4)
C(108)
9053(12)
600(20)
9961(8)
102(5)
C(109)
9860(20)
1084(13)
9768(7)
113(5)
C(110)
9660(50)
2270(30)
9570(20)
350(50)
C(115)
728(9)
5162(9)
7739(6)
50
C(114)
486(9)
5548(8)
7063(6)
50
C(113)
26(9)
4954(9)
6770(4)
50
C(112)
-192(8)
3974(9)
7153(6)
50
C(117)
51(10)
3588(8)
7829(5)
50
C(116)
510(10)
4182(10)
8122(5)
50
C(111)
10833(16)
440(20)
9818(7)
C(118)
-928(19)
4330(20)
5287(12)
50
C(119)
130(20)
3750(20)
5344(13)
50
C(120)
861(15)
4420(15)
4992(9)
50
134
112(6)
Co(1)
3045(1)
2313(1)
2137(1)
35(1)
N(1)
2593(5)
4635(5)
1798(3)
40(2)
N(2)
2756(5)
3758(5)
2361(3)
36(2)
N(3)
2803(8)
6547(7)
3287(5)
87(3)
N(4)
3321(5)
3952(5)
861(3)
34(2)
N(5)
3835(4)
2991(5)
1252(3)
32(2)
N(6)
5798(7)
3512(7)
-736(4)
75(3)
N(7)
1499(5)
3948(6)
1183(3)
43(2)
N(8)
1536(5)
2959(6)
1636(3)
41(2)
N(9)
-1650(8)
3481(10)
569(5)
118(4)
N(10)
3923(5)
759(5)
3318(3)
37(2)
N(11)
4224(5)
1601(5)
2841(3)
36(2)
N(12)
7297(9)
139(8)
4098(6)
114(4)
N(13)
2746(5)
151(5)
2678(3)
36(2)
N(14)
2895(5)
834(5)
2051(3)
35(2)
N(15)
2025(8)
-2032(7)
1471(5)
77(3)
N(16)
2527(5)
-190(6)
3902(3)
47(2)
N(17)
3106(5)
-1192(5)
4166(3)
48(2)
N(18)
386(7)
-1481(7)
5707(5)
91(3)
________________________________________________________________________________
Table A.31: Anisotropic displacement parameters (Å2x 103) Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)·3C7H8.
The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b*
U12 ].
_________________________________________________________________________________
U11
U22
U33
U23
U13
U12
_________________________________________________________________________________
B(1)
32(6)
34(6)
45(7)
0(5)
5(5)
5(5)
B(2)
32(6)
49(7)
35(6)
-7(5)
-4(5)
1(5)
C(1)
60(6)
33(6)
51(7)
-2(5)
13(5)
-8(5)
C(2)
66(7)
38(6)
47(6)
-12(5)
10(5)
-19(5)
C(3)
110(9)
33(6)
45(6)
-3(5)
9(6)
-26(6)
C(4)
36(5)
39(6)
32(5)
-5(4)
3(4)
-12(4)
C(5)
28(5)
44(6)
44(6)
-15(5)
3(4)
-9(4)
135
C(6)
58(7)
83(8)
48(7)
-21(6)
-2(5)
-17(6)
C(7)
49(7)
91(9)
75(9)
-20(7)
-17(6)
-6(7)
C(8)
103(10)
75(9)
46(7)
-17(6)
-25(7)
10(8)
C(9)
94(9)
57(7)
42(6)
-13(5)
7(6)
-35(6)
C(10)
69(7)
48(6)
40(6)
-8(5)
-1(5)
-16(5)
C(11)
36(5)
45(6)
42(6)
0(4)
9(4)
-7(4)
C(12)
31(5)
55(6)
35(5)
-8(5)
6(4)
-16(4)
C(13)
48(6)
57(6)
37(6)
-1(5)
8(5)
-18(5)
C(14)
27(5)
38(5)
36(5)
-10(4)
6(4)
-10(4)
C(15)
27(5)
39(5)
37(5)
-12(4)
1(4)
-6(4)
C(16)
29(5)
42(5)
44(5)
-3(4)
1(4)
-9(4)
C(17)
19(5)
69(7)
57(6)
-16(6)
1(4)
-5(5)
C(18)
31(5)
46(6)
52(6)
-7(5)
2(4)
-1(4)
C(19)
34(5)
34(5)
53(6)
-12(4)
9(4)
-5(4)
C(20)
25(5)
38(5)
44(5)
-16(4)
6(4)
-8(4)
C(21)
33(6)
69(7)
52(6)
5(5)
5(5)
-15(5)
C(22)
39(6)
73(8)
47(6)
7(6)
-3(5)
-12(6)
C(23)
43(7)
106(10)
50(7)
39(6)
-11(6)
-31(7)
C(24)
29(5)
61(7)
34(5)
-7(5)
7(4)
-12(5)
C(25)
20(5)
50(6)
43(6)
-1(5)
-7(4)
-4(4)
C(26)
35(5)
76(8)
57(7)
-24(6)
5(5)
-14(5)
C(27)
33(6)
53(7)
96(9)
-24(6)
-1(6)
-11(5)
C(28)
49(7)
60(8)
95(10)
-7(7)
2(7)
-25(6)
C(29)
59(7)
67(8)
49(6)
11(6)
3(5)
-30(6)
C(30)
41(6)
82(8)
41(6)
-16(6)
4(5)
-16(5)
C(31)
67(7)
33(5)
37(6)
5(4)
-20(5)
-4(5)
C(32)
50(6)
34(6)
62(7)
-1(5)
-22(5)
-12(5)
C(33)
96(10)
58(8)
93(9)
16(7)
-36(8)
-41(8)
C(34)
39(5)
33(5)
34(5)
-9(4)
-7(4)
-6(4)
C(35)
37(5)
37(5)
42(5)
-10(4)
-6(4)
-7(4)
C(36)
40(6)
54(6)
57(6)
-11(5)
-11(5)
-2(5)
C(37)
33(6)
81(9)
84(8)
-14(7)
10(6)
-18(6)
C(38)
39(6)
76(8)
88(8)
-20(7)
4(6)
-19(6)
C(39)
48(6)
48(6)
57(6)
-2(5)
-6(5)
-14(5)
C(40)
31(5)
38(5)
46(5)
-4(4)
-4(4)
-11(4)
136
C(41)
37(5)
31(5)
44(6)
-6(4)
-2(4)
-3(4)
C(42)
34(5)
37(6)
57(6)
-22(5)
-2(4)
-12(4)
C(43)
55(7)
48(7)
62(7)
-4(6)
-6(5)
0(6)
C(44)
26(5)
39(6)
45(6)
-17(5)
-1(4)
-5(4)
C(45)
34(5)
54(6)
41(6)
-17(5)
5(4)
-14(5)
C(46)
39(6)
76(7)
49(6)
-24(5)
4(5)
-5(5)
C(47)
49(6)
102(10)
51(7)
-42(7)
11(5)
-15(6)
C(48)
59(7)
103(10)
39(6)
-22(7)
14(5)
-35(7)
C(49)
53(6)
63(7)
57(7)
-14(6)
-4(5)
-24(5)
C(50)
49(6)
53(6)
36(6)
-12(5)
2(5)
-16(5)
C(51)
41(6)
60(7)
42(6)
-5(5)
7(5)
-1(5)
C(52)
52(6)
61(7)
33(5)
0(5)
14(5)
-5(5)
C(53)
60(7)
49(6)
63(7)
7(5)
17(6)
10(5)
C(54)
41(5)
45(6)
39(5)
-3(5)
12(4)
-4(5)
C(55)
46(6)
43(6)
49(6)
3(5)
16(5)
-5(5)
C(56)
52(6)
57(7)
62(7)
-10(6)
16(5)
-14(5)
C(57)
61(7)
75(8)
50(7)
10(6)
8(6)
-9(6)
C(58)
77(8)
53(8)
82(9)
5(7)
4(7)
-1(6)
C(59)
85(9)
43(7)
105(10)
-10(7)
19(8)
-7(6)
C(60)
75(8)
47(7)
70(7)
-5(6)
7(6)
-2(6)
C(108)
59(10)
169(19)
79(11)
-46(13)
-2(8)
-5(12)
C(109) 153(17)
120(14)
69(10)
-33(9)
-47(12)
-15(16)
C(110) 650(120)
130(40)
310(60)
-120(40)
-320(70)
20(50)
C(111) 105(17)
175(18)
57(9)
1(11)
-4(8)
-86(15)
Co(1)
30(1)
33(1)
36(1)
-4(1)
3(1)
-3(1)
N(1)
47(5)
26(4)
38(4)
-1(4)
3(3)
-1(3)
N(2)
35(4)
38(4)
33(4)
-5(4)
3(3)
-10(3)
N(3)
141(9)
59(7)
71(7)
-22(5)
11(6)
-40(6)
N(4)
32(4)
25(4)
39(4)
-1(3)
5(3)
-8(3)
N(5)
24(4)
29(4)
39(4)
-5(3)
-3(3)
1(3)
N(6)
69(6)
94(7)
47(5)
-5(5)
17(5)
-9(5)
N(7)
35(4)
41(5)
41(4)
0(4)
1(4)
0(4)
N(8)
37(4)
45(5)
35(4)
-10(4)
3(3)
1(4)
N(9)
55(7)
171(11)
91(8)
38(7)
-22(6)
-55(7)
N(10)
42(4)
32(4)
32(4)
-3(3)
-2(3)
-3(4)
137
N(11)
36(4)
30(4)
32(4)
0(3)
4(3)
0(3)
N(12)
112(10)
85(8)
128(10)
20(7)
-60(8)
-46(7)
N(13)
31(4)
36(4)
35(4)
-2(4)
8(3)
-6(3)
N(14)
26(4)
42(4)
32(4)
-5(4)
5(3)
-8(3)
N(15)
92(7)
47(6)
90(7)
-22(5)
-28(6)
4(5)
N(16)
40(4)
49(5)
42(5)
-9(4)
12(4)
4(4)
N(17)
47(5)
34(4)
47(5)
3(4)
10(4)
1(4)
N(18)
66(6)
85(7)
84(7)
6(5)
39(6)
14(5)
______________________________________________________________________________
Table A.32: Bond lengths [Å] for Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)·3C7H8.
_________________________________________________________________________________
B(1)-N(16)
1.473(11)
C(14)-N(5)
1.349(9)
B(1)-N(10)
1.531(11)
C(14)-C(15)
1.448(10)
B(1)-N(13)
1.568(12)
C(15)-C(16)
1.409(10)
B(1)-H(1)
0.9800
C(15)-C(20)
1.409(10)
B(2)-N(4)
1.525(10)
C(16)-C(17)
1.382(11)
B(2)-N(1)
1.531(12)
C(16)-H(44)
0.9300
B(2)-N(7)
1.539(12)
C(17)-C(18)
1.360(11)
B(2)-H(2)
0.9800
C(17)-H(45)
0.9300
C(1)-N(1)
1.322(10)
C(18)-C(19)
1.366(11)
C(1)-C(2)
1.393(12)
C(18)-H(46)
0.9300
C(1)-H(30)
0.9300
C(19)-C(20)
1.389(10)
C(2)-C(3)
1.406(13)
C(19)-H(47)
0.9300
C(2)-C(4)
1.406(11)
C(20)-H(48)
0.9300
C(3)-N(3)
1.135(11)
C(21)-N(7)
1.333(10)
C(4)-N(2)
1.334(10)
C(21)-C(22)
1.369(12)
C(4)-C(5)
1.476(11)
C(21)-H(49)
0.9300
C(5)-C(6)
1.357(12)
C(22)-C(24)
1.424(12)
C(5)-C(10)
1.389(11)
C(22)-C(23)
1.443(14)
C(6)-C(7)
1.392(14)
C(23)-N(9)
1.136(12)
C(6)-H(39)
0.9300
C(24)-N(8)
1.352(10)
C(7)-C(8)
1.343(15)
C(24)-C(25)
1.476(12)
138
C(7)-H(38)
0.9300
C(25)-C(30)
1.382(11)
C(8)-C(9)
1.360(14)
C(25)-C(26)
1.398(12)
C(8)-H(37)
0.9300
C(26)-C(27)
1.397(12)
C(9)-C(10)
1.410(12)
C(26)-H(54)
0.9300
C(9)-H(36)
0.9300
C(27)-C(28)
1.371(14)
C(10)-H(35)
0.9300
C(27)-H(55)
0.9300
C(11)-N(4)
1.320(9)
C(28)-C(29)
1.355(14)
C(11)-C(12)
1.386(11)
C(28)-H(56)
0.9300
C(11)-H(40)
0.9300
C(29)-C(30)
1.375(12)
C(12)-C(14)
1.410(11)
C(29)-H(57)
0.9300
C(12)-C(13)
1.436(11)
C(30)-H(58)
0.9300
C(13)-N(6)
1.136(10)
C(31)-N(10)
1.338(10)
C(31)-C(32)
1.355(12)
C(49)-H(28)
0.9300
C(31)-H(1A)
0.9300
C(50)-H(29)
0.9300
C(32)-C(33)
1.405(15)
C(51)-N(16)
1.354(9)
C(32)-C(34)
1.406(11)
C(51)-C(52)
1.384(11)
C(33)-N(12)
1.204(14)
C(51)-H(10)
0.9300
C(34)-N(11)
1.343(10)
C(52)-C(53)
1.413(12)
C(34)-C(35)
1.447(11)
C(52)-C(54)
1.428(11)
C(35)-C(36)
1.375(11)
C(53)-N(18)
1.157(11)
C(35)-C(40)
1.406(10)
C(54)-N(17)
1.326(9)
C(36)-C(37)
1.368(12)
C(54)-C(55)
1.463(11)
C(36)-H(5)
0.9300
C(55)-C(60)
1.370(12)
C(37)-C(38)
1.362(13)
C(55)-C(56)
1.382(12)
C(37)-H(6)
0.9300
C(56)-C(57)
1.373(13)
C(38)-C(39)
1.363(12)
C(56)-H(19)
0.9300
C(38)-H(7)
0.9300
C(57)-C(58)
1.355(14)
C(39)-C(40)
1.385(11)
C(57)-H(18)
0.9300
C(39)-H(8)
0.9300
C(58)-C(59)
1.384(15)
C(40)-H(9)
0.9300
C(58)-H(17)
0.9300
C(41)-N(13)
1.316(10)
C(59)-C(60)
1.388(13)
C(41)-C(42)
1.375(11)
C(59)-H(16)
0.9300
C(41)-H(20)
0.9300
C(60)-H(15)
0.9300
C(42)-C(44)
1.401(11)
C(101)-C(102)
1.47(2)
C(42)-C(43)
1.421(14)
C(101)-H(14A)
0.9600
139
C(43)-N(15)
1.155(12)
C(101)-H(14B)
0.9600
C(44)-N(14)
1.342(10)
C(101)-H(14C)
0.9600
C(44)-C(45)
1.488(11)
C(102)-C(103)
1.3900
C(45)-C(50)
1.383(11)
C(102)-C(107)
1.3900
C(45)-C(46)
1.416(11)
C(103)-C(104)
1.3900
C(46)-C(47)
1.409(12)
C(103)-H(146)
0.9300
C(46)-H(25)
0.9300
C(104)-C(105)
1.3900
C(47)-C(48)
1.348(13)
C(104)-H(143)
0.9300
C(47)-H(26)
0.9300
C(105)-C(106)
1.3900
C(48)-C(49)
1.374(13)
C(105)-H(142)
0.9300
C(48)-H(27)
0.9300
C(106)-C(107)
1.3900
C(49)-C(50)
1.392(11)
C(106)-H(141)
0.9300
C(107)-H(147)
0.9300
C(117)-H(132)
0.9300
C(108)-C(111)#1
1.31(2)
C(116)-H(133)
0.9300
C(108)-C(109)
1.35(2)
C(111)-C(108)#1
1.31(2)
C(108)-H(106)
0.9300
C(111)-H(107)
0.9300
C(109)-C(111)
1.41(2)
C(118)-C(119)
1.47(3)
C(109)-C(110)
1.48(4)
C(118)-C(120)#2
1.62(3)
C(110)-H(12A)
1.0008
C(119)-C(120)
1.47(3)
C(110)-H(12B)
0.9944
C(120)-C(118)#2
1.62(3)
C(110)-H(12C)
1.0036
Co(1)-N(14)
2.098(7)
C(115)-C(114)
1.3900
Co(1)-N(2)
2.097(7)
C(115)-C(116)
1.3900
Co(1)-N(11)
2.102(7)
C(115)-H(130)
0.9300
Co(1)-N(5)
2.127(6)
C(114)-C(113)
1.3900
Co(1)-N(8)
2.225(7)
C(114)-H(135)
0.9300
N(1)-N(2)
1.382(8)
C(113)-C(112)
1.3900
N(4)-N(5)
1.373(8)
C(113)-H(134)
0.9300
N(7)-N(8)
1.369(9)
C(112)-C(117)
1.3900
N(10)-N(11)
1.370(8)
C(112)-H(131)
0.9300
N(13)-N(14)
1.385(8)
C(117)-C(116)
1.3900
N(16)-N(17)
1.382(8)
________________________________________________________________________________
140
Table A.33: Bond angles [°] for Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)·3C7H8.
_________________________________________________________________________________
N(16)-B(1)-N(10)
113.6(7)
N(1)-B(2)-H(2)
110.0
N(16)-B(1)-N(13)
109.6(8)
N(7)-B(2)-H(2)
110.0
N(10)-B(1)-N(13)
109.2(6)
N(1)-C(1)-C(2)
109.2(8)
N(16)-B(1)-H(1)
108.1
N(1)-C(1)-H(30)
125.4
N(10)-B(1)-H(1)
108.1
C(2)-C(1)-H(30)
125.4
N(13)-B(1)-H(1)
108.1
C(1)-C(2)-C(3)
126.5(9)
N(4)-B(2)-N(1)
109.8(7)
C(1)-C(2)-C(4)
104.3(8)
N(4)-B(2)-N(7)
109.3(7)
C(3)-C(2)-C(4)
129.1(9)
N(1)-B(2)-N(7)
107.7(7)
N(3)-C(3)-C(2)
177.2(11)
N(4)-B(2)-H(2)
110.0
N(2)-C(4)-C(2)
110.2(8)
N(2)-C(4)-C(5)
122.9(8)
C(15)-C(16)-H(44)
119.0
C(2)-C(4)-C(5)
126.9(8)
C(18)-C(17)-C(16)
119.1(8)
C(6)-C(5)-C(10)
122.1(9)
C(18)-C(17)-H(45)
120.5
C(6)-C(5)-C(4)
116.7(8)
C(16)-C(17)-H(45)
120.4
C(10)-C(5)-C(4)
121.2(8)
C(17)-C(18)-C(19)
121.9(8)
C(5)-C(6)-C(7)
118.5(10)
C(17)-C(18)-H(46)
119.0
C(5)-C(6)-H(39)
120.8
C(19)-C(18)-H(46)
119.0
C(7)-C(6)-H(39)
120.8
C(18)-C(19)-C(20)
119.5(8)
C(8)-C(7)-C(6)
120.1(11)
C(18)-C(19)-H(47)
120.3
C(8)-C(7)-H(38)
119.9
C(20)-C(19)-H(47)
120.3
C(6)-C(7)-H(38)
119.9
C(19)-C(20)-C(15)
121.1(7)
C(7)-C(8)-C(9)
122.6(11)
C(19)-C(20)-H(48)
119.5
C(7)-C(8)-H(37)
118.7
C(15)-C(20)-H(48)
119.5
C(9)-C(8)-H(37)
118.7
N(7)-C(21)-C(22)
107.2(9)
C(8)-C(9)-C(10)
118.6(10)
N(7)-C(21)-H(49)
126.4
C(8)-C(9)-H(36)
120.7
C(22)-C(21)-H(49)
126.4
C(10)-C(9)-H(36)
120.7
C(21)-C(22)-C(24)
106.9(9)
C(5)-C(10)-C(9)
118.0(10)
C(21)-C(22)-C(23)
126.5(9)
C(5)-C(10)-H(35)
121.0
C(24)-C(22)-C(23)
126.6(9)
C(9)-C(10)-H(35)
121.0
N(9)-C(23)-C(22)
177.1(14)
N(4)-C(11)-C(12)
107.8(7)
N(8)-C(24)-C(22)
107.8(8)
N(4)-C(11)-H(40)
126.1
N(8)-C(24)-C(25)
125.2(8)
C(12)-C(11)-H(40)
126.1
C(22)-C(24)-C(25)
126.9(8)
141
C(11)-C(12)-C(14)
106.1(7)
C(30)-C(25)-C(26)
118.6(9)
C(11)-C(12)-C(13)
125.4(8)
C(30)-C(25)-C(24)
122.3(9)
C(14)-C(12)-C(13)
128.3(8)
C(26)-C(25)-C(24)
118.8(8)
N(6)-C(13)-C(12)
178.5(10)
C(27)-C(26)-C(25)
120.3(9)
N(5)-C(14)-C(12)
108.3(7)
C(27)-C(26)-H(54)
119.9
N(5)-C(14)-C(15)
125.3(7)
C(25)-C(26)-H(54)
119.9
C(12)-C(14)-C(15)
126.3(7)
C(28)-C(27)-C(26)
118.8(10)
C(16)-C(15)-C(20)
116.4(7)
C(28)-C(27)-H(55)
120.6
C(16)-C(15)-C(14)
119.5(7)
C(26)-C(27)-H(55)
120.6
C(20)-C(15)-C(14)
124.1(7)
C(29)-C(28)-C(27)
121.4(10)
C(17)-C(16)-C(15)
122.0(8)
C(29)-C(28)-H(56)
119.3
C(17)-C(16)-H(44)
119.0
C(27)-C(28)-H(56)
119.3
C(28)-C(29)-C(30)
120.4(10)
N(13)-C(41)-H(20)
126.1
C(28)-C(29)-H(57)
119.8
C(42)-C(41)-H(20)
126.1
C(30)-C(29)-H(57)
119.8
C(41)-C(42)-C(44)
106.3(8)
C(29)-C(30)-C(25)
120.5(10)
C(41)-C(42)-C(43)
125.6(9)
C(29)-C(30)-H(58)
119.7
C(44)-C(42)-C(43)
127.8(9)
C(25)-C(30)-H(58)
119.7
N(15)-C(43)-C(42)
176.8(11)
N(10)-C(31)-C(32)
108.9(8)
N(14)-C(44)-C(42)
109.0(7)
N(10)-C(31)-H(1A)
125.5
N(14)-C(44)-C(45)
123.7(8)
C(32)-C(31)-H(1A)
125.5
C(42)-C(44)-C(45)
127.4(8)
C(31)-C(32)-C(33)
125.7(9)
C(50)-C(45)-C(46)
119.7(8)
C(31)-C(32)-C(34)
106.8(8)
C(50)-C(45)-C(44)
123.7(7)
C(33)-C(32)-C(34)
127.4(9)
C(46)-C(45)-C(44)
116.6(8)
N(12)-C(33)-C(32)
174.5(15)
C(47)-C(46)-C(45)
118.7(9)
N(11)-C(34)-C(32)
107.4(8)
C(47)-C(46)-H(25)
120.6
N(11)-C(34)-C(35)
125.1(8)
C(45)-C(46)-H(25)
120.6
C(32)-C(34)-C(35)
127.5(8)
C(48)-C(47)-C(46)
120.6(9)
C(36)-C(35)-C(40)
117.8(8)
C(48)-C(47)-H(26)
119.7
C(36)-C(35)-C(34)
121.8(8)
C(46)-C(47)-H(26)
119.7
C(40)-C(35)-C(34)
120.4(7)
C(47)-C(48)-C(49)
120.6(9)
C(37)-C(36)-C(35)
121.1(9)
C(47)-C(48)-H(27)
119.7
C(37)-C(36)-H(5)
119.5
C(49)-C(48)-H(27)
119.7
C(35)-C(36)-H(5)
119.4
C(48)-C(49)-C(50)
121.0(10)
C(38)-C(37)-C(36)
120.9(9)
C(48)-C(49)-H(28)
119.5
142
C(38)-C(37)-H(6)
119.5
C(50)-C(49)-H(28)
119.5
C(36)-C(37)-H(6)
119.5
C(45)-C(50)-C(49)
119.3(8)
C(37)-C(38)-C(39)
119.8(10)
C(45)-C(50)-H(29)
120.3
C(37)-C(38)-H(7)
120.1
C(49)-C(50)-H(29)
120.3
C(39)-C(38)-H(7)
120.1
N(16)-C(51)-C(52)
107.1(8)
C(38)-C(39)-C(40)
120.3(9)
N(16)-C(51)-H(10)
126.4
C(38)-C(39)-H(8)
119.9
C(52)-C(51)-H(10)
126.4
C(40)-C(39)-H(8)
119.8
C(51)-C(52)-C(53)
127.0(8)
C(39)-C(40)-C(35)
120.1(8)
C(51)-C(52)-C(54)
106.2(7)
C(39)-C(40)-H(9)
119.9
C(53)-C(52)-C(54)
126.8(8)
C(35)-C(40)-H(9)
119.9
N(18)-C(53)-C(52)
177.7(11)
N(13)-C(41)-C(42)
107.9(8)
N(17)-C(54)-C(52)
109.0(7)
N(17)-C(54)-C(55)
124.0(7)
C(104)-C(105)-C(106)
120.0
C(52)-C(54)-C(55)
126.9(7)
C(104)-C(105)-H(142)
120.0
C(60)-C(55)-C(56)
118.9(9)
C(106)-C(105)-H(142)
120.0
C(60)-C(55)-C(54)
120.0(9)
C(105)-C(106)-C(107)
120.0
C(56)-C(55)-C(54)
121.1(9)
C(105)-C(106)-H(141)
120.0
C(57)-C(56)-C(55)
122.3(10)
C(107)-C(106)-H(141)
120.0
C(57)-C(56)-H(19)
118.9
C(106)-C(107)-C(102)
120.0
C(55)-C(56)-H(19)
118.9
C(106)-C(107)-H(147)
120.0
C(58)-C(57)-C(56)
118.7(10)
C(102)-C(107)-H(147)
120.0
C(58)-C(57)-H(18)
120.6
C(111)#1-C(108)-C(109)
120.9(15)
C(56)-C(57)-H(18)
120.7
C(111)#1-C(108)-H(106)
119.5
C(57)-C(58)-C(59)
120.2(10)
C(109)-C(108)-H(106)
119.6
C(57)-C(58)-H(17)
119.9
C(108)-C(109)-C(111)
118.1(15)
C(59)-C(58)-H(17)
119.9
C(108)-C(109)-C(110)
116(4)
C(58)-C(59)-C(60)
120.8(11)
C(111)-C(109)-C(110)
125(4)
C(58)-C(59)-H(16)
119.6
C(114)-C(115)-C(116)
120.0
C(60)-C(59)-H(16)
119.6
C(114)-C(115)-H(130)
120.1
C(55)-C(60)-C(59)
119.1(10)
C(116)-C(115)-H(130)
119.9
C(55)-C(60)-H(15)
120.5
C(113)-C(114)-C(115)
120.0
C(59)-C(60)-H(15)
120.5
C(113)-C(114)-H(135)
120.0
C(102)-C(101)-H(14A)
109.5
C(115)-C(114)-H(135)
120.0
C(102)-C(101)-H(14B)
109.5
C(114)-C(113)-C(112)
120.0
H(14A)-C(101)-H(14B)
109.5
C(114)-C(113)-H(134)
120.0
143
C(102)-C(101)-H(14C)
109.5
C(112)-C(113)-H(134)
120.0
H(14A)-C(101)-H(14C)
109.5
C(117)-C(112)-C(113)
120.0
H(14B)-C(101)-H(14C)
109.5
C(117)-C(112)-H(131)
120.0
C(103)-C(102)-C(107)
120.0
C(113)-C(112)-H(131)
120.0
C(103)-C(102)-C(101)
117.3(10)
C(112)-C(117)-C(116)
120.0
C(107)-C(102)-C(101)
122.6(10)
C(112)-C(117)-H(132)
120.0
C(102)-C(103)-C(104)
120.0
C(116)-C(117)-H(132)
120.0
C(102)-C(103)-H(146)
120.0
C(117)-C(116)-C(115)
120.0
C(104)-C(103)-H(146)
120.0
C(117)-C(116)-H(133)
120.0
C(105)-C(104)-C(103)
120.0
C(115)-C(116)-H(133)
120.0
C(105)-C(104)-H(143)
120.0
C(108)#1-C(111)-C(109)
121.0(15)
C(103)-C(104)-H(143)
120.0
C(108)#1-C(111)-H(107)
119.6
C(109)-C(111)-H(107)
119.5
C(14)-N(5)-Co(1)
139.5(5)
C(119)-C(118)-C(120)#2 105.8(19)
N(4)-N(5)-Co(1)
113.6(4)
C(118)-C(119)-C(120)
C(21)-N(7)-N(8)
111.6(7)
C(119)-C(120)-C(118)#2 138.4(18)
C(21)-N(7)-B(2)
126.7(8)
N(14)-Co(1)-N(2)
162.3(2)
N(8)-N(7)-B(2)
121.6(7)
N(14)-Co(1)-N(11)
91.8(3)
C(24)-N(8)-N(7)
106.4(7)
N(2)-Co(1)-N(11)
94.6(3)
C(24)-N(8)-Co(1)
140.0(6)
N(14)-Co(1)-N(5)
103.2(2)
N(7)-N(8)-Co(1)
112.4(5)
N(2)-Co(1)-N(5)
91.5(2)
C(31)-N(10)-N(11)
108.6(7)
N(11)-Co(1)-N(5)
102.7(2)
C(31)-N(10)-B(1)
132.5(7)
N(14)-Co(1)-N(8)
87.1(3)
N(11)-N(10)-B(1)
118.9(7)
N(2)-Co(1)-N(8)
82.4(3)
C(34)-N(11)-N(10)
108.2(6)
N(11)-Co(1)-N(8)
164.5(2)
C(34)-N(11)-Co(1)
143.3(6)
N(5)-Co(1)-N(8)
92.6(2)
N(10)-N(11)-Co(1)
108.3(5)
C(1)-N(1)-N(2)
109.7(7)
C(41)-N(13)-N(14)
110.9(7)
C(1)-N(1)-B(2)
127.3(8)
C(41)-N(13)-B(1)
132.5(7)
N(2)-N(1)-B(2)
122.9(7)
N(14)-N(13)-B(1)
116.6(7)
C(4)-N(2)-N(1)
106.6(7)
C(44)-N(14)-N(13)
105.9(7)
C(4)-N(2)-Co(1)
138.9(6)
C(44)-N(14)-Co(1)
144.4(6)
N(1)-N(2)-Co(1)
112.7(5)
N(13)-N(14)-Co(1)
109.4(5)
C(11)-N(4)-N(5)
111.1(6)
C(51)-N(16)-N(17)
110.3(7)
C(11)-N(4)-B(2)
126.8(7)
C(51)-N(16)-B(1)
128.7(7)
N(5)-N(4)-B(2)
122.1(6)
N(17)-N(16)-B(1)
120.9(6)
113(2)
144
C(14)-N(5)-N(4)
106.5(6)
C(54)-N(17)-N(16)
107.4(6)
_________________________________________________________________________________
Table A.34: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103) for [(TpPh,4CN)2Mn(MeOH)2(H2O)2]·H2O. U(eq) is defined as one third of the trace of the
orthogonalized Uij tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
B(1)
2602(8)
8023(10)
1785(8)
95(3)
C(1)
1869(7)
9168(7)
801(7)
98(2)
C(2)
3280(7)
8612(7)
-374(6)
91(2)
C(3)
2264(7)
9313(7)
-13(7)
93(2)
C(4)
4071(8)
8411(10)
-1255(8)
102(3)
C(9)
-432(6)
5964(7)
1246(5)
77(2)
C(10)
562(6)
5482(7)
1590(5)
79(2)
C(11)
466(7)
4446(7)
1728(6)
92(2)
C(12)
-668(11)
4218(14)
2189(12)
189(7)
C(13)
3170(9)
9439(11)
3667(9)
124(3)
C(14)
2625(10)
10322(12)
4424(10)
130(3)
C(20)
351(11)
11083(11)
4315(9)
127(3)
C(21)
-5127(11)
5820(11)
2427(9)
159(4)
C(22)
196(6)
6917(7)
1221(6)
91(2)
C(23)
1717(8)
9974(8)
-451(7)
102(2)
C(24)
1387(8)
10327(9)
3901(9)
106(3)
C(26)
3089(13)
10858(13)
5353(12)
171(5)
5507(7)
924(5)
82(2)
C(27)
-1802(6)
C(28)
1437(16)
2842(12)
1620(11)
165(4)
C(29)
1483(11)
3770(9)
1406(8)
131(3)
C(31)
4552(12)
7423(13)
-1749(9)
149(4)
C(32)
5360(20)
7320(18)
-2502(13)
218(8)
C(33)
4373(10)
9286(11)
-1535(9)
129(3)
C(34)
5039(16)
9214(15)
-2287(12)
157(4)
C(36)
383(16)
2515(13)
2063(12)
174(5)
C(37)
5552(13)
8190(20)
-2818(12)
186(7)
145
C(44)
275(15)
11646(12)
5338(13)
153(5)
C(45)
-610(30)
12259(19)
5716(15)
207(7)
C(46)
-1720(20)
12349(15)
5108(19)
206(7)
C(47)
-1690(17)
11668(14)
4045(18)
201(6)
C(48)
-731(10)
11026(9)
3711(9)
128(3)
C(49)
-668(16)
2282(12)
186(6)
0
84(1)
Mn(1)
3138(14)
-5000
5000
N(1)
2601(5)
8458(6)
958(5)
95(2)
N(2)
3467(5)
8088(5)
225(5)
91(2)
N(3)
1719(5)
6140(5)
1757(4)
83(2)
N(4)
1481(5)
7027(5)
1533(5)
88(2)
N(5)
2396(5)
9006(7)
2809(6)
101(2)
N(6)
1270(6)
9554(7)
2970(6)
104(2)
N(7)
1302(7)
10492(6)
-846(6)
116(2)
N(8)
3569(14)
11360(14)
6195(10)
241(7)
N(9)
-2875(5)
5159(5)
625(5)
93(2)
O(1)
-5703(5)
5553(5)
1515(5)
107(2)
O(3)
-4568(5)
6718(5)
206(5)
97(2)
O(4)
7309(6)
8036(5)
1680(7)
158(3)
________________________________________________________________________________
Table
A.35:
Anisotropic
displacement
parameters
(Å2x
103)
Ph,4CN
for
)2Mn(MeOH)2(H2O)2]·H2O. The anisotropic displacement factor exponent takes the form: [(Tp
2
2
2π [ h a*2U11 + ... + 2 h k a* b* U12 ].
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
B(1)
51(4)
141(9)
123(8)
83(8)
6(5)
22(5)
C(1)
63(4)
130(7)
121(7)
69(5)
3(4)
34(4)
C(2)
56(4)
119(6)
124(6)
79(5)
-5(4)
4(4)
C(3)
65(4)
128(6)
115(6)
77(5)
6(4)
25(4)
C(4)
55(4)
150(8)
127(7)
83(7)
5(5)
13(5)
C(9)
36(3)
114(6)
91(5)
51(4)
8(3)
19(3)
C(10)
38(3)
125(6)
85(5)
53(4)
13(3)
23(3)
C(11)
52(4)
126(6)
117(6)
70(5)
-4(4)
11(4)
146
C(12)
101(8)
276(16)
295(16)
240(15)
-52(9)
-45(9)
C(13)
63(5)
195(11)
134(8)
94(8)
-13(6)
0(6)
C(14)
100(7)
189(10)
109(8)
72(8)
-18(6)
20(7)
C(20)
110(8)
180(10)
105(8)
72(8)
22(6)
32(7)
C(21)
93(7)
233(13)
137(9)
62(8)
0(6)
43(7)
C(22)
46(3)
131(7)
124(6)
78(5)
9(4)
23(4)
C(23)
77(5)
130(7)
123(6)
74(6)
0(4)
25(4)
C(24)
70(5)
139(8)
118(7)
65(6)
3(5)
17(5)
C(26)
129(9)
229(14)
138(11)
65(10)
-33(8)
19(9)
C(27)
45(3)
124(6)
100(5)
65(4)
15(3)
30(4)
C(28)
139(11)
159(11)
197(12)
75(10)
1(9)
27(9)
C(29)
119(8)
133(8)
174(10)
92(7)
17(7)
42(6)
C(31)
141(9)
240(14)
120(8)
112(9)
63(7)
93(9)
C(32)
250(20)
300(20)
167(13)
124(14)
68(13)
170(17)
C(33)
99(7)
179(10)
129(8)
90(8)
17(6)
-4(6)
C(34)
133(10)
204(14)
159(12)
101(11)
17(9)
16(10)
C(36)
110(9)
198(13)
238(15)
119(12)
-9(10)
6(10)
C(37)
115(9)
330(20)
156(13)
141(16)
35(8)
59(12)
C(44)
133(10)
155(11)
169(15)
60(10)
33(9)
50(8)
C(45)
250(20)
225(19)
170(15)
101(14)
37(16)
36(17)
C(46)
250(20)
173(14)
198(17)
70(13)
100(16)
88(13)
C(47)
188(15)
178(13)
260(20)
102(14)
57(14)
75(12)
C(48)
95(6)
124(7)
160(9)
50(6)
2(6)
44(6)
C(49)
128(11)
216(14)
251(16)
150(13)
-33(11)
-39(10)
Mn(1)
33(1)
127(1)
129(1)
87(1)
12(1)
21(1)
N(1)
45(3)
139(5)
135(5)
88(4)
10(3)
21(3)
N(2)
49(3)
119(5)
132(5)
78(4)
2(3)
13(3)
N(3)
45(3)
114(4)
106(4)
60(4)
10(3)
23(3)
N(4)
36(3)
129(5)
127(5)
81(4)
7(3)
15(3)
N(5)
50(3)
145(6)
139(6)
91(5)
-12(4)
9(3)
N(6)
71(4)
148(6)
113(6)
73(5)
4(4)
24(4)
N(7)
102(5)
136(6)
133(6)
76(5)
-6(4)
33(4)
N(8)
182(11)
325(17)
140(9)
21(9)
-51(8)
69(11)
N(9)
40(3)
129(5)
140(5)
84(4)
9(3)
24(3)
O(1)
54(3)
178(5)
138(5)
109(4)
25(3)
42(3)
147
Table A.36. Bond lengths [Å] for [(TpPh,4CN)2Mn(MeOH)2(H2O)2]·H2O.
(1)-N(5)
1.531(12)
C(21)-H(21B)
0.9800
B(1)-N(1)
1.534(11)
C(21)-H(21C)
0.9800
B(1)-N(4)
1.538(11)
C(22)-N(4)
1.332(8)
B(1)-H(1A)
1.0000
C(22)-H(22)
0.9500
C(1)-N(1)
1.326(8)
C(23)-N(7)
1.157(9)
C(1)-C(3)
1.338(10)
C(24)-N(6)
1.295(11)
C(1)-H(1)
0.9500
C(26)-N(8)
1.182(15)
C(2)-N(2)
1.339(8)
C(27)-N(9)
1.126(8)
C(2)-C(3)
1.394(10)
C(28)-C(29)
1.367(15)
C(2)-C(4)
1.461(12)
C(28)-C(36)
1.370(18)
C(3)-C(23)
1.415(10)
C(28)-H(28)
0.9500
C(4)-C(31)
1.325(14)
C(29)-H(29)
0.9500
C(4)-C(33)
1.374(13)
C(31)-C(32)
1.35(2)
C(9)-C(22)
1.348(10)
C(31)-H(31)
0.9500
C(9)-C(10)
1.422(8)
C(32)-C(37)
1.39(2)
C(9)-C(27)
1.426(9)
C(32)-H(32)
0.9500
C(10)-N(3)
1.322(8)
C(33)-C(34)
1.266(16)
C(10)-C(11)
1.441(10)
C(33)-H(33)
0.9500
C(11)-C(29)
1.372(12)
C(34)-C(37)
1.38(2)
C(11)-C(12)
1.398(14)
C(34)-H(34)
0.9500
C(12)-C(49)
1.470(17)
C(36)-C(49)
1.354(19)
C(12)-H(12)
0.9500
C(36)-H(36)
0.9500
C(13)-N(5)
1.328(10)
C(37)-H(37)
0.9500
C(13)-C(14)
1.380(14)
C(44)-C(45)
1.23(2)
C(13)-H(13)
0.9500
C(44)-H(44)
0.9500
C(14)-C(26)
1.283(17)
C(45)-C(46)
1.45(2)
C(14)-C(24)
1.448(12)
C(45)-H(45)
0.9500
C(20)-C(44)
1.360(16)
C(46)-C(47)
1.42(2)
C(20)-C(48)
1.362(13)
C(46)-H(46)
0.9500
C(20)-C(24)
1.461(14)
C(47)-C(48)
1.300(16)
C(21)-O(1)
1.328(11)
C(47)-H(47)
0.9500
C(21)-H(21A)
0.9800
C(48)-H(48)
0.9500
148
C(49)-H(49)
0.9500
Mn(1)-N(9)
2.257(5)
Mn(1)-O(3)
2.124(6)
N(1)-N(2)
1.343(9)
Mn(1)-O(3)#1
2.124(6)
N(3)-N(4)
1.369(7)
Mn(1)-O(1)#1
2.165(6)
N(5)-N(6)
1.367(9)
Mn(1)-O(1)
2.165(6)
O(3)-H(3A)
0.70(7)
Mn(1)-N(9)#1
2.257(5)
Table A.37. Bond angles [°] for [(TpPh,4CN)2Mn(MeOH)2(H2O)2]·H2O.
N(5)-B(1)-N(1)
109.1(7)
C(9)-C(10)-C(11)
130.2(6)
N(5)-B(1)-N(4)
110.1(7)
C(29)-C(11)-C(12)
125.3(10)
N(1)-B(1)-N(4)
110.5(6)
C(29)-C(11)-C(10)
118.0(8)
N(5)-B(1)-H(1A)
109.0
C(12)-C(11)-C(10)
116.7(9)
N(1)-B(1)-H(1A)
109.0
C(11)-C(12)-C(49)
112.0(13)
N(4)-B(1)-H(1A)
109.0
C(11)-C(12)-H(12)
124.0
N(1)-C(1)-C(3)
110.0(7)
C(49)-C(12)-H(12)
124.0
N(1)-C(1)-H(1)
125.0
N(5)-C(13)-C(14)
111.3(9)
C(3)-C(1)-H(1)
125.0
N(5)-C(13)-H(13)
124.3
N(2)-C(2)-C(3)
109.4(7)
C(14)-C(13)-H(13)
124.3
N(2)-C(2)-C(4)
121.3(7)
C(26)-C(14)-C(13)
125.9(11)
C(3)-C(2)-C(4)
129.3(7)
C(26)-C(14)-C(24)
132.8(13)
C(1)-C(3)-C(2)
104.7(6)
C(13)-C(14)-C(24)
100.8(9)
C(1)-C(3)-C(23)
127.8(8)
C(44)-C(20)-C(48)
117.6(11)
C(2)-C(3)-C(23)
127.4(8)
C(44)-C(20)-C(24)
120.1(11)
C(31)-C(4)-C(33)
120.1(10)
C(48)-C(20)-C(24)
120.4(11)
C(31)-C(4)-C(2)
120.9(9)
O(1)-C(21)-H(21A)
109.5
C(33)-C(4)-C(2)
118.9(10)
O(1)-C(21)-H(21B)
109.5
C(22)-C(9)-C(10)
106.2(6)
H(21A)-C(21)-H(21B)
109.5
C(22)-C(9)-C(27)
126.1(6)
O(1)-C(21)-H(21C)
109.5
C(10)-C(9)-C(27)
127.6(7)
H(21A)-C(21)-H(21C)
109.5
N(3)-C(10)-C(9)
108.4(7)
H(21B)-C(21)-H(21C)
109.5
N(3)-C(10)-C(11)
121.3(6)
N(4)-C(22)-C(9)
108.1(6)
149
N(4)-C(22)-H(22)
125.9
C(44)-C(45)-C(46)
122.7(19)
C(9)-C(22)-H(22)
125.9
C(44)-C(45)-H(45)
118.7
N(7)-C(23)-C(3)
177.1(10)
C(46)-C(45)-H(45)
118.7
N(6)-C(24)-C(14)
111.8(9)
C(47)-C(46)-C(45)
114.2(17)
N(6)-C(24)-C(20)
121.1(8)
C(47)-C(46)-H(46)
122.9
C(14)-C(24)-C(20)
127.1(11)
C(45)-C(46)-H(46)
122.9
N(8)-C(26)-C(14)
177.2(17)
C(48)-C(47)-C(46)
119.3(17)
N(9)-C(27)-C(9)
176.2(8)
C(48)-C(47)-H(47)
120.4
C(29)-C(28)-C(36)
123.3(14)
C(46)-C(47)-H(47)
120.4
C(29)-C(28)-H(28)
118.4
C(47)-C(48)-C(20)
122.8(14)
C(36)-C(28)-H(28)
118.4
C(47)-C(48)-H(48)
118.6
C(28)-C(29)-C(11)
117.4(11)
C(20)-C(48)-H(48)
118.6
C(28)-C(29)-H(29)
121.3
C(36)-C(49)-C(12)
123.7(14)
C(11)-C(29)-H(29)
121.3
C(36)-C(49)-H(49)
118.2
C(4)-C(31)-C(32)
118.2(14)
C(12)-C(49)-H(49)
118.2
C(4)-C(31)-H(31)
120.9
O(3)-Mn(1)-O(3)#1
180.0
C(32)-C(31)-H(31)
120.9
O(3)-Mn(1)-O(1)#1
88.7(2)
C(31)-C(32)-C(37)
119.7(14)
O(3)#1-Mn(1)-O(1)#1
91.3(2)
C(31)-C(32)-H(32)
120.2
O(3)-Mn(1)-O(1)
91.3(2)
C(37)-C(32)-H(32)
120.2
O(3)#1-Mn(1)-O(1)
88.7(2)
C(34)-C(33)-C(4)
124.8(13)
O(1)#1-Mn(1)-O(1)
180.000(1)
C(34)-C(33)-H(33)
117.6
O(3)-Mn(1)-N(9)#1
93.0(2)
C(4)-C(33)-H(33)
117.6
O(3)#1-Mn(1)-N(9)#1
87.0(2)
C(33)-C(34)-C(37)
116.3(15)
O(1)#1-Mn(1)-N(9)#1
90.2(2)
C(33)-C(34)-H(34)
121.8
O(1)-Mn(1)-N(9)#1
89.8(2)
C(37)-C(34)-H(34)
121.8
O(3)-Mn(1)-N(9)
87.0(2)
C(49)-C(36)-C(28)
117.8(15)
O(3)#1-Mn(1)-N(9)
93.0(2)
C(49)-C(36)-H(36)
121.1
O(1)#1-Mn(1)-N(9)
89.8(2)
C(28)-C(36)-H(36)
121.1
O(1)-Mn(1)-N(9)
90.2(2)
C(34)-C(37)-C(32)
120.4(14)
N(9)#1-Mn(1)-N(9)
180.0(3)
C(34)-C(37)-H(37)
119.8
C(1)-N(1)-N(2)
109.4(7)
C(32)-C(37)-H(37)
119.8
C(1)-N(1)-B(1)
131.9(8)
C(45)-C(44)-C(20)
122.0(17)
N(2)-N(1)-B(1)
118.7(6)
C(45)-C(44)-H(44)
119.0
C(2)-N(2)-N(1)
106.5(6)
C(20)-C(44)-H(44)
119.0
C(10)-N(3)-N(4)
106.9(5)
150
(22)-N(4)-N(3)
110.3(6)
N(6)-N(5)-B(1)
121.9(6)
C(22)-N(4)-B(1)
130.3(6)
C(24)-N(6)-N(5)
107.2(7)
N(3)-N(4)-B(1)
119.0(5)
C(27)-N(9)-Mn(1)
161.7(6)
C(13)-N(5)-N(6)
108.8(9)
C(21)-O(1)-Mn(1)
134.7(6)
C(13)-N(5)-B(1)
129.2(8)
Mn(1)-O(3)-H(3A)
137(6)
Table A.38: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103) for [(TpPh,4CN)2Mn(MeOH)4]. U(eq) is defined as one third of the trace of the orthogonalized
Uij tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
B(1)
2432(5)
2866(4)
6784(4)
38(1)
C(1)
56(4)
1849(3)
6270(3)
36(1)
C(2)
-533(4)
844(3)
6268(3)
32(1)
C(3)
-1867(4)
446(3)
5981(3)
36(1)
C(4)
512(4)
308(3)
6535(3)
33(1)
C(5)
475(4)
-764(4)
6685(3)
40(1)
C(6)
-583(5)
-1108(5)
7109(4)
57(1)
C(7)
-563(6)
-2066(5)
7333(6)
75(2)
C(8)
483(7)
-2686(5)
7125(6)
80(2)
C(9)
1523(7)
-2371(4)
6687(5)
70(2)
C(10)
1519(5)
-1399(4)
6478(4)
52(1)
C(11)
3081(5)
4284(4)
8692(4)
47(1)
C(12)
2533(5)
5156(4)
9410(4)
50(1)
C(13)
3155(6)
5836(6)
10429(5)
74(2)
C(14)
1287(5)
5175(4)
8917(4)
43(1)
C(15)
252(5)
5922(4)
9308(4)
48(1)
C(16)
394(7)
6799(5)
10306(4)
69(2)
C(17)
-604(8)
7483(6)
10639(5)
82(2)
151
C(18)
-1741(7)
7334(5)
10019(5)
70(2)
C(19)
-1892(6)
6452(5)
9019(5)
65(2)
C(20)
-919(5)
5763(4)
8687(4)
51(1)
C(21)
1754(4)
4107(4)
5745(4)
39(1)
C(22)
2205(4)
4294(3)
4891(3)
37(1)
C(23)
1728(4)
5045(4)
4459(4)
41(1)
C(24)
3178(4)
3555(3)
4537(3)
35(1)
C(25)
4001(4)
3408(4)
3659(4)
41(1)
C(26)
4306(6)
2363(5)
3015(5)
65(2)
C(27)
5084(7)
2219(6)
2187(6)
84(2)
C(28)
5545(6)
3160(6)
2010(5)
72(2)
C(29)
5255(6)
4209(5)
2655(5)
65(2)
C(30)
4478(5)
4333(4)
3481(4)
52(1)
C(31)
-3758(7)
2578(5)
5856(9)
121(4)
C(32)
-5199(6)
759(6)
7557(5)
79(2)
Mn(1)
-5000
5000
35(1)
0
N(1)
1331(3)
1886(3)
6514(3)
35(1)
N(2)
1624(3)
942(3)
6679(3)
34(1)
N(3)
-2955(4)
141(3)
5737(3)
41(1)
N(4)
2224(3)
3816(3)
7824(3)
39(1)
N(5)
1124(4)
4363(3)
7964(3)
40(1)
N(6)
3698(7)
6379(6)
11241(5)
114(2)
N(7)
2425(3)
3311(3)
5883(3)
37(1)
N(8)
3300(3)
2961(3)
5135(3)
36(1)
N(9)
1354(4)
5657(3)
4107(3)
50(1)
O(1)
-4739(3)
1745(2)
5285(3)
46(1)
O(2)
-5821(3)
400(3)
6518(3)
48(1)
________________________________________________________________________________
152
Table A.39: Anisotropic displacement parameters (Å2x 103) for [(TpPh,4CN)2Mn(MeOH)4]. U(eq) is
defined as one third of the trace of the orthogonalized Uij tensor.. The anisotropic displacement
factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
B(1)
30(2)
37(2)
56(3)
28(2)
5(2)
6(2)
C(1)
33(2)
33(2)
45(2)
18(2)
2(2)
5(2)
C(2)
33(2)
29(2)
36(2)
14(2)
5(2)
5(2)
C(3)
39(3)
29(2)
42(2)
16(2)
7(2)
8(2)
C(4)
38(2)
31(2)
32(2)
12(2)
6(2)
6(2)
C(5)
43(2)
34(2)
47(2)
22(2)
-4(2)
-2(2)
C(6)
47(3)
62(3)
78(4)
48(3)
-5(3)
-6(2)
C(7)
62(4)
80(4)
105(5)
68(4)
-9(3)
-18(3)
C(8)
87(5)
53(3)
113(5)
58(4)
-37(4)
-20(3)
C(9)
82(4)
39(3)
91(4)
29(3)
-16(3)
9(3)
C(10)
59(3)
36(2)
66(3)
24(2)
5(2)
11(2)
C(11)
43(3)
52(3)
51(3)
28(2)
-3(2)
-6(2)
C(12)
56(3)
50(3)
43(3)
21(2)
-4(2)
-11(2)
C(13)
63(4)
72(4)
67(4)
11(3)
-8(3)
-4(3)
C(14)
51(3)
37(2)
46(2)
24(2)
3(2)
-3(2)
C(15)
71(3)
38(2)
42(2)
23(2)
12(2)
7(2)
C(16)
92(4)
64(3)
45(3)
14(3)
8(3)
16(3)
C(17)
122(6)
62(4)
56(4)
12(3)
26(4)
27(4)
C(18)
98(5)
64(4)
63(4)
32(3)
33(3)
36(3)
C(19)
78(4)
66(3)
65(3)
36(3)
21(3)
29(3)
C(20)
66(3)
46(3)
46(3)
19(2)
13(2)
14(2)
C(21)
33(2)
39(2)
50(2)
22(2)
6(2)
11(2)
C(22)
38(2)
32(2)
46(2)
19(2)
3(2)
7(2)
C(23)
41(2)
38(2)
48(2)
21(2)
6(2)
10(2)
C(24)
35(2)
28(2)
45(2)
17(2)
4(2)
2(2)
C(25)
37(2)
42(2)
52(3)
26(2)
5(2)
5(2)
C(26)
73(4)
50(3)
86(4)
35(3)
36(3)
16(3)
C(27)
98(5)
75(4)
93(5)
38(4)
56(4)
34(4)
C(28)
60(4)
92(5)
82(4)
48(4)
33(3)
14(3)
153
C(29)
60(3)
75(4)
73(4)
47(3)
11(3)
-11(3)
C(30)
55(3)
46(3)
60(3)
27(2)
5(2)
-4(2)
C(31)
60(4)
32(3)
246(11)
33(4)
-28(5)
4(3)
C(32)
65(4)
103(5)
69(4)
30(4)
10(3)
30(4)
Mn(1)
29(1)
26(1)
56(1)
22(1)
5(1)
6(1)
N(1)
34(2)
30(2)
47(2)
22(2)
7(2)
8(1)
N(2)
35(2)
32(2)
42(2)
20(2)
7(2)
9(2)
N(3)
35(2)
35(2)
57(2)
22(2)
4(2)
5(2)
N(4)
36(2)
40(2)
48(2)
24(2)
0(2)
1(2)
N(5)
44(2)
38(2)
43(2)
19(2)
2(2)
7(2)
N(6)
85(4)
124(6)
84(4)
-6(4)
-24(4)
-1(4)
N(7)
36(2)
34(2)
49(2)
24(2)
7(2)
6(2)
N(8)
33(2)
31(2)
51(2)
23(2)
9(2)
6(1)
N(9)
48(2)
54(2)
60(2)
34(2)
5(2)
14(2)
O(1)
39(2)
30(2)
76(2)
28(2)
8(2)
8(1)
O(2)
40(2)
52(2)
61(2)
31(2)
12(2)
15(2)
______________________________________________________________________________
Table A.40: Bond lengths [Å] for [(TpPh,4CN)2Mn(MeOH)4].
B(1)-N(4)
1.521(6)
C(5)-C(6)
1.392(7)
B(1)-N(7)
1.551(6)
C(6)-C(7)
1.389(7)
B(1)-N(1)
1.557(6)
C(6)-H(6)
0.9300
B(1)-H(1A)
0.9800
C(7)-C(8)
1.367(10)
C(1)-N(1)
1.327(5)
C(7)-H(7)
0.9300
C(1)-C(2)
1.398(5)
C(8)-C(9)
1.373(10)
C(1)-H(1)
0.9300
C(8)-H(8)
0.9300
C(2)-C(3)
1.409(6)
C(9)-C(10)
1.395(7)
C(2)-C(4)
1.421(6)
C(9)-H(9)
0.9300
C(3)-N(3)
1.146(5)
C(10)-H(10)
0.9300
C(4)-N(2)
1.320(5)
C(11)-N(4)
1.341(6)
C(4)-C(5)
1.478(5)
C(11)-C(12)
1.365(7)
C(5)-C(10)
1.375(7)
C(11)-H(11)
0.9300
154
C(5)-C(6)
1.392(7)
C(23)-N(9)
1.151(6)
C(6)-C(7)
1.389(7)
C(24)-N(8)
1.330(5)
C(6)-H(6)
0.9300
C(24)-C(25)
1.476(6)
C(7)-C(8)
1.367(10)
C(25)-C(26)
1.371(7)
C(7)-H(7)
0.9300
C(25)-C(30)
1.377(6)
C(8)-C(9)
1.373(10)
C(26)-C(27)
1.392(8)
C(8)-H(8)
0.9300
C(26)-H(26)
0.9300
C(9)-C(10)
1.395(7)
C(27)-C(28)
1.391(9)
C(9)-H(9)
0.9300
C(27)-H(27)
0.9300
C(10)-H(10)
0.9300
C(28)-C(29)
1.370(9)
C(11)-N(4)
1.341(6)
C(28)-H(28)
0.9300
C(11)-C(12)
1.365(7)
C(29)-C(30)
1.393(7)
C(11)-H(11)
0.9300
C(29)-H(29)
0.9300
C(12)-C(13)
1.414(8)
C(30)-H(30)
0.9300
C(12)-C(14)
1.418(7)
C(31)-O(1)
1.378(7)
C(13)-N(6)
1.145(8)
C(31)-H(31A)
0.9600
C(14)-N(5)
1.315(6)
C(31)-H(31B)
0.9600
C(14)-C(15)
1.473(7)
C(31)-H(31C)
0.9600
C(15)-C(20)
1.386(7)
C(32)-O(2)
1.410(7)
C(15)-C(16)
1.391(7)
C(32)-H(32A)
0.9600
C(16)-C(17)
1.386(9)
C(32)-H(32B)
0.9600
C(16)-H(16)
0.9300
C(32)-H(32C)
0.9600
C(17)-C(18)
1.359(10)
Mn(1)-O(1)
2.135(3)
C(17)-H(17)
0.9300
Mn(1)-O(1)#1
2.135(3)
C(18)-C(19)
1.396(9)
Mn(1)-O(2)
2.182(3)
C(18)-H(18)
0.9300
Mn(1)-O(2)#1
2.182(3)
C(19)-C(20)
1.367(7)
Mn(1)-N(3)
2.241(4)
C(19)-H(19)
0.9300
Mn(1)-N(3)#1
2.241(4)
C(20)-H(20)
0.9300
N(1)-N(2)
1.374(4)
C(21)-N(7)
1.343(5)
N(4)-N(5)
1.361(5)
C(21)-C(22)
1.385(6)
N(7)-N(8)
1.372(5)
C(21)-H(21)
0.9300
O(1)-H(1B)
0.89(6)
C(22)-C(24)
1.409(6)
O(2)-H(2A)
0.87(6)
C(22)-C(23)
1.418(6)
155
Table A.41: Bond angles [°] for [(TpPh,4CN)2Mn(MeOH)4].
N(4)-B(1)-N(7)
109.5(3)
C(5)-C(10)-H(10)
119.5
N(4)-B(1)-N(1)
109.7(3)
C(9)-C(10)-H(10)
119.5
N(7)-B(1)-N(1)
110.2(4)
N(4)-C(11)-C(12)
107.6(4)
N(4)-B(1)-H(1A)
109.1
N(4)-C(11)-H(11)
126.2
N(7)-B(1)-H(1A)
109.1
C(12)-C(11)-H(11)
126.2
N(1)-B(1)-H(1A)
109.1
C(11)-C(12)-C(13)
123.3(5)
N(1)-C(1)-C(2)
107.6(3)
C(11)-C(12)-C(14)
105.8(4)
N(1)-C(1)-H(1)
126.2
C(13)-C(12)-C(14)
130.9(5)
C(2)-C(1)-H(1)
126.2
N(6)-C(13)-C(12)
177.8(8)
C(1)-C(2)-C(3)
125.7(4)
N(5)-C(14)-C(12)
108.9(4)
C(1)-C(2)-C(4)
105.0(3)
N(5)-C(14)-C(15)
120.4(4)
C(3)-C(2)-C(4)
129.2(4)
C(12)-C(14)-C(15)
130.6(4)
N(3)-C(3)-C(2)
178.4(4)
C(20)-C(15)-C(16)
117.4(5)
N(2)-C(4)-C(2)
109.5(3)
C(20)-C(15)-C(14)
120.5(4)
N(2)-C(4)-C(5)
121.1(4)
C(16)-C(15)-C(14)
122.1(5)
C(2)-C(4)-C(5)
129.4(4)
C(17)-C(16)-C(15)
120.1(6)
C(10)-C(5)-C(6)
118.7(4)
C(17)-C(16)-H(16)
120.0
C(10)-C(5)-C(4)
120.8(4)
C(15)-C(16)-H(16)
120.0
C(6)-C(5)-C(4)
120.3(4)
C(18)-C(17)-C(16)
122.2(6)
C(7)-C(6)-C(5)
120.1(5)
C(18)-C(17)-H(17)
118.9
C(7)-C(6)-H(6)
119.9
C(16)-C(17)-H(17)
118.9
C(5)-C(6)-H(6)
119.9
C(17)-C(18)-C(19)
117.9(6)
C(8)-C(7)-C(6)
120.4(5)
C(17)-C(18)-H(18)
121.0
C(8)-C(7)-H(7)
119.8
C(19)-C(18)-H(18)
121.0
C(6)-C(7)-H(7)
119.8
C(20)-C(19)-C(18)
120.4(6)
C(7)-C(8)-C(9)
120.2(5)
C(20)-C(19)-H(19)
119.8
C(7)-C(8)-H(8)
119.9
C(18)-C(19)-H(19)
119.8
C(9)-C(8)-H(8)
119.9
C(19)-C(20)-C(15)
122.0(5)
C(8)-C(9)-C(10)
119.6(6)
C(19)-C(20)-H(20)
119.0
C(8)-C(9)-H(9)
120.2
C(15)-C(20)-H(20)
119.0
C(10)-C(9)-H(9)
120.2
N(7)-C(21)-C(22)
107.7(4)
C(5)-C(10)-C(9)
120.9(5)
N(7)-C(21)-H(21)
126.1
156
C(22)-C(21)-H(21)
126.1
H(32A)-C(32)-H(32B)
109.5
C(21)-C(22)-C(24)
105.4(3)
O(2)-C(32)-H(32C)
109.5
C(21)-C(22)-C(23)
126.0(4)
H(32A)-C(32)-H(32C)
109.5
C(24)-C(22)-C(23)
128.6(4)
H(32B)-C(32)-H(32C)
109.5
N(9)-C(23)-C(22)
179.3(5)
O(1)-Mn(1)-O(1)#1
180.0
N(8)-C(24)-C(22)
109.8(4)
O(1)-Mn(1)-O(2)
90.40(13)
N(8)-C(24)-C(25)
121.3(4)
O(1)#1-Mn(1)-O(2)
89.60(13)
C(22)-C(24)-C(25)
128.9(4)
O(1)-Mn(1)-O(2)#1
89.60(13)
C(26)-C(25)-C(30)
119.1(4)
O(1)#1-Mn(1)-O(2)#1
90.40(13)
C(26)-C(25)-C(24)
121.1(4)
O(2)-Mn(1)-O(2)#1
C(30)-C(25)-C(24)
119.8(4)
O(1)-Mn(1)-N(3)
89.15(13)
C(25)-C(26)-C(27)
121.4(5)
O(1)#1-Mn(1)-N(3)
90.85(13)
C(25)-C(26)-H(26)
119.3
O(2)-Mn(1)-N(3)
92.54(13)
C(27)-C(26)-H(26)
119.3
O(2)#1-Mn(1)-N(3)
87.46(13)
C(28)-C(27)-C(26)
118.7(6)
O(1)-Mn(1)-N(3)#1
90.85(13)
C(28)-C(27)-H(27)
120.7
O(1)#1-Mn(1)-N(3)#1
89.15(13)
C(26)-C(27)-H(27)
120.7
O(2)-Mn(1)-N(3)#1
87.46(13)
C(29)-C(28)-C(27)
120.3(5)
O(2)#1-Mn(1)-N(3)#1
92.54(13)
C(29)-C(28)-H(28)
119.8
N(3)-Mn(1)-N(3)#1
180.0
C(27)-C(28)-H(28)
119.8
C(1)-N(1)-N(2)
110.8(3)
C(28)-C(29)-C(30)
120.0(5)
C(1)-N(1)-B(1)
130.1(3)
C(28)-C(29)-H(29)
120.0
N(2)-N(1)-B(1)
118.5(3)
C(30)-C(29)-H(29)
120.0
C(4)-N(2)-N(1)
107.2(3)
C(25)-C(30)-C(29)
120.5(5)
C(3)-N(3)-Mn(1)
159.4(3)
C(25)-C(30)-H(30)
119.8
C(11)-N(4)-N(5)
110.3(4)
C(29)-C(30)-H(30)
119.8
C(11)-N(4)-B(1)
127.0(4)
O(1)-C(31)-H(31A)
109.5
N(5)-N(4)-B(1)
122.6(3)
O(1)-C(31)-H(31B)
109.5
C(14)-N(5)-N(4)
107.4(4)
H(31A)-C(31)-H(31B)
109.5
C(21)-N(7)-N(8)
110.3(3)
O(1)-C(31)-H(31C)
109.5
C(21)-N(7)-B(1)
130.0(4)
H(31A)-C(31)-H(31C)
109.5
N(8)-N(7)-B(1)
119.4(3)
H(31B)-C(31)-H(31C)
109.5
C(24)-N(8)-N(7)
106.8(3)
O(2)-C(32)-H(32A)
109.5
C(31)-O(1)-Mn(1)
131.8(4)
O(2)-C(32)-H(32B)
109.5
C(31)-O(1)-H(1B)
110(4)
157
180.00(9)
Mn(1)-O(1)-H(1B)
115(3)
C(32)-O(2)-H(2A)
114(4)
C(32)-O(2)-Mn(1)
130.6(3)
Mn(1)-O(2)-H(2A)
114(4)
Table A.42: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103) for {[Tpt-Bu,4CNCu][MeCN]}n. U(eq) is defined as one third of the trace of the orthogonalized
Uij tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
B(1)
4077(1)
4237(2)
3632(2)
20(1)
C(1)
4278(1)
4226(2)
2302(2)
26(1)
C(2)
4211(1)
3623(2)
1639(2)
26(1)
C(3)
4286(1)
3851(2)
890(2)
37(1)
C(4)
4019(1)
2806(2)
1842(2)
23(1)
C(5)
3878(1)
1893(2)
1365(2)
32(1)
C(6)
4160(2)
1801(2)
771(2)
49(1)
C(7)
3243(1)
1837(2)
797(2)
47(1)
C(8)
4083(1)
1119(2)
2042(2)
38(1)
C(9)
3188(1)
5189(2)
3145(2)
22(1)
C(10)
2626(1)
5017(2)
2811(2)
23(1)
C(11)
2778(1)
725(2)
2515(2)
24(1)
C(12)
2575(1)
4055(2)
2811(2)
23(1)
C(13)
2063(1)
3461(2)
2533(2)
29(1)
C(14)
1558(1)
4048(2)
2386(3)
62(1)
C(15)
2157(1)
2767(2)
3258(2)
36(1)
C(16)
1951(1)
2972(2)
1672(2)
45(1)
C(17)
4732(1)
3790(2)
5244(2)
22(1)
C(18)
4832(1)
3022(2)
5766(2)
23(1)
C(19)
5263(1)
2990(2)
6655(2)
32(1)
C(20)
4445(1)
2361(2)
5215(2)
22(1)
C(21)
4344(1)
1383(2)
5390(2)
28(1)
C(22)
4776(2)
1083(2)
6307(2)
59(1)
C(23)
4384(1)
768(2)
4695(2)
41(1)
158
C(24)
3761(1)
1306(2)
5317(2)
46(1)
C(101)
3421(2)
3974(3)
5484(3)
66(1)
C(102)
2977(2)
4431(4)
5550(4)
90(2)
Cu(1)
3494(1)
2414(1)
3195(1)
22(1)
N(1)
4134(1)
3807(1)
2856(1)
20(1)
N(2)
3964(1)
2933(1)
2575(1)
22(1)
N(3)
4327(1)
4076(2)
282(2)
56(1)
N(4)
3453(1)
4399(1)
3328(1)
20(1)
N(5)
3082(1)
3687(1)
3115(1)
20(1)
N(6)
3065(1)
1343(1)
2775(1)
25(1)
N(7)
4319(1)
3608(1)
4443(1)
19(1)
N(8)
4135(1)
2729(1)
4418(1)
20(1)
N(9)
5622(1)
3019(2)
7362(2)
48(1)
N(101)
2631(3)
4803(5)
5616(5)
175(3)
________________________________________________________________________________
Anisotropic displacement parameters (┼2x 103) for {[Tpt-Bu,4CNCu][MeCN]}n. The
anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
Table A.43:
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
B(1)
19(1)
14(1)
22(2)
1(1)
6(1)
-5(1)
C(1)
24(1)
23(1)
30(2)
5(1)
13(1)
-5(1)
C(2)
23(1)
30(2)
26(1)
4(1)
13(1)
0(1)
C(3)
40(2)
36(2)
44(2)
3(1)
27(2)
-4(1)
C(4)
19(1)
26(1)
22(1)
3(1)
7(1)
2(1)
C(5)
39(2)
32(2)
28(2)
-6(1)
18(1)
-1(1)
C(6)
76(2)
40(2)
46(2)
-6(2)
42(2)
3(2)
C(7)
46(2)
47(2)
38(2)
-16(2)
11(2)
-12(2)
C(8)
54(2)
28(2)
44(2)
-3(1)
32(2)
0(1)
C(9)
26(1)
14(1)
24(1)
1(1)
8(1)
-1(1)
C(10)
24(1)
16(1)
25(1)
2(1)
8(1)
3(1)
C(11)
25(1)
18(1)
28(2)
-1(1)
10(1)
2(1)
C(12)
22(1)
19(1)
22(1)
1(1)
6(1)
1(1)
C(13)
17(1)
17(1)
42(2)
5(1)
6(1)
1(1)
159
C(14)
22(2)
28(2)
122(3)
10(2)
22(2)
1(1)
C(15)
30(2)
28(2)
51(2)
2(1)
20(1)
-3(1)
C(16)
42(2)
35(2)
34(2)
2(1)
-3(1)
-14(1)
C(17)
18(1)
23(1)
23(1)
-3(1)
6(1)
-5(1)
C(18)
20(1)
26(1)
18(1)
0(1)
4(1)
-3(1)
C(19)
27(2)
33(2)
29(2)
1(1)
8(1)
-3(1)
C(20)
20(1)
25(1)
19(1)
3(1)
8(1)
2(1)
C(21)
29(2)
22(1)
25(1)
7(1)
6(1)
-1(1)
C(22)
67(2)
39(2)
36(2)
18(2)
-6(2)
-11(2)
C(23)
53(2)
19(1)
45(2)
4(1)
17(2)
7(1)
C(24)
51(2)
35(2)
61(2)
10(2)
33(2)
-7(2)
C(101)
56(2)
73(3)
72(3)
0(2)
31(2)
-2(2)
C(102)
74(3)
83(4)
111(4)
18(3)
42(3)
13(3)
Cu(1)
22(1)
15(1)
23(1)
-1(1)
6(1)
-4(1)
N(1)
19(1)
17(1)
22(1)
1(1)
7(1)
-4(1)
N(2)
25(1)
17(1)
23(1)
-2(1)
11(1)
-2(1)
N(3)
81(2)
50(2)
60(2)
6(2)
52(2)
-4(2)
N(4)
20(1)
12(1)
22(1)
0(1)
6(1)
-2(1)
N(5)
18(1)
14(1)
24(1)
0(1)
6(1)
-2(1)
N(6)
24(1)
15(1)
32(1)
0(1)
9(1)
-1(1)
N(7)
19(1)
15(1)
20(1)
0(1)
5(1)
-4(1)
N(8)
21(1)
14(1)
21(1)
1(1)
7(1)
-2(1)
N(9)
36(2)
60(2)
28(2)
1(1)
-2(1)
-5(1)
N(101) 130(5)
188(6)
230(7)
30(5)
102(5)
75(5)
______________________________________________________________________________
160
Table A.44: Bond lengthes [Å] for {[Tpt-Bu,4CNCu][MeCN]}n
B(1)-N(7)
1.533(3)
C(12)-C(13)
1.515(3)
B(1)-N(1)
1.537(3)
C(13)-C(15)
1.530(4)
B(1)-N(4)
1.541(3)
C(13)-C(16)
1.531(4)
B(1)-H(1)
0.9800
C(13)-C(14)
1.536(4)
C(1)-N(1)
1.327(3)
C(14)-H(17A)
0.9600
C(1)-C(2)
1.380(4)
C(14)-H(17B)
0.9600
C(1)-H(8)
0.9300
C(14)-H(17C)
0.9600
C(2)-C(4)
1.413(3)
C(15)-H(19A)
0.9600
C(2)-C(3)
1.422(4)
C(15)-H(19B)
0.9600
C(3)-N(3)
1.142(4)
C(15)-H(19C)
0.9600
C(4)-N(2)
1.338(3)
C(16)-H(20A)
0.9600
C(4)-C(5)
1.521(4)
C(16)-H(20B)
0.9600
C(5)-C(8)
1.528(4)
C(16)-H(20C)
0.9600
C(5)-C(6)
1.530(4)
C(17)-N(7)
1.330(3)
C(5)-C(7)
1.537(4)
C(17)-C(18)
1.383(3)
C(6)-H(1A)
0.9600
C(17)-H(14)
0.9300
C(6)-H(1B)
0.9600
C(18)-C(20)
1.418(3)
C(6)-H(1C)
0.9600
C(18)-C(19)
1.422(4)
C(7)-H(2A)
0.9600
C(19)-N(9)
1.146(3)
C(7)-H(2B)
0.9600
C(20)-N(8)
1.337(3)
C(7)-H(2C)
0.9600
C(20)-C(21)
1.515(3)
C(8)-H(4A)
0.9600
C(21)-C(22)
1.520(4)
C(8)-H(4B)
0.9600
C(21)-C(23)
1.531(4)
C(8)-H(4C)
0.9600
C(21)-C(24)
1.531(4)
C(9)-N(4)
1.323(3)
C(22)-H(13A)
0.9600
C(9)-C(10)
1.380(3)
C(22)-H(13B)
0.9600
C(9)-H(16)
0.9300
C(22)-H(13C)
0.9600
C(10)-C(12)
1.419(3)
C(23)-H(10A)
0.9600
C(10)-C(11)#1
1.421(3)
C(23)-H(10B)
0.9600
C(11)-N(6)
1.143(3)
C(23)-H(10C)
0.9600
C(11)-C(10)#2
1.421(3)
C(24)-H(12A)
0.9600
C(12)-N(5)
1.337(3)
C(24)-H(12B)
0.9600
161
C(24)-H(12C)
0.9600
Cu(1)-N(8)
2.053(2)
C(101)-C(102)
1.426(6)
Cu(1)-N(2)
2.135(2)
C(101)-H(10D)
0.9600
Cu(1)-N(5)
2.148(2)
C(101)-H(10E)
0.9600
N(1)-N(2)
1.371(3)
C(101)-H(10F)
0.9600
N(4)-N(5)
1.376(3)
C(102)-N(101)
1.133(6)
N(7)-N(8)
1.376(3)
Cu(1)-N(6)
1.888(2)
Table A.45: Bond angles [°] for {[Tpt-Bu,4CNCu][MeCN]}n.
N(4)-B(1)-N(7)
109.5(3)
C(6)-C(5)-C(7)
109.5(3)
N(4)-B(1)-N(1)
109.7(3)
C(5)-C(6)-H(1A)
109.5
N(7)-B(1)-N(1)
110.2(4)
C(5)-C(6)-H(1B)
109.5
N(4)-B(1)-H(1A)
109.1
H(1A)-C(6)-H(1B)
109.5
N(7)-B(1)-H(1A)
109.1
C(5)-C(6)-H(1C)
109.5
N(1)-B(1)-H(1A)
109.1
H(1A)-C(6)-H(1C)
109.5
N(1)-C(1)-C(2)
107.6(3)
H(1B)-C(6)-H(1C)
109.5
N(1)-C(1)-H(1)
126.2
C(5)-C(7)-H(2A)
109.5
C(2)-C(1)-H(1)
126.2
C(5)-C(7)-H(2B)
109.5
C(1)-C(2)-C(3)
125.7(4)
H(2A)-C(7)-H(2B)
109.5
C(1)-C(2)-C(4)
105.0(3)
C(5)-C(7)-H(2C)
109.5
C(3)-C(2)-C(4)
129.2(4)
H(2A)-C(7)-H(2C)
109.5
N(3)-C(3)-C(2)
178.4(4)
H(2B)-C(7)-H(2C)
109.5
N(2)-C(4)-C(2)
109.5(3)
C(5)-C(8)-H(4A)
109.5
N(2)-C(4)-C(5)
121.1(4)
C(5)-C(8)-H(4B)
109.5
C(2)-C(4)-C(5)
129.4(4)
H(4A)-C(8)-H(4B)
109.5
C(10)-C(5)-C(6)
118.7(4)
C(5)-C(8)-H(4C)
109.5
C(10)-C(5)-C(4)
120.8(4)
H(4A)-C(8)-H(4C)
109.5
C(6)-C(5)-C(4)
120.3(4)
H(4B)-C(8)-H(4C)
109.5
C(7)-C(6)-C(5)
120.1(5)
N(4)-C(9)-C(10)
108.1(2)
C(7)-C(6)-H(6)
119.9
N(4)-C(9)-H(16)
126.0
162
C(17)-C(18)-C(20)
105.5(2)
C(17)-C(18)-C(20)
105.5(2)
C(17)-C(18)-C(19)
122.2(2)
C(17)-C(18)-C(19)
122.2(2)
C(20)-C(18)-C(19)
132.3(2)
C(20)-C(18)-C(19)
132.3(2)
N(9)-C(19)-C(18)
175.5(3)
N(9)-C(19)-C(18)
175.5(3)
N(8)-C(20)-C(18)
108.6(2)
N(8)-C(20)-C(18)
108.6(2)
N(8)-C(20)-C(21)
119.9(2)
N(8)-C(20)-C(21)
119.9(2)
C(18)-C(20)-C(21)
131.5(2)
C(18)-C(20)-C(21)
131.5(2)
C(20)-C(21)-C(22)
110.7(2)
C(20)-C(21)-C(22)
110.7(2)
C(20)-C(21)-C(23)
108.8(2)
C(20)-C(21)-C(23)
108.8(2)
C(22)-C(21)-C(23)
109.1(3)
C(22)-C(21)-C(23)
109.1(3)
C(20)-C(21)-C(24)
109.0(2)
C(20)-C(21)-C(24)
109.0(2)
C(22)-C(21)-C(24)
109.7(3)
C(22)-C(21)-C(24)
109.7(3)
C(23)-C(21)-C(24)
109.4(2)
C(23)-C(21)-C(24)
109.4(2)
C(21)-C(22)-H(13A)
109.5
C(21)-C(22)-H(13A)
109.5
C(21)-C(22)-H(13B)
109.5
C(21)-C(22)-H(13B)
109.5
H(13A)-C(22)-H(13B)
109.5
H(13A)-C(22)-H(13B)
109.5
C(21)-C(22)-H(13C)
109.5
C(21)-C(22)-H(13C)
109.5
H(13A)-C(22)-H(13C)
109.5
H(13A)-C(22)-H(13C)
109.5
H(13B)-C(22)-H(13C)
109.5
H(13B)-C(22)-H(13C)
109.5
C(21)-C(23)-H(10A)
109.5
C(21)-C(23)-H(10A)
109.5
C(21)-C(23)-H(10B)
109.5
C(21)-C(23)-H(10B)
109.5
H(10A)-C(23)-H(10B)
109.5
H(10A)-C(23)-H(10B)
109.5
C(21)-C(23)-H(10C)
109.5
C(21)-C(23)-H(10C)
109.5
H(10A)-C(23)-H(10C)
109.5
H(10A)-C(23)-H(10C)
109.5
H(10B)-C(23)-H(10C)
109.5
H(10B)-C(23)-H(10C)
109.5
C(21)-C(24)-H(12A)
109.5
C(21)-C(24)-H(12A)
109.5
C(21)-C(24)-H(12B)
109.5
C(21)-C(24)-H(12B)
109.5
H(12A)-C(24)-H(12B)
109.5
H(12A)-C(24)-H(12B)
109.5
C(21)-C(24)-H(12C)
109.5
C(21)-C(24)-H(12C)
109.5
H(12A)-C(24)-H(12C)
109.5
H(12A)-C(24)-H(12C)
109.5
H(12B)-C(24)-H(12C)
109.5
H(12B)-C(24)-H(12C)
109.5
C(102)-C(101)-H(10D)
109.5
C(102)-C(101)-H(10D)
109.5
C(102)-C(101)-H(10E)
109.5
C(102)-C(101)-H(10E)
109.5
H(10D)-C(101)-H(10E)
109.5
H(10D)-C(101)-H(10E)
109.5
C(102)-C(101)-H(10F)
109.5
C(102)-C(101)-H(10F)
109.5
163
H(10D)-C(101)-H(10F)
109.5
N(1)-N(2)-Cu(1)
109.99(14)
H(10E)-C(101)-H(10F)
109.5
C(9)-N(4)-N(5)
110.69(19)
N(101)-C(102)-C(101)
178.7(7)
C(9)-N(4)-B(1)
127.2(2)
N(6)-Cu(1)-N(8)
130.91(8)
N(5)-N(4)-B(1)
121.74(18)
N(6)-Cu(1)-N(2)
120.84(9)
C(12)-N(5)-N(4)
106.85(19)
N(8)-Cu(1)-N(2)
90.26(8)
C(12)-N(5)-Cu(1)
141.84(17)
N(6)-Cu(1)-N(5)
119.28(8)
N(4)-N(5)-Cu(1)
110.36(14)
N(8)-Cu(1)-N(5)
92.23(8)
C(11)-N(6)-Cu(1)
175.8(2)
N(2)-Cu(1)-N(5)
94.01(8)
C(17)-N(7)-N(8)
109.90(19)
C(1)-N(1)-N(2)
110.4(2)
C(17)-N(7)-B(1)
127.5(2)
C(1)-N(1)-B(1)
126.9(2)
N(8)-N(7)-B(1)
122.60(19)
N(2)-N(1)-B(1)
122.23(19)
C(20)-N(8)-N(7)
107.44(19)
C(4)-N(2)-N(1)
106.96(19)
C(20)-N(8)-Cu(1)
141.05(17)
C(4)-N(2)-Cu(1)
139.62(17)
N(7)-N(8)-Cu(1)
111.51(14)
Table A.46: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103) for Ag-1. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
Ag(1)
1454(1)
7192(1)
1836(1)
41(1)
B(1)
856(4)
9068(8)
1383(7)
35(3)
C(1)
1748(5)
9974(7)
1790(6)
40(3)
C(2)
2321(4)
9848(7)
2160(6)
42(3)
C(3)
2725(5)
10499(8)
2400(7)
49(3)
C(4)
2384(4)
8945(6)
2263(6)
42(3)
C(5)
2946(4)
8435(8)
2640(8)
72(4)
C(6)
3292(8)
8702(13)
2141(14)
91(7)
C(7)
3322(7)
8853(13)
3574(11)
107(8)
C(8)
2853(7)
7524(12)
2800(20)
167(17)
C(9)
705(4)
9178(7)
2724(7)
44(3)
C(10)
762(4)
8678(8)
3395(7)
51(3)
164
C(11)
776(5)
8985(9)
4180(8)
64(4)
C(12)
870(4)
7844(7)
3179(8)
50(3)
C(13)
987(6)
7002(9)
3683(8)
78(4)
C(14)
1617(7)
7038(13)
4317(10)
140(8)
C(15)
627(6)
6967(9)
4182(9)
94(5)
C(16)
867(7)
6225(9)
3107(10)
108(6)
C(17)
224(4)
8738(6)
-169(7)
38(3)
C(18)
109(4)
8059(7)
-730(6)
39(3)
C(19)
-300(5)
8096(8)
-1591(8)
56(3)
C(20)
465(4)
7384(7)
-243(6)
38(3)
C(21)
531(4)
6483(6)
-529(6)
48(3)
C(22)
762(8)
6539(10)
-1195(11)
94(7)
C(23)
-93(7)
6057(11)
-1009(12)
95(7)
C(24)
906(8)
5874(10)
227(9)
75(6)
C(101)
2240(14)
110(20)
4840(20)
251(13)
C(102)
2448(16)
1370(30)
4530(30)
300(18)
C(103)
1987(18)
440(30)
3910(30)
317(19)
C(6A)
2864(18)
7670(30)
1880(30)
16(16)
C(7A)
3430(40)
8890(60)
2710(60)
80(30)
C(8A)
2950(20)
7930(40)
3320(30)
34(19)
C(22A)
1220(20)
6400(40)
-310(40)
40(20)
C(23A)
150(20)
6400(30)
-1540(30)
31(19)
C(24A)
500(30)
5880(40)
100(40)
35(19)
N(1)
1885(3)
8572(5)
1975(5)
41(2)
N(2)
1493(3)
9219(5)
1686(4)
35(2)
N(3)
3056(4)
11044(6)
2630(6)
59(3)
N(4)
874(3)
7861(5)
2412(5)
42(2)
N(5)
772(3)
8700(5)
2142(5)
36(2)
N(6)
790(5)
9230(9)
4798(7)
96(4)
N(7)
762(3)
7651(5)
553(5)
34(2)
N(8)
605(3)
8489(5)
588(5)
34(2)
N(9)
-633(5)
8160(8)
-2275(7)
88(4)
O(101)
1745(10)
1090(16)
4593(15)
283(10)
________________________________________________________________________________
165
Table A.47: Anisotropic displacement parameters (Å2x 103) for Ag-1. The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
Ag(1)
38(1)
34(1)
46(1)
6(1)
14(1)
7(1)
B(1)
23(7)
39(7)
36(7)
-1(6)
8(6)
8(6)
C(1)
47(8)
24(7)
42(7)
0(5)
13(6)
-2(6)
C(2)
39(8)
45(8)
36(6)
-1(5)
12(6)
-3(6)
C(3)
52(8)
44(8)
47(7)
-11(6)
18(6)
-9(7)
C(4)
41(8)
31(7)
45(7)
-2(5)
11(6)
3(6)
C(5)
27(7)
67(9)
102(11)
-6(8)
9(7)
1(7)
C(6)
65(12)
129(17)
101(16)
-4(13)
57(12)
20(11)
C(7)
66(12)
118(17)
89(14)
31(12)
-13(11)
11(11)
C(8)
34(11)
36(12)
330(40)
30(18)
-14(16)
19(9)
C(9)
34(6)
48(7)
48(7)
-5(7)
15(6)
-1(5)
C(10)
28(6)
80(10)
43(8)
-6(8)
15(5)
0(6)
C(11)
43(7)
104(11)
49(9)
-11(8)
25(7)
-14(7)
C(12)
39(7)
54(9)
57(8)
17(7)
21(6)
6(6)
C(13)
88(11)
96(11)
71(9)
38(9)
55(9)
22(8)
C(14)
85(13)
230(20)
104(13)
112(14)
40(11)
52(13)
C(15)
122(13)
104(11)
88(10)
17(8)
77(10)
-6(9)
C(16)
183(17)
65(10)
139(14)
42(10)
128(13)
26(10)
C(17)
32(6)
38(7)
40(7)
11(6)
12(6)
15(5)
C(18)
32(6)
47(7)
29(7)
-1(6)
6(6)
4(5)
C(19)
50(8)
70(9)
41(9)
-6(6)
14(8)
7(6)
C(20)
33(6)
49(8)
30(7)
-7(6)
13(6)
-10(6)
C(21)
49(7)
42(7)
52(7)
-11(6)
20(6)
-2(6)
C(22)
149(19)
78(12)
110(16)
-10(10)
108(16)
8(12)
C(23)
65(11)
84(13)
120(16)
-49(11)
26(11)
-25(9)
C(24)
77(15)
58(11)
64(11)
2(8)
8(10)
20(9)
N(1)
30(6)
33(5)
53(5)
-3(4)
11(4)
-6(5)
N(2)
40(6)
26(6)
36(5)
3(4)
14(4)
10(5)
N(3)
48(6)
45(6)
74(7)
-12(5)
15(5)
-12(5)
N(4)
57(6)
39(6)
38(6)
8(4)
28(5)
4(4)
166
N(5)
38(5)
40(6)
34(5)
0(5)
18(4)
6(4)
N(6)
90(9)
149(12)
69(8)
-43(8)
53(7)
-44(8)
N(7)
30(5)
33(6)
37(6)
-3(4)
12(4)
2(4)
N(8)
34(5)
33(6)
34(6)
0(4)
14(5)
3(4)
N(9)
75(8)
104(9)
48(7)
4(6)
-9(7)
13(7)
______________________________________________________________________________
Table A.48: Bond lengths [Å] for Ag-1.
Ag(1)-N(3)#1
2.158(10)
C(12)-N(4)
1.341(13)
Ag(1)-N(7)
2.300(8)
C(12)-C(13)
1.529(16)
Ag(1)-N(1)
2.385(8)
C(13)-C(16)
1.512(18)
Ag(1)-N(4)
2.396(8)
C(13)-C(14)
1.55(2)
B(1)-N(8)
1.538(13)
C(17)-N(8)
1.322(11)
B(1)-N(2)
1.540(13)
C(17)-C(18)
1.379(13)
B(1)-N(5)
1.543(13)
C(18)-C(20)
1.416(13)
C(1)-N(2)
1.322(12)
C(18)-C(19)
1.418(16)
C(1)-C(2)
1.373(13)
C(19)-N(9)
1.137(14)
C(2)-C(3)
1.392(16)
C(20)-N(7)
1.329(11)
C(2)-C(4)
1.412(14)
C(20)-C(21)
1.520(14)
C(3)-N(3)
1.153(13)
C(21)-C(22)
1.526(17)
C(4)-N(1)
1.318(12)
C(21)-C(24)
1.572(18)
C(4)-C(5)
1.550(15)
C(21)-C(23)
1.626(18)
C(5)-C(8)
1.48(2)
C(101)-C(103)
1.55(5)
C(5)-C(6)
1.56(2)
C(101)-O(101)
1.92(4)
C(5)-C(7)
1.63(2)
C(102)-C(103)
1.90(5)
C(9)-N(5)
1.328(12)
C(103)-O(101)
1.87(4)
C(9)-C(10)
1.356(14)
N(1)-N(2)
1.370(10)
C(10)-C(12)
1.409(14)
N(3)-Ag(1)#2
2.158(10)
C(10)-C(11)
1.435(17)
N(4)-N(5)
1.369(10)
C(11)-N(6)
1.128(14)
N(7)-N(8)
1.372(10)
167
Table A.49: Bond angles [°] for Ag-1].
N(3)#1-Ag(1)-N(7)
138.4(3)
C(12)-C(13)-C(15)
109.7(11)
N(3)#1-Ag(1)-N(1)
121.8(3)
C(16)-C(13)-C(14)
110.7(13)
87.8(3)
C(12)-C(13)-C(14)
105.4(11)
123.1(3)
C(15)-C(13)-C(14)
109.3(11)
N(7)-Ag(1)-N(4)
83.9(3)
N(8)-C(17)-C(18)
108.9(8)
N(1)-Ag(1)-N(4)
86.0(3)
C(17)-C(18)-C(20)
104.7(8)
N(8)-B(1)-N(2)
112.1(8)
C(17)-C(18)-C(19)
123.6(10)
N(8)-B(1)-N(5)
113.0(8)
C(20)-C(18)-C(19)
131.7(10)
N(2)-B(1)-N(5)
107.6(7)
N(9)-C(19)-C(18)
177.0(13)
N(2)-C(1)-C(2)
109.1(9)
N(7)-C(20)-C(18)
109.4(8)
C(1)-C(2)-C(3)
125.3(10)
N(7)-C(20)-C(21)
122.0(9)
C(1)-C(2)-C(4)
104.2(9)
C(18)-C(20)-C(21)
128.5(9)
C(3)-C(2)-C(4)
130.5(10)
C(20)-C(21)-C(22)
109.7(9)
N(3)-C(3)-C(2)
177.0(11)
C(20)-C(21)-C(24)
113.3(9)
N(1)-C(4)-C(2)
110.2(9)
C(22)-C(21)-C(24)
111.2(12)
N(1)-C(4)-C(5)
123.1(9)
C(20)-C(21)-C(23)
107.9(9)
C(2)-C(4)-C(5)
126.7(10)
C(22)-C(21)-C(23)
106.2(11)
C(8)-C(5)-C(4)
111.2(10)
C(24)-C(21)-C(23)
108.2(12)
C(8)-C(5)-C(6)
122.7(17)
C(103)-C(101)-O(101)
64(2)
C(4)-C(5)-C(6)
107.9(11)
C(101)-C(103)-O(101)
68(2)
C(8)-C(5)-C(7)
105.7(17)
C(101)-C(103)-C(102)
77(3)
C(4)-C(5)-C(7)
105.9(11)
O(101)-C(103)-C(102)
62.1(18)
C(6)-C(5)-C(7)
101.7(13)
C(4)-N(1)-N(2)
106.6(8)
N(5)-C(9)-C(10)
109.7(10)
C(4)-N(1)-Ag(1)
141.6(7)
C(9)-C(10)-C(12)
104.7(9)
N(2)-N(1)-Ag(1)
111.7(6)
C(9)-C(10)-C(11)
125.4(12)
C(1)-N(2)-N(1)
109.9(8)
C(12)-C(10)-C(11)
129.4(12)
C(1)-N(2)-B(1)
126.5(9)
N(6)-C(11)-C(10)
179.4(14)
N(1)-N(2)-B(1)
123.3(8)
N(4)-C(12)-C(10)
109.7(9)
C(3)-N(3)-Ag(1)#2
167.0(9)
N(4)-C(12)-C(13)
120.2(11)
C(12)-N(4)-N(5)
106.0(8)
C(10)-C(12)-C(13)
130.0(12)
C(12)-N(4)-Ag(1)
133.6(7)
C(16)-C(13)-C(12)
111.5(11)
N(5)-N(4)-Ag(1)
109.5(6)
N(7)-Ag(1)-N(1)
N(3)#1-Ag(1)-N(4)
168
C(9)-N(5)-N(4)
109.8(8)
N(8)-N(7)-Ag(1)
112.1(5)
C(9)-N(5)-B(1)
124.3(9)
C(17)-N(8)-N(7)
110.1(7)
N(4)-N(5)-B(1)
124.5(8)
C(17)-N(8)-B(1)
124.9(8)
C(20)-N(7)-N(8)
106.9(7)
N(7)-N(8)-B(1)
124.9(8)
C(20)-N(7)-Ag(1)
141.0(7)
C(103)-O(101)-C(101)
48.1(15)
Table A.50: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103) for Ag-2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
C(44)
10000
Ag(1)
5000
Ag(2)
9160(40)
720(50)
320(40)
10797(1)
1028(1)
48(1)
7050(1)
9226(1)
4211(1)
52(1)
N(8)
7013(3)
8122(6)
4947(5)
55(3)
N(11)
7047(3)
10056(5)
5232(5)
42(2)
N(12)
6844(4)
12013(7)
6968(6)
64(3)
N(10)
7298(3)
9752(5)
5757(5)
46(2)
N(7)
7262(3)
8232(6)
5560(4)
48(2)
N(6)
6646(3)
9381(6)
3285(5)
53(3)
C(16)
7218(3)
7587(6)
5982(6)
45(3)
C(19)
6824(4)
7421(7)
4999(6)
51(3)
C(17)
6933(4)
7050(7)
5663(6)
53(3)
C(27)
6865(4)
10725(6)
5469(5)
37(2)
C(25)
7006(4)
10851(7)
6153(5)
47(3)
C(26)
6918(4)
11525(7)
6609(6)
41(3)
C(24)
7279(4)
10222(7)
6295(6)
47(3)
N(14)
7810(3)
9105(6)
4424(5)
56(3)
N(13)
7905(3)
9033(5)
5106(5)
39(2)
C(35)
8195(4)
9095(6)
4073(7)
55(3)
C(36)
8202(5)
9106(9)
3278(7)
62(4)
C(10)
6368(4)
9461(7)
2888(6)
50(3)
C(9)
6029(3)
9550(7)
2421(5)
42(3)
169
C(13)
6542(4)
11141(7)
2332(7)
57(3)
C(14)
5775(5)
11722(7)
2298(7)
74(4)
C(12)
6111(4)
11070(7)
1952(7)
50(3)
C(11)
5892(4)
10252(7)
2037(5)
43(3)
C(8)
5717(3)
8975(7)
2263(5)
41(3)
N(5)
5524(3)
10091(6)
1687(5)
39(2)
N(4)
5417(3)
9311(5)
1834(4)
42(2)
C(7)
4599(5)
10615(7)
-742(8)
76(4)
C(5)
5000
10121(11)
-832(10)
60(5)
C(2)
5000
8629(14)
-361(9)
58(5)
C(18)
6781(4)
6289(9)
5952(7)
57(3)
C(4)
5000
9440(13)
-299(9)
52(5)
C(1)
5000
8315(12)
321(8)
53(4)
C(22)
6125(5)
7675(9)
4402(9)
104(6)
C(28)
6569(4)
11284(6)
5019(6)
49(3)
C(23)
6779(5)
7144(9)
3748(8)
81(4)
C(39)
7871(8)
8467(14)
2986(9)
102(9)
C(20)
6519(4)
7119(7)
4441(6)
61(3)
C(21)
6382(6)
6254(8)
4540(8)
98(6)
C(29)
6282(9)
11870(18)
5435(11)
108(11)
C(32)
8348(5)
9032(8)
5175(7)
62(4)
C(33)
8540(4)
9008(8)
4550(7)
58(3)
C(30)
6219(8)
10731(10)
4687(15)
101(11)
N(1)
5000
8918(8)
742(6)
42(3)
N(9)
6678(4)
5707(8)
6215(6)
75(3)
N(2)
5000
9644(10)
368(7)
53(4)
B(2)
7560(5)
8963(8)
5683(8)
55(4)
B(1)
5000
8920(11)
1531(9)
41(4)
C(15)
6174(4)
1213(6)
64(4)
C(6)
5000
9761(13)
-1547(11)
84(7)
C(34)
8977(4)
8943(8)
4425(7)
63(4)
N(15)
9348(5)
8882(9)
4339(8)
102(4)
C(31)
6871(7)
11728(15)
4492(13)
100(10)
11270(9)
Ag(3)
10000
9649(3)
3782(2)
76(1)
Ag(4)
10000
8998(3)
3873(3)
111(2)
170
C(3)
5000
8100(15)
-934(14)
88(7)
N(3)
5000
7645(13)
-1443(11)
103(7)
C(38)
7999(8)
9927(14)
3043(9)
88(8)
C(37)
8653(7)
9061(19)
2999(11)
113(12)
C(30A)
6519(11)
10940(17)
4254(19)
19(10)
C(29A)
6147(11)
11310(20)
5326(18)
16(10)
C(31A)
6825(14)
12100(20)
4990(20)
34(12)
C(37A)
8511(16)
8320(30)
3050(20)
34(14)
C(38A)
8428(16)
9810(30)
3000(20)
35(15)
N(16)
5000
12110(14)
806(12)
C(39A)
7730(20)
9170(40)
2960(30)
55(18)
120(7)
C(43)
10000
9258(11)
1518(11)
60(5)
C(41)
10000
8526(18)
1774(17)
118(9)
C(40)
10000
8470(20)
2460(20)
145(11)
N(18)
10000
9304(16)
2672(17)
147(10)
C(42)
10000
7750(20)
1420(20)
163(14)
N(17)
10000
9740(20)
2020(20)
182(13)
________________________________________________________________________________
Table A.51: Anisotropic displacement parameters (Å2x 103)for Ag-2. The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
Ag(1)
41(1)
68(1)
35(1)
15(1)
0
0
Ag(2)
48(1)
68(1)
40(1)
0(1)
-13(1)
12(1)
N(8)
47(6)
59(7)
59(7)
-11(5)
-5(5)
15(5)
N(11)
43(5)
53(5)
30(5)
-9(4)
-5(4)
11(5)
N(12)
91(8)
56(6)
46(6)
-7(6)
7(6)
-13(6)
N(10)
42(6)
59(6)
37(5)
7(5)
-6(4)
-4(5)
N(7)
40(5)
71(6)
32(5)
7(5)
-10(4)
22(5)
N(6)
42(6)
66(7)
51(6)
0(5)
-15(5)
9(5)
C(16)
42(6)
48(6)
43(6)
2(6)
-6(6)
16(5)
C(19)
71(8)
43(7)
40(7)
0(5)
-15(6)
19(6)
171
C(17)
58(8)
61(8)
39(7)
11(6)
7(6)
23(6)
C(27)
35(6)
41(6)
36(6)
2(5)
-6(5)
-3(5)
C(25)
50(7)
60(7)
30(6)
-3(5)
7(5)
-24(6)
C(26)
45(7)
39(6)
40(7)
0(5)
-5(5)
-6(5)
C(24)
52(7)
56(7)
33(6)
0(6)
0(5)
-6(6)
N(14)
45(6)
89(7)
34(5)
-12(5)
-4(4)
26(5)
N(13)
27(5)
53(5)
38(5)
-9(4)
-5(4)
11(4)
C(35)
52(7)
48(7)
64(9)
-29(6)
-13(6)
11(5)
C(36)
63(9)
76(10)
47(8)
0(7)
0(7)
-2(8)
C(10)
46(7)
68(8)
36(6)
-10(6)
-10(6)
17(6)
C(9)
35(6)
63(7)
29(6)
1(5)
6(5)
15(5)
C(13)
49(8)
62(7)
61(8)
8(7)
-10(6)
-17(6)
C(14)
95(11)
65(8)
63(9)
20(7)
19(8)
-14(7)
C(12)
41(7)
51(7)
58(8)
20(6)
-8(6)
-12(6)
C(11)
47(7)
58(7)
25(6)
0(5)
1(5)
4(5)
C(8)
34(6)
59(6)
30(6)
8(5)
1(5)
9(5)
N(5)
34(5)
64(6)
20(4)
16(4)
6(4)
1(5)
N(4)
45(5)
58(6)
24(4)
6(4)
4(4)
-4(4)
C(7)
90(10)
86(10)
51(8)
13(8)
21(9)
12(7)
C(5)
18(7)
117(14)
43(10)
34(12)
0
0
C(2)
43(10)
100(16)
31(10)
2(10)
0
0
C(18)
41(7)
76(9)
54(8)
1(7)
-4(6)
3(6)
C(4)
27(9)
99(16)
30(10)
18(9)
0
0
C(1)
41(10)
89(13)
30(9)
13(9)
0
0
C(22)
95(12)
99(11)
117(16)
-40(10)
-57(11)
34(9)
C(28)
57(8)
47(6)
44(7)
2(6)
-3(6)
9(6)
C(23)
103(12)
77(10)
62(9)
-9(8)
27(9)
-7(9)
C(39)
160(20)
107(18)
39(10)
-55(11)
16(12)
-43(16)
C(20)
77(9)
63(8)
44(7)
-9(6)
-17(6)
5(7)
C(21)
150(16)
47(8)
96(12)
-10(8)
-39(11)
-12(9)
C(29)
130(20)
140(20)
59(13)
-10(14)
0(12)
100(20)
C(32)
62(9)
67(8)
58(9)
6(6)
-29(7)
-1(7)
C(33)
46(8)
78(9)
50(8)
-21(6)
-12(6)
11(6)
C(30)
89(18)
48(11)
170(30)
-5(12)
-93(18)
-1(10)
N(1)
32(7)
65(8)
29(7)
3(7)
0
0
172
N(9)
62(8)
95(9)
66(8)
2(7)
3(6)
-6(6)
N(2)
22(7)
102(11)
33(8)
15(8)
0
0
B(2)
64(10)
49(8)
52(9)
8(7)
-22(8)
8(7)
B(1)
34(10)
40(9)
49(11)
13(8)
0
0
C(15)
58(8)
105(11)
28(6)
12(7)
-5(6)
-27(7)
C(6)
110(18)
84(16)
57(14)
15(12)
0
0
C(34)
29(7)
89(9)
72(10)
-32(7)
-6(6)
6(6)
N(15)
76(10)
126(11)
105(12)
-26(10)
-2(9)
1(8)
C(31)
98(16)
103(17)
100(20)
81(16)
-13(13)
-37(13)
Ag(3)
59(2)
107(3)
61(2)
-31(2)
0
0
Ag(4)
55(2)
107(3)
172(5)
47(3)
0
0
C(3)
77(14)
106(17)
81(19)
54(16)
0
0
N(3)
131(18)
121(17)
59(12)
-10(12)
0
0
C(38)
120(20)
103(16)
39(10)
-19(10)
-12(10)
30(14)
C(37)
55(12)
230(40)
58(13)
-26(16)
20(10)
6(15)
______________________________________________________________________________
Table A.52: Bond lengths [Å] for Ag-2.
C(44)-C(43)
1.55(9)
N(10)-B(2)
1.537(17)
Ag(1)-N(16)
2.22(2)
N(7)-C(16)
1.352(13)
Ag(1)-N(2)
2.298(16)
N(7)-B(2)
1.530(17)
Ag(1)-N(5)
2.352(8)
N(6)-C(10)
1.149(13)
Ag(1)-N(5)#1
2.352(8)
C(16)-C(17)
1.387(16)
Ag(2)-N(6)
2.188(10)
C(16)-H(16)
0.9300
Ag(2)-N(8)
2.321(11)
C(19)-C(17)
1.463(15)
Ag(2)-N(14)
2.349(10)
C(19)-C(20)
1.509(17)
Ag(2)-N(11)
2.409(9)
C(17)-C(18)
1.455(18)
N(8)-C(19)
1.299(15)
C(27)-C(25)
1.410(15)
N(8)-N(7)
1.419(13)
C(27)-C(28)
1.556(15)
N(11)-C(27)
1.320(13)
C(25)-C(24)
1.359(16)
N(11)-N(10)
1.368(12)
C(25)-C(26)
1.449(16)
N(12)-C(26)
1.089(13)
C(24)-H(24)
0.9300
N(10)-C(24)
1.302(13)
N(14)-C(35)
1.352(15)
173
N(14)-N(13)
1.358(13)
C(2)-C(1)
1.42(2)
N(13)-C(32)
1.351(15)
C(18)-N(9)
1.134(15)
N(13)-B(2)
1.535(18)
C(4)-N(2)
1.33(2)
C(35)-C(33)
1.403(16)
C(1)-N(1)
1.29(2)
C(35)-C(36)
1.541(19)
C(1)-H(1)
0.9300
C(36)-C(37)
1.47(2)
C(22)-C(20)
1.511(18)
C(36)-C(38)
1.56(3)
C(22)-H(22A)
0.9600
C(36)-C(39)
1.56(2)
C(22)-H(22B)
0.9600
C(10)-C(9)
1.377(15)
C(22)-H(22C)
0.9600
C(9)-C(8)
1.377(16)
C(28)-C(29)
1.53(2)
C(9)-C(11)
1.442(15)
C(28)-C(30)
1.54(2)
C(13)-C(12)
1.505(16)
C(28)-C(31)
1.56(2)
C(13)-H(13A)
0.9600
C(23)-C(20)
1.559(18)
C(13)-H(13B)
0.9600
C(23)-H(23A)
0.9600
C(13)-H(13C)
0.9600
C(23)-H(23B)
0.9600
C(14)-C(12)
1.629(18)
C(23)-H(23C)
0.9600
C(14)-H(14A)
0.9600
C(20)-C(21)
1.503(19)
C(14)-H(14B)
0.9600
C(21)-H(21A)
0.9600
C(14)-H(14C)
0.9600
C(21)-H(21B)
0.9600
C(12)-C(15)
1.482(16)
C(21)-H(21C)
0.9600
C(12)-C(11)
1.519(16)
C(32)-C(33)
1.345(18)
C(11)-N(5)
1.331(13)
C(32)-H(32)
0.9300
C(8)-N(4)
1.352(13)
C(33)-C(34)
1.352(18)
C(8)-H(8)
0.9300
N(1)-N(2)
1.405(19)
N(5)-N(4)
1.363(12)
N(1)-B(1)
1.53(2)
N(4)-B(1)
1.537(14)
B(2)-H(2)
0.9800
C(7)-C(5)
1.477(17)
B(1)-N(4)#1
1.537(14)
C(7)-H(7A)
0.9600
B(1)-H(1A)
0.9800
C(7)-H(7B)
0.9600
C(15)-H(15A)
0.9600
C(7)-H(7C)
0.9600
C(15)-H(15B)
0.9600
C(5)-C(7)#1
1.477(17)
C(15)-H(15C)
0.9600
C(5)-C(6)
1.51(3)
C(6)-H(6A)
0.9646
C(5)-C(4)
1.53(2)
C(6)-H(6B)
0.9647
C(2)-C(4)
1.35(3)
C(6)-H(6C)
0.9646
C(2)-C(3)
1.41(3)
C(34)-N(15)
1.143(16)
174
N(15)-Ag(4)
2.183(15)
N(16)-C(42)#3
1.59(4)
N(15)-Ag(3)
2.587(16)
C(43)-N(17)
1.26(4)
Ag(3)-Ag(4)
1.092(5)
C(43)-C(41)
1.31(3)
Ag(3)-N(18)
2.22(3)
C(41)-C(40)
1.33(4)
Ag(3)-N(15)#2
2.587(16)
C(41)-C(42)
1.46(4)
Ag(4)-N(15)#2
2.183(15)
C(40)-N(18)
1.45(4)
Ag(4)-N(18)
2.38(3)
N(18)-N(17)
1.45(4)
C(3)-N(3)
1.24(3)
C(42)-N(16)#4
1.59(4)
Table A.53: Bond angles [°] for Ag-2.
N(16)-Ag(1)-N(2)
135.1(7)
C(16)-N(7)-B(2)
126.1(9)
N(16)-Ag(1)-N(5)
126.4(4)
N(8)-N(7)-B(2)
123.1(9)
N(2)-Ag(1)-N(5)
83.6(4)
C(10)-N(6)-Ag(2)
166.8(10)
N(16)-Ag(1)-N(5)#1
126.4(4)
N(7)-C(16)-C(17)
107.4(10)
N(2)-Ag(1)-N(5)#1
83.6(4)
N(7)-C(16)-H(16)
126.3
N(5)-Ag(1)-N(5)#1
85.1(4)
C(17)-C(16)-H(16)
126.3
N(6)-Ag(2)-N(8)
124.7(4)
N(8)-C(19)-C(17)
110.1(11)
N(6)-Ag(2)-N(14)
134.7(4)
N(8)-C(19)-C(20)
120.8(10)
N(8)-Ag(2)-N(14)
82.7(3)
C(17)-C(19)-C(20)
129.0(12)
N(6)-Ag(2)-N(11)
127.1(3)
C(16)-C(17)-C(18)
125.6(11)
N(8)-Ag(2)-N(11)
86.9(3)
C(16)-C(17)-C(19)
105.3(11)
N(14)-Ag(2)-N(11)
84.8(3)
C(18)-C(17)-C(19)
129.1(12)
C(19)-N(8)-N(7)
106.5(10)
N(11)-C(27)-C(25)
108.9(10)
C(19)-N(8)-Ag(2)
140.7(8)
N(11)-C(27)-C(28)
123.1(9)
N(7)-N(8)-Ag(2)
112.8(7)
C(25)-C(27)-C(28)
127.9(10)
C(27)-N(11)-N(10)
106.5(9)
C(24)-C(25)-C(27)
105.2(10)
C(27)-N(11)-Ag(2)
140.1(7)
C(24)-C(25)-C(26)
125.5(10)
N(10)-N(11)-Ag(2)
113.4(6)
C(27)-C(25)-C(26)
129.2(11)
C(24)-N(10)-N(11)
110.5(9)
N(12)-C(26)-C(25)
177.3(13)
C(24)-N(10)-B(2)
127.3(10)
N(10)-C(24)-C(25)
108.9(10)
N(11)-N(10)-B(2)
122.2(9)
N(10)-C(24)-H(24)
125.5
C(16)-N(7)-N(8)
110.6(9)
C(25)-C(24)-H(24)
125.5
175
C(35)-N(14)-N(13)
107.7(9)
C(8)-N(4)-B(1)
128.0(11)
C(35)-N(14)-Ag(2)
139.6(8)
N(5)-N(4)-B(1)
121.0(10)
N(13)-N(14)-Ag(2)
112.7(7)
C(7)-C(5)-C(7)#1
111.0(17)
C(32)-N(13)-N(14)
108.0(10)
C(7)-C(5)-C(6)
109.1(11)
C(32)-N(13)-B(2)
127.2(10)
C(7)#1-C(5)-C(6)
109.1(11)
N(14)-N(13)-B(2)
124.8(9)
C(7)-C(5)-C(4)
109.2(10)
N(14)-C(35)-C(33)
108.3(11)
C(7)#1-C(5)-C(4)
109.2(10)
N(14)-C(35)-C(36)
120.8(11)
C(6)-C(5)-C(4)
109.2(17)
C(33)-C(35)-C(36)
130.6(12)
C(4)-C(2)-C(3)
133.5(17)
C(37)-C(36)-C(35)
112.2(14)
C(4)-C(2)-C(1)
106.3(17)
C(37)-C(36)-C(38)
107.7(17)
C(3)-C(2)-C(1)
120.2(19)
C(35)-C(36)-C(38)
107.3(11)
N(9)-C(18)-C(17)
175.5(14)
C(37)-C(36)-C(39)
115.4(16)
N(2)-C(4)-C(2)
109.8(15)
C(35)-C(36)-C(39)
110.2(12)
N(2)-C(4)-C(5)
117.9(18)
C(38)-C(36)-C(39)
103.4(16)
C(2)-C(4)-C(5)
132.3(17)
N(6)-C(10)-C(9)
178.9(14)
N(1)-C(1)-C(2)
107.7(17)
C(8)-C(9)-C(10)
125.8(10)
N(1)-C(1)-H(1)
126.1
C(8)-C(9)-C(11)
104.1(9)
C(2)-C(1)-H(1)
126.2
C(10)-C(9)-C(11)
129.9(11)
C(29)-C(28)-C(30)
101.7(17)
C(15)-C(12)-C(13)
110.0(10)
C(29)-C(28)-C(31)
112.4(17)
C(15)-C(12)-C(11)
111.2(10)
C(30)-C(28)-C(31)
114.3(17)
C(13)-C(12)-C(11)
113.3(9)
C(29)-C(28)-C(27)
114.2(11)
C(15)-C(12)-C(14)
109.3(10)
C(30)-C(28)-C(27)
106.0(10)
C(13)-C(12)-C(14)
106.9(11)
C(31)-C(28)-C(27)
108.1(11)
C(11)-C(12)-C(14)
105.9(9)
C(21)-C(20)-C(19)
113.2(11)
N(5)-C(11)-C(9)
110.1(10)
C(21)-C(20)-C(22)
111.7(13)
N(5)-C(11)-C(12)
119.3(9)
C(19)-C(20)-C(22)
108.6(10)
C(9)-C(11)-C(12)
130.5(10)
C(21)-C(20)-C(23)
105.9(11)
N(4)-C(8)-C(9)
108.4(10)
C(19)-C(20)-C(23)
107.3(11)
N(4)-C(8)-H(8)
125.8
C(22)-C(20)-C(23)
109.9(12)
C(9)-C(8)-H(8)
125.8
C(33)-C(32)-N(13)
109.9(12)
C(11)-N(5)-N(4)
106.5(8)
C(33)-C(32)-H(32)
125.1
C(11)-N(5)-Ag(1)
138.0(8)
N(13)-C(32)-H(32)
125.0
N(4)-N(5)-Ag(1)
115.0(6)
C(32)-C(33)-C(34)
126.0(12)
C(8)-N(4)-N(5)
110.9(9)
C(32)-C(33)-C(35)
105.6(11)
176
C(34)-C(33)-C(35)
128.3(13)
Ag(4)-Ag(3)-N(15)#2
56.5(4)
C(1)-N(1)-N(2)
109.7(13)
N(18)-Ag(3)-N(15)#2
106.1(6)
C(1)-N(1)-B(1)
129.4(14)
N(15)-Ag(3)-N(15)#2
99.7(7)
N(2)-N(1)-B(1)
120.9(14)
Ag(3)-Ag(4)-N(15)
98.8(4)
C(4)-N(2)-N(1)
106.4(15)
Ag(3)-Ag(4)-N(15)#2
98.8(4)
C(4)-N(2)-Ag(1)
138.4(13)
N(15)-Ag(4)-N(15)#2
129.9(9)
N(1)-N(2)-Ag(1)
115.1(9)
Ag(3)-Ag(4)-N(18)
68.4(7)
N(7)-B(2)-N(13)
110.5(10)
N(15)-Ag(4)-N(18)
115.0(4)
N(7)-B(2)-N(10)
112.4(10)
N(15)#2-Ag(4)-N(18)
115.0(4)
N(13)-B(2)-N(10)
110.9(10)
N(3)-C(3)-C(2)
179(2)
N(7)-B(2)-H(2)
107.6
C(42)#3-N(16)-Ag(1)
120.6(18)
N(13)-B(2)-H(2)
107.6
N(17)-C(43)-C(41)
107(3)
N(10)-B(2)-H(2)
107.6
N(17)-C(43)-C(44)
147(3)
N(1)-B(1)-N(4)
112.5(8)
C(41)-C(43)-C(44)
106(3)
N(1)-B(1)-N(4)#1
112.5(8)
C(43)-C(41)-C(40)
117(3)
N(4)-B(1)-N(4)#1
110.8(13)
C(43)-C(41)-C(42)
130(3)
N(1)-B(1)-H(1A)
106.9
C(40)-C(41)-C(42)
114(3)
N(4)-B(1)-H(1A)
106.9
C(41)-C(40)-N(18)
102(3)
N(4)#1-B(1)-H(1A)
106.9
C(40)-N(18)-N(17)
103(3)
N(15)-C(34)-C(33)
178.0(17)
C(40)-N(18)-Ag(3)
121(2)
C(34)-N(15)-Ag(4)
160.9(15)
N(17)-N(18)-Ag(3)
136(2)
C(34)-N(15)-Ag(3)
140.4(14)
C(40)-N(18)-Ag(4)
94(2)
Ag(4)-N(15)-Ag(3)
24.7(2)
N(17)-N(18)-Ag(4)
163(2)
Ag(4)-Ag(3)-N(18)
84.4(8)
Ag(3)-N(18)-Ag(4)
Ag(4)-Ag(3)-N(15)
56.5(4)
C(41)-C(42)-N(16)#4
160(3)
N(18)-Ag(3)-N(15)
106.1(6)
C(43)-N(17)-N(18)
111(3)
177
27.2(4)
Table A.54: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103) for Ag-3. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
Ag(1)
3084(1)
4543(1)
1520(1)
44(1)
Ag(2)
4384(1)
8701(1)
3453(1)
83(1)
B(1)
2504(7)
2912(7)
1007(5)
35(3)
B(2)
5534(12)
6606(12)
3693(9)
95(6)
C(1)
2392(8)
2102(8)
200(6)
57(3)
C(2)
1846(8)
1489(8)
135(5)
57(3)
C(3)
1777(11)
1208(9)
-372(7)
84(4)
C(4)
1313(8)
1222(7)
702(7)
64(4)
C(5)
533(9)
553(8)
951(8)
87(5)
C(6)
-416(9)
945(10)
651(9)
122(7)
C(7)
1097(10)
727(7)
89(5)
C(8)
252(10)
1610(7)
93(5)
-357(8)
421(10)
C(9)
2836(8)
1652(7)
1947(5)
51(3)
C(10)
3223(10)
1597(8)
2449(5)
69(3)
C(11)
3455(14)
2845(6)
94(5)
C(12)
3345(11)
2472(8)
2440(5)
73(4)
C(13)
3770(20)
2846(10)
2869(9)
150(10)
C(14)
2833(18)
3536(12)
3167(7)
146(8)
C(15)
4727(14)
3287(12)
2494(9)
133(8)
C(16)
4230(30)
1994(14)
3319(11)
350(30)
C(17)
683(6)
3748(7)
824(4)
46(3)
C(18)
104(6)
4589(7)
848(4)
41(2)
C(19)
-898(8)
4857(8)
694(5)
56(3)
C(20)
708(6)
5071(7)
1034(4)
42(2)
C(21)
450(7)
6046(8)
1110(5)
59(3)
C(22)
-560(11)
6201(11)
1521(9)
137(8)
C(23)
1267(9)
6355(9)
1318(8)
103(6)
6658(9)
484(7)
100(5)
C(24)
252(12)
764(10)
C(25)
6343(7)
6157(7)
-152(4)
41(2)
C(26)
5280(6)
6264(7)
46(4)
39(2)
178
C(27)
4778(6)
5690(7)
516(5)
39(2)
C(28)
4839(7)
7030(7)
-362(5)
48(3)
C(29)
3726(7)
7403(8)
-391(6)
63(3)
C(30)
3637(9)
8220(11)
-909(7)
114(6)
C(31)
3257(9)
7724(9)
180(7)
88(4)
C(32)
3208(8)
6644(9)
-497(6)
78(4)
C(33)
4541(9)
6027(8)
3082(6)
69(4)
C(34)
3788(9)
6378(8)
2745(5)
64(3)
C(35)
3367(9)
5875(8)
2426(6)
67(3)
C(36)
3535(11)
7307(9)
2758(6)
78(4)
C(37)
2712(17)
8079(12)
2461(9)
137(8)
C(38)
3240(19)
8893(13)
2133(12)
201(13)
C(39)
2000(20)
8537(17)
2967(11)
221(16)
C(40)
2307(19)
7816(13)
2031(12)
221(15)
C(41)
5092(11)
6345(9)
4801(8)
85(5)
C(42)
4525(12)
6797(9)
5230(7)
86(5)
C(43)
4427(17)
6408(11)
5853(10)
133(8)
C(44)
4171(9)
7663(8)
4903(6)
63(3)
C(45)
3528(12)
8490(10)
5135(7)
94(5)
C(46)
2720(30)
8220(20)
5738(12)
390(30)
C(47)
4220(20)
9126(19)
5047(19)
340(30)
C(48)
2630(30)
8810(20)
4810(13)
350(30)
C(49)
7320(20)
6870(20)
3234(15)
226(16)
C(50)
7679(18)
7760(30)
2947(13)
229(17)
N(1)
1523(6)
1646(6)
1091(4)
52(2)
N(2)
2227(6)
2181(6)
757(4)
46(2)
N(3)
1733(12)
-799(6)
130(5)
N(4)
3073(7)
3023(6)
1949(4)
60(3)
N(5)
2727(5)
2509(5)
1652(3)
40(2)
N(6)
3649(14)
87(9)
3147(6)
125(6)
N(7)
1629(5)
4529(5)
1104(3)
40(2)
N(8)
1606(5)
3722(5)
974(3)
35(2)
N(9)
-1733(6)
5072(7)
579(5)
77(3)
N(10)
5574(6)
7358(5)
-767(4)
48(2)
N(11)
6504(5)
6815(5)
-638(4)
38(2)
974(10)
179
N(12)
4349(6)
5234(6)
886(4)
52(2)
N(13)
4108(9)
7493(7)
3094(5)
79(3)
N(14)
4729(7)
6685(7)
3286(5)
73(3)
N(15)
3078(8)
5450(7)
2179(5)
76(3)
N(16)
4473(7)
7683(6)
4338(4)
54(2)
N(17)
5037(7)
6852(7)
4292(5)
65(3)
N(18)
4300(20)
6092(13)
6359(8)
222(12)
N(19)
6085(13)
8087(15)
3256(8)
133(7)
N(20)
6324(9)
7194(14)
3373(8)
122(6)
N(21)
9720(30)
7660(40)
2620(50)
1190(110)
C(55)
6550(30)
9964(18)
3233(10)
210(13)
C(51)
8660(50)
7760(60)
2500(50)
890(100)
C(54)
7610(40)
9820(30)
2180(20)
370(30)
C(53)
6770(30)
9570(30)
2620(20)
310(30)
C(52)
6820(30)
8460(30)
2989(14)
211(15)
C(56)
6010(60)
9780(50)
2160(30)
530(60)
________________________________________________________________________________
Table A.55: Anisotropic displacement parameters (Å2x 103) for Ag-3 The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
Ag(1)
50(1)
34(1)
52(1)
-6(1)
-15(1)
-15(1)
Ag(2)
154(1)
45(1)
61(1)
4(1)
-39(1)
-39(1)
B(1)
42(5)
29(6)
36(7)
2(5)
-10(5)
-16(5)
B(2)
74(10)
80(12)
160(19)
-65(13)
-49(11)
2(9)
C(1)
61(6)
53(8)
62(9)
-10(6)
-15(6)
-20(5)
C(2)
66(7)
66(8)
52(8)
-26(7)
-11(6)
-20(6)
C(3)
111(10)
68(10)
94(11)
-30(9)
-29(9)
-30(8)
C(4)
51(6)
39(7)
115(12)
-25(7)
-39(7)
-1(5)
C(5)
61(7)
51(8)
168(16)
-24(9)
-46(9)
-23(6)
C(6)
62(8)
75(11)
240(20)
-21(12)
-63(10)
-13(7)
C(7)
88(8)
44(8)
150(14)
-23(9)
-41(9)
-17(7)
C(8)
93(9)
103(12)
91(12)
-20(10)
9(8)
-58(9)
180
C(9)
75(7)
31(6)
54(7)
-9(6)
-16(6)
-15(5)
C(10)
118(10)
50(8)
48(8)
4(6)
-40(7)
-28(7)
C(11)
192(16)
45(9)
57(9)
9(7)
-51(10)
-42(10)
C(12)
150(11)
38(7)
46(8)
7(6)
-53(8)
-33(7)
C(13)
330(30)
44(10)
113(15)
33(10)
-131(18)
-72(15)
C(14)
290(30)
88(14)
81(13)
-32(11)
-17(14)
-75(16)
C(15)
183(17)
82(12)
180(19)
-45(13)
-143(16)
2(12)
C(16)
830(70)
114(17)
240(30)
88(17)
-400(40)
-200(30)
C(17)
38(5)
50(7)
52(7)
-7(6)
-11(5)
-13(5)
C(18)
33(4)
44(6)
44(6)
5(5)
-7(4)
-12(4)
C(19)
58(6)
55(8)
52(7)
5(6)
-19(5)
-12(5)
C(20)
38(5)
40(6)
45(7)
-4(5)
-7(4)
-7(4)
C(21)
35(5)
55(8)
87(9)
-22(7)
-10(5)
3(5)
C(22)
89(11)
102(14)
240(20)
-103(15)
-5(12)
-1(9)
C(23)
66(7)
52(9)
210(18)
-56(10)
-36(9)
-1(6)
C(24)
142(13)
38(8)
118(14)
3(8)
-54(11)
-1(8)
C(25)
42(5)
38(6)
46(7)
-2(5)
-19(5)
-10(4)
C(26)
38(5)
39(6)
46(7)
-12(5)
-12(5)
-12(4)
C(27)
30(4)
48(7)
41(7)
-11(6)
-3(5)
-15(5)
C(28)
37(5)
45(7)
61(8)
-4(6)
-7(5)
-14(5)
C(29)
33(5)
57(8)
81(9)
4(7)
-3(6)
4(5)
C(30)
54(7)
107(13)
141(15)
37(11)
-27(8)
11(7)
C(31)
62(7)
63(9)
123(13)
-21(9)
3(8)
9(6)
C(32)
44(6)
88(10)
104(11)
-8(8)
-29(6)
-9(6)
C(33)
75(7)
56(8)
89(10)
-40(8)
-27(7)
2(6)
C(34)
91(8)
54(8)
59(8)
-25(7)
-19(7)
-12(6)
C(35)
72(7)
54(8)
82(10)
-35(8)
-7(7)
-5(6)
C(36)
113(10)
54(9)
76(10)
-12(7)
-31(8)
-21(7)
C(37)
209(19)
90(14)
140(16)
-19(13)
-127(16)
2(14)
C(38)
240(20)
79(15)
290(30)
82(18)
-130(20)
-71(16)
C(39)
270(30)
180(30)
170(20)
-80(20)
-70(20)
130(20)
C(40)
310(30)
75(14)
340(40)
-45(18)
-260(30)
24(15)
C(41)
121(11)
40(8)
117(13)
-23(9)
-80(10)
-3(7)
C(42)
155(13)
56(9)
65(10)
26(8)
-72(10)
-49(9)
C(43)
240(20)
63(11)
138(19)
15(12)
-115(17)
-65(12)
181
C(44)
88(8)
38(7)
69(9)
6(7)
-42(7)
-14(6)
C(45)
129(12)
66(10)
85(11)
-19(9)
-24(10)
-6(9)
C(46)
550(70)
240(30)
130(20)
40(20)
130(30)
200(40)
C(47)
280(30)
180(30)
620(70)
-290(40)
120(40)
-130(30)
C(48)
410(50)
360(40)
260(30)
-230(30)
-260(40)
330(40)
C(49)
150(20)
280(30)
350(40)
-240(30)
-40(20)
-60(20)
C(50)
138(17)
340(40)
300(40)
-240(30)
60(20)
-150(20)
N(1)
52(5)
50(6)
65(6)
-14(5)
-17(4)
-20(4)
N(2)
49(4)
47(6)
48(6)
-8(5)
-11(4)
-21(4)
N(3)
200(15)
121(13)
108(11)
-45(10)
-47(10)
-68(11)
N(4)
107(7)
30(5)
58(6)
-5(5)
-38(6)
-24(5)
N(5)
50(4)
28(5)
45(5)
-3(4)
-13(4)
-11(4)
N(6)
260(18)
53(8)
85(10)
19(7)
-88(11)
-58(10)
N(7)
32(4)
38(5)
53(6)
-10(4)
-10(4)
-5(3)
N(8)
32(4)
30(5)
49(5)
-12(4)
-12(3)
-9(3)
N(9)
42(5)
101(9)
87(8)
0(6)
-29(5)
-11(5)
N(10)
41(4)
41(5)
59(6)
4(4)
-19(4)
-6(4)
N(11)
38(4)
29(5)
50(6)
-6(4)
-17(4)
-7(3)
N(12)
46(5)
59(6)
56(6)
-8(5)
-9(4)
-21(4)
N(13)
118(8)
51(7)
87(8)
-15(6)
-52(7)
-20(6)
N(14)
76(6)
64(7)
92(8)
-37(7)
-27(6)
-6(5)
N(15)
99(7)
62(7)
83(8)
-38(7)
-28(6)
-8(6)
N(16)
76(6)
35(6)
47(6)
-3(5)
-18(5)
-3(4)
N(17)
84(6)
43(6)
79(8)
-17(6)
-44(6)
1(5)
N(18)
480(40)
134(16)
108(14)
64(12)
-177(19)
-160(20)
N(19)
116(12)
190(20)
121(13)
-65(14)
36(10)
-106(14)
N(20)
56(7)
169(17)
176(15)
-123(14)
3(8)
-18(9)
N(21)
400(50)
900(120)
2000(300)
-400(140)
880(110)
-400(70)
C(55)
370(40)
190(30)
103(17)
-87(18)
20(20)
-120(30)
C(51)
370(60)
810(160)
1400(200)
-400(150)
620(110)
-400(90)
C(54)
440(70)
300(50)
300(50)
-80(40)
200(50)
-120(50)
C(53)
270(40)
240(40)
380(60)
-50(40)
160(40)
-190(40)
C(52)
220(30)
270(40)
180(30)
-200(30)
-10(20)
30(30)
C(56)
580(120)
460(90)
590(110)
200(70)
-400(100)
-240(80)
_________________________________________________________________________________
182
Table A.56: Bond lengths [Å] for Ag-3.
Ag(1)-N(12)
2.302(10)
C(7)-H(7C)
0.9600
Ag(1)-N(4)
2.324(9)
C(8)-H(8A)
0.9600
Ag(1)-N(15)
2.314(10)
C(8)-H(8B)
0.9600
Ag(1)-N(7)
2.363(7)
C(8)-H(8C)
0.9600
Ag(2)-N(6)#1
2.164(14)
C(9)-N(5)
1.330(12)
Ag(2)-N(19)
2.276(19)
C(9)-C(10)
1.359(14)
Ag(2)-N(16)
2.299(10)
C(9)-H(9)
0.9300
Ag(2)-N(13)
2.341(9)
C(10)-C(12)
1.389(15)
B(1)-N(2)
1.529(12)
C(10)-C(11)
1.411(18)
B(1)-N(8)
1.533(12)
C(11)-N(6)
1.125(16)
B(1)-N(11)#2
1.525(13)
C(12)-N(4)
1.327(13)
B(1)-N(5)
1.561(13)
C(12)-C(13)
1.525(18)
B(2)-N(20)
1.52(2)
C(13)-C(14)
1.62(3)
B(2)-N(17)
1.53(2)
C(13)-C(16)
1.57(2)
B(2)-N(14)
1.550(17)
C(13)-C(15)
1.59(3)
B(2)-H(2)
0.9800
C(14)-H(14A)
0.9602
C(1)-N(2)
1.313(13)
C(14)-H(14B)
0.9602
C(1)-C(2)
1.370(14)
C(14)-H(14C)
0.9602
C(1)-H(1)
0.9300
C(15)-H(15A)
0.9600
C(2)-C(4)
1.397(16)
C(15)-H(15B)
0.9600
C(2)-C(3)
1.386(17)
C(15)-H(15C)
0.9600
C(3)-N(3)
1.159(16)
C(16)-H(16A)
1.1264
C(4)-N(1)
1.344(13)
C(16)-H(16B)
1.1202
C(4)-C(5)
1.568(17)
C(16)-H(16C)
1.1268
C(5)-C(8)
1.495(19)
C(17)-N(8)
1.347(10)
C(5)-C(6)
1.520(17)
C(17)-C(18)
1.364(13)
C(5)-C(7)
1.592(17)
C(17)-H(17)
0.9300
C(6)-H(6A)
0.9600
C(18)-C(20)
1.400(13)
C(6)-H(6B)
0.9600
C(18)-C(19)
1.414(13)
C(6)-H(6C)
0.9600
C(19)-N(9)
1.167(11)
C(7)-H(7A)
0.9600
C(20)-N(7)
1.349(11)
C(7)-H(7B)
0.9600
C(20)-C(21)
1.510(14)
183
C(21)-C(23)
1.494(15)
C(34)-C(36)
1.403(16)
C(21)-C(22)
1.510(17)
C(34)-C(35)
1.456(16)
C(21)-C(24)
1.585(18)
C(35)-N(15)
1.141(13)
C(22)-H(22A)
0.9600
C(36)-N(13)
1.322(14)
C(22)-H(22B)
0.9600
C(36)-C(37)
1.57(2)
C(22)-H(22C)
0.9600
C(37)-C(40)
1.41(2)
C(23)-H(23A)
0.9600
C(37)-C(39)
1.57(3)
C(23)-H(23B)
0.9600
C(37)-C(38)
1.55(3)
C(23)-H(23C)
0.9600
C(38)-H(38A)
0.9600
C(24)-H(24A)
0.9600
C(38)-H(38B)
0.9600
C(24)-H(24B)
0.9600
C(38)-H(38C)
0.9600
C(24)-H(24C)
0.9600
C(39)-H(39A)
0.9610
C(25)-N(11)
1.355(12)
C(39)-H(39B)
0.9610
C(25)-C(26)
1.399(12)
C(39)-H(39C)
0.9610
C(25)-H(25)
0.9300
C(40)-H(40A)
0.9603
C(26)-C(28)
1.431(14)
C(40)-H(40B)
0.9604
C(26)-C(27)
1.402(14)
C(40)-H(40C)
0.9604
C(27)-N(12)
1.130(12)
C(41)-N(17)
1.271(16)
C(28)-N(10)
1.326(12)
C(41)-C(42)
1.369(19)
C(28)-C(29)
1.492(12)
C(41)-H(41)
0.9300
C(29)-C(30)
1.533(17)
C(42)-C(44)
1.407(16)
C(29)-C(31)
1.511(17)
C(42)-C(43)
1.44(2)
C(29)-C(32)
1.574(16)
C(43)-N(18)
1.17(2)
C(30)-H(30A)
0.9600
C(44)-N(16)
1.306(14)
C(30)-H(30B)
0.9600
C(44)-C(45)
1.523(18)
C(30)-H(30C)
0.9600
C(45)-C(48)
1.49(2)
C(31)-H(31A)
0.9600
C(45)-C(47)
1.45(3)
C(31)-H(31B)
0.9600
C(45)-C(46)
1.64(3)
C(31)-H(31C)
0.9600
C(46)-H(46A)
1.1082
C(32)-H(32A)
0.9600
C(46)-H(46B)
1.1145
C(32)-H(32B)
0.9600
C(46)-H(46C)
1.1039
C(32)-H(32C)
0.9600
C(47)-H(47A)
0.9647
C(33)-N(14)
1.309(13)
C(47)-H(47B)
0.9653
C(33)-C(34)
1.351(15)
C(47)-H(47C)
0.9658
C(33)-H(33)
0.9300
C(48)-H(48A)
1.0355
184
C(48)-H(48B)
1.0292
N(11)-B(1)#2
1.525(13)
C(48)-H(48C)
1.0317
N(13)-N(14)
1.371(13)
C(49)-N(20)
1.33(2)
N(16)-N(17)
1.353(12)
C(49)-C(50)
1.52(4)
N(19)-C(52)
1.23(4)
C(50)-C(51)
1.51(4)
N(19)-N(20)
1.32(2)
C(50)-C(52)
1.40(4)
N(21)-C(51)
1.46(11)
N(1)-N(2)
1.392(11)
C(55)-C(53)
1.65(5)
N(4)-N(5)
1.372(10)
C(54)-C(53)
1.43(4)
N(6)-Ag(2)#3
2.164(14)
C(53)-C(56)
1.56(6)
N(7)-N(8)
1.356(9)
C(53)-C(52)
1.73(5)
N(10)-N(11)
1.389(9)
Table A.57: Bond angles [°] for Ag-3.
N(12)-Ag(1)-N(4)
130.7(3)
N(20)-B(2)-N(14)
109.2(15)
N(12)-Ag(1)-N(15)
88.8(4)
N(17)-B(2)-N(14)
112.5(11)
N(4)-Ag(1)-N(15)
114.6(4)
N(20)-B(2)-H(2)
107.8
N(12)-Ag(1)-N(7)
115.6(3)
N(17)-B(2)-H(2)
108.0
N(4)-Ag(1)-N(7)
87.4(3)
N(14)-B(2)-H(2)
108.0
N(15)-Ag(1)-N(7)
124.1(3)
N(2)-C(1)-C(2)
109.7(11)
N(6)#1-Ag(2)-N(19)
127.2(7)
N(2)-C(1)-H(1)
125.2
N(6)#1-Ag(2)-N(16)
137.8(5)
C(2)-C(1)-H(1)
125.1
N(19)-Ag(2)-N(16)
83.2(6)
C(1)-C(2)-C(4)
104.3(10)
N(6)#1-Ag(2)-N(13)
121.6(4)
C(1)-C(2)-C(3)
129.5(13)
N(19)-Ag(2)-N(13)
84.9(5)
C(4)-C(2)-C(3)
126.2(11)
N(16)-Ag(2)-N(13)
85.5(3)
N(3)-C(3)-C(2)
179.1(17)
N(2)-B(1)-N(8)
107.8(7)
N(1)-C(4)-C(2)
111.2(10)
N(2)-B(1)-N(11)#2
108.7(8)
N(1)-C(4)-C(5)
116.5(13)
N(8)-B(1)-N(11)#2
111.1(8)
C(2)-C(4)-C(5)
132.3(11)
N(2)-B(1)-N(5)
109.4(8)
C(8)-C(5)-C(6)
111.0(13)
N(8)-B(1)-N(5)
112.6(8)
C(8)-C(5)-C(4)
111.8(11)
N(11)#2-B(1)-N(5)
107.2(7)
C(6)-C(5)-C(4)
107.3(12)
N(20)-B(2)-N(17)
111.2(11)
C(8)-C(5)-C(7)
113.5(12)
185
C(6)-C(5)-C(7)
108.4(11)
C(16)-C(13)-C(15)
107(2)
C(4)-C(5)-C(7)
104.4(11)
C(13)-C(14)-H(14A)
109.6
C(5)-C(6)-H(6A)
109.4
C(13)-C(14)-H(14B)
109.4
C(5)-C(6)-H(6B)
109.4
H(14A)-C(14)-H(14B)
109.5
H(6A)-C(6)-H(6B)
109.5
C(13)-C(14)-H(14C)
109.5
C(5)-C(6)-H(6C)
109.6
H(14A)-C(14)-H(14C)
109.5
H(6A)-C(6)-H(6C)
109.5
H(14B)-C(14)-H(14C)
109.5
H(6B)-C(6)-H(6C)
109.5
C(13)-C(15)-H(15A)
109.4
C(5)-C(7)-H(7A)
109.4
C(13)-C(15)-H(15B)
109.4
C(5)-C(7)-H(7B)
109.5
H(15A)-C(15)-H(15B)
109.5
H(7A)-C(7)-H(7B)
109.5
C(13)-C(15)-H(15C)
109.6
C(5)-C(7)-H(7C)
109.5
H(15A)-C(15)-H(15C)
109.5
H(7A)-C(7)-H(7C)
109.5
H(15B)-C(15)-H(15C)
109.5
H(7B)-C(7)-H(7C)
109.5
C(13)-C(16)-H(16A)
125.4
C(5)-C(8)-H(8A)
109.7
C(13)-C(16)-H(16B)
124.7
C(5)-C(8)-H(8B)
109.4
H(16A)-C(16)-H(16B)
H(8A)-C(8)-H(8B)
109.5
C(13)-C(16)-H(16C)
C(5)-C(8)-H(8C)
109.3
H(16A)-C(16)-H(16C)
89.9
H(8A)-C(8)-H(8C)
109.5
H(16B)-C(16)-H(16C)
90.3
H(8B)-C(8)-H(8C)
109.5
N(8)-C(17)-C(18)
108.1(8)
N(5)-C(9)-C(10)
108.6(9)
N(8)-C(17)-H(17)
125.9
N(5)-C(9)-H(9)
125.6
C(18)-C(17)-H(17)
126.0
C(10)-C(9)-H(9)
125.7
C(17)-C(18)-C(20)
106.5(8)
C(9)-C(10)-C(12)
105.8(10)
C(17)-C(18)-C(19)
122.8(9)
C(9)-C(10)-C(11)
121.9(11)
C(20)-C(18)-C(19)
130.7(10)
C(12)-C(10)-C(11)
132.3(11)
N(9)-C(19)-C(18)
178.7(13)
N(6)-C(11)-C(10)
177.9(15)
N(7)-C(20)-C(18)
108.2(8)
N(4)-C(12)-C(10)
109.7(9)
N(7)-C(20)-C(21)
123.5(8)
N(4)-C(12)-C(13)
119.2(10)
C(18)-C(20)-C(21)
128.1(8)
C(10)-C(12)-C(13)
131.0(11)
C(23)-C(21)-C(22)
110.1(11)
C(12)-C(13)-C(14)
107.4(18)
C(23)-C(21)-C(20)
114.8(8)
C(12)-C(13)-C(16)
105.8(12)
C(22)-C(21)-C(20)
109.8(10)
C(14)-C(13)-C(16)
114(2)
C(23)-C(21)-C(24)
108.9(11)
C(12)-C(13)-C(15)
106.5(16)
C(22)-C(21)-C(24)
105.8(11)
C(14)-C(13)-C(15)
115.5(13)
C(20)-C(21)-C(24)
106.9(9)
186
90.2
125.4
C(21)-C(22)-H(22A)
109.4
C(29)-C(30)-H(30B)
109.4
C(21)-C(22)-H(22B)
109.6
H(30A)-C(30)-H(30B)
109.5
H(22A)-C(22)-H(22B)
109.5
C(29)-C(30)-H(30C)
109.7
C(21)-C(22)-H(22C)
109.5
H(30A)-C(30)-H(30C)
109.5
H(22A)-C(22)-H(22C)
109.5
H(30B)-C(30)-H(30C)
109.5
H(22B)-C(22)-H(22C)
109.5
C(29)-C(31)-H(31A)
109.5
C(21)-C(23)-H(23A)
109.5
C(29)-C(31)-H(31B)
109.4
C(21)-C(23)-H(23B)
109.4
H(31A)-C(31)-H(31B)
109.5
H(23A)-C(23)-H(23B)
109.5
C(29)-C(31)-H(31C)
109.5
C(21)-C(23)-H(23C)
109.5
H(31A)-C(31)-H(31C)
109.5
H(23A)-C(23)-H(23C)
109.5
H(31B)-C(31)-H(31C)
109.5
H(23B)-C(23)-H(23C)
109.5
C(29)-C(32)-H(32A)
109.6
C(21)-C(24)-H(24A)
109.4
C(29)-C(32)-H(32B)
109.4
C(21)-C(24)-H(24B)
109.8
H(32A)-C(32)-H(32B)
109.5
H(24A)-C(24)-H(24B)
109.5
C(29)-C(32)-H(32C)
109.4
C(21)-C(24)-H(24C)
109.2
H(32A)-C(32)-H(32C)
109.5
H(24A)-C(24)-H(24C)
109.5
H(32B)-C(32)-H(32C)
109.5
H(24B)-C(24)-H(24C)
109.5
N(14)-C(33)-C(34)
108.2(11)
N(11)-C(25)-C(26)
107.5(8)
N(14)-C(33)-H(33)
125.9
N(11)-C(25)-H(25)
126.2
C(34)-C(33)-H(33)
125.9
C(26)-C(25)-H(25)
126.3
C(33)-C(34)-C(36)
105.9(10)
C(25)-C(26)-C(28)
104.9(9)
C(33)-C(34)-C(35)
125.6(11)
C(25)-C(26)-C(27)
126.1(9)
C(36)-C(34)-C(35)
128.4(11)
C(28)-C(26)-C(27)
128.9(8)
N(15)-C(35)-C(34)
176.7(13)
N(12)-C(27)-C(26)
177.9(10)
N(13)-C(36)-C(34)
109.3(11)
N(10)-C(28)-C(26)
110.4(8)
N(13)-C(36)-C(37)
120.1(12)
N(10)-C(28)-C(29)
121.4(9)
C(34)-C(36)-C(37)
130.6(12)
C(26)-C(28)-C(29)
128.0(9)
C(40)-C(37)-C(39)
122(2)
C(30)-C(29)-C(31)
108.9(11)
C(40)-C(37)-C(36)
113.0(15)
C(30)-C(29)-C(28)
108.8(9)
C(39)-C(37)-C(36)
107.1(14)
C(31)-C(29)-C(28)
107.4(10)
C(40)-C(37)-C(38)
106(2)
C(30)-C(29)-C(32)
109.6(11)
C(39)-C(37)-C(38)
97.7(18)
C(31)-C(29)-C(32)
113.2(10)
C(36)-C(37)-C(38)
108.5(17)
C(28)-C(29)-C(32)
108.8(9)
C(37)-C(38)-H(38A)
110.5
C(29)-C(30)-H(30A)
109.4
C(37)-C(38)-H(38B)
109.0
187
H(38A)-C(38)-H(38B)
109.5
C(45)-C(46)-H(46C)
122.4
C(37)-C(38)-H(38C)
108.9
H(46A)-C(46)-H(46C)
93.5
H(38A)-C(38)-H(38C)
109.5
H(46B)-C(46)-H(46C)
93.4
H(38B)-C(38)-H(38C)
109.5
C(45)-C(47)-H(47A)
109.0
C(37)-C(39)-H(39A)
109.5
C(45)-C(47)-H(47B)
110.1
C(37)-C(39)-H(39B)
109.8
H(47A)-C(47)-H(47B)
109.0
H(39A)-C(39)-H(39B)
109.4
C(45)-C(47)-H(47C)
110.9
C(37)-C(39)-H(39C)
109.4
H(47A)-C(47)-H(47C)
108.7
H(39A)-C(39)-H(39C)
109.4
H(47B)-C(47)-H(47C)
109.0
H(39B)-C(39)-H(39C)
109.4
C(45)-C(48)-H(48A)
117.3
C(37)-C(40)-H(40A)
108.5
C(45)-C(48)-H(48B)
116.2
C(37)-C(40)-H(40B)
110.0
H(48A)-C(48)-H(48B)
101.1
H(40A)-C(40)-H(40B)
109.5
C(45)-C(48)-H(48C)
116.7
C(37)-C(40)-H(40C)
110.0
H(48A)-C(48)-H(48C)
101.3
H(40A)-C(40)-H(40C)
109.4
H(48B)-C(48)-H(48C)
101.6
H(40B)-C(40)-H(40C)
109.4
N(20)-C(49)-C(50)
98(2)
N(17)-C(41)-C(42)
109.9(12)
C(51)-C(50)-C(52)
129(5)
N(17)-C(41)-H(41)
125.1
C(51)-C(50)-C(49)
119(4)
C(42)-C(41)-H(41)
125.0
C(52)-C(50)-C(49)
108(2)
C(41)-C(42)-C(44)
103.0(12)
C(4)-N(1)-N(2)
104.3(9)
C(41)-C(42)-C(43)
123.6(15)
C(1)-N(2)-N(1)
110.5(8)
C(44)-C(42)-C(43)
133.4(17)
C(1)-N(2)-B(1)
127.2(9)
N(18)-C(43)-C(42)
177(2)
N(1)-N(2)-B(1)
120.6(8)
N(16)-C(44)-C(42)
109.9(12)
C(12)-N(4)-N(5)
106.5(8)
N(16)-C(44)-C(45)
121.9(11)
C(12)-N(4)-Ag(1)
135.3(7)
C(42)-C(44)-C(45)
128.2(14)
N(5)-N(4)-Ag(1)
118.2(6)
C(48)-C(45)-C(47)
116(3)
C(9)-N(5)-N(4)
109.4(8)
C(48)-C(45)-C(44)
106.8(13)
C(9)-N(5)-B(1)
129.6(8)
C(47)-C(45)-C(44)
105.9(15)
N(4)-N(5)-B(1)
119.7(8)
C(11)-N(6)-Ag(2)#3
160.2(16)
C(48)-C(45)-C(46)
88(2)
C(47)-C(45)-C(46)
126(2)
C(20)-N(7)-N(8)
107.5(7)
C(44)-C(45)-C(46)
112.6(15)
C(20)-N(7)-Ag(1)
137.0(6)
C(45)-C(46)-H(46A)
122.8
N(8)-N(7)-Ag(1)
114.6(5)
C(45)-C(46)-H(46B)
123.5
C(17)-N(8)-N(7)
109.7(7)
93.0
C(17)-N(8)-B(1)
126.3(8)
H(46A)-C(46)-H(46B)
188
N(7)-N(8)-B(1)
124.0(6)
N(16)-N(17)-B(2)
122.0(11)
C(28)-N(10)-N(11)
106.6(8)
C(52)-N(19)-N(20)
113(2)
C(25)-N(11)-N(10)
110.6(7)
C(52)-N(19)-Ag(2)
130(2)
C(25)-N(11)-B(1)#2
131.3(7)
N(20)-N(19)-Ag(2)
116.3(11)
N(10)-N(11)-B(1)#2
117.9(8)
N(19)-N(20)-C(49)
114(2)
C(27)-N(12)-Ag(1)
163.9(8)
N(19)-N(20)-B(2)
122.1(14)
C(36)-N(13)-N(14)
105.6(10)
C(49)-N(20)-B(2)
124(2)
C(36)-N(13)-Ag(2)
141.4(9)
N(21)-C(51)-C(50)
128(9)
N(14)-N(13)-Ag(2)
113.0(7)
C(54)-C(53)-C(55)
118(4)
C(33)-N(14)-N(13)
111.0(9)
C(54)-C(53)-C(56)
93(5)
C(33)-N(14)-B(2)
126.7(11)
C(55)-C(53)-C(56)
126(5)
N(13)-N(14)-B(2)
122.3(10)
C(54)-C(53)-C(52)
120(4)
C(35)-N(15)-Ag(1)
160.0(10)
C(55)-C(53)-C(52)
93(3)
C(44)-N(16)-N(17)
106.2(9)
C(56)-C(53)-C(52)
108(3)
C(44)-N(16)-Ag(2)
138.9(8)
N(19)-C(52)-C(50)
106(3)
N(17)-N(16)-Ag(2)
114.8(8)
N(19)-C(52)-C(53)
127(3)
C(41)-N(17)-N(16)
110.9(11)
C(50)-C(52)-C(53)
125(4)
C(41)-N(17)-B(2)
127.1(12)
Table A.58: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103) for Ag-4 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
Ag(1)
1454(1)
7192(1)
1836(1)
41(1)
B(1)
856(4)
9068(8)
1383(7)
35(3)
C(1)
1748(5)
9974(7)
1790(6)
40(3)
C(2)
2321(4)
9848(7)
2160(6)
42(3)
C(3)
2725(5)
10499(8)
2400(7)
49(3)
C(4)
2384(4)
8945(6)
2263(6)
42(3)
C(5)
2946(4)
8435(8)
2640(8)
72(4)
C(6)
3292(8)
8702(13)
2141(14)
91(7)
C(7)
3322(7)
8853(13)
3574(11)
107(8)
189
C(8)
2853(7)
7524(12)
2800(20)
167(17)
C(9)
705(4)
9178(7)
2724(7)
44(3)
C(10)
762(4)
8678(8)
3395(7)
51(3)
C(11)
776(5)
8985(9)
4180(8)
64(4)
C(12)
870(4)
7844(7)
3179(8)
50(3)
C(13)
987(6)
7002(9)
3683(8)
78(4)
C(14)
1617(7)
7038(13)
4317(10)
140(8)
C(15)
627(6)
6967(9)
4182(9)
94(5)
C(16)
867(7)
6225(9)
3107(10)
108(6)
C(17)
224(4)
8738(6)
-169(7)
38(3)
C(18)
109(4)
8059(7)
-730(6)
39(3)
C(19)
-300(5)
8096(8)
-1591(8)
56(3)
C(20)
465(4)
7384(7)
-243(6)
38(3)
C(21)
531(4)
6483(6)
-529(6)
48(3)
C(22)
762(8)
6539(10)
-1195(11)
94(7)
C(23)
-93(7)
6057(11)
-1009(12)
95(7)
C(24)
906(8)
5874(10)
227(9)
75(6)
C(101)
2240(14)
110(20)
4840(20)
251(13)
C(102)
2448(16)
1370(30)
4530(30)
300(18)
C(103)
1987(18)
440(30)
3910(30)
317(19)
C(6A)
2864(18)
7670(30)
1880(30)
16(16)
C(7A)
3430(40)
8890(60)
2710(60)
80(30)
C(8A)
2950(20)
7930(40)
3320(30)
34(19)
C(22A)
1220(20)
6400(40)
-310(40)
40(20)
C(23A)
150(20)
6400(30)
-1540(30)
31(19)
C(24A)
500(30)
5880(40)
100(40)
35(19)
N(1)
1885(3)
8572(5)
1975(5)
41(2)
N(2)
1493(3)
9219(5)
1686(4)
35(2)
N(3)
3056(4)
11044(6)
2630(6)
59(3)
N(4)
874(3)
7861(5)
2412(5)
42(2)
N(5)
772(3)
8700(5)
2142(5)
36(2)
N(6)
790(5)
9230(9)
4798(7)
96(4)
N(7)
762(3)
7651(5)
553(5)
34(2)
N(8)
605(3)
8489(5)
588(5)
34(2)
N(9)
-633(5)
8160(8)
-2275(7)
88(4)
190
O(101)
1745(10)
1090(16)
4593(15)
283(10)
________________________________________________________________________________
TableA.59: Anisotropic displacement parameters (Å2x 103) for Ag-4. The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
Ag(1)
38(1)
34(1)
46(1)
6(1)
14(1)
7(1)
B(1)
23(7)
39(7)
36(7)
-1(6)
8(6)
8(6)
C(1)
47(8)
24(7)
42(7)
0(5)
13(6)
-2(6)
C(2)
39(8)
45(8)
36(6)
-1(5)
12(6)
-3(6)
C(3)
52(8)
44(8)
47(7)
-11(6)
18(6)
-9(7)
C(4)
41(8)
31(7)
45(7)
-2(5)
11(6)
3(6)
C(5)
27(7)
67(9)
102(11)
-6(8)
9(7)
1(7)
C(6)
65(12)
129(17)
101(16)
-4(13)
57(12)
20(11)
C(7)
66(12)
118(17)
89(14)
31(12)
-13(11)
11(11)
C(8)
34(11)
36(12)
330(40)
30(18)
-14(16)
19(9)
C(9)
34(6)
48(7)
48(7)
-5(7)
15(6)
-1(5)
C(10)
28(6)
80(10)
43(8)
-6(8)
15(5)
0(6)
C(11)
43(7)
104(11)
49(9)
-11(8)
25(7)
-14(7)
C(12)
39(7)
54(9)
57(8)
17(7)
21(6)
6(6)
C(13)
88(11)
96(11)
71(9)
38(9)
55(9)
22(8)
C(14)
85(13)
230(20)
104(13)
112(14)
40(11)
52(13)
C(15)
122(13)
104(11)
88(10)
17(8)
77(10)
-6(9)
C(16)
183(17)
65(10)
139(14)
42(10)
128(13)
26(10)
C(17)
32(6)
38(7)
40(7)
11(6)
12(6)
15(5)
C(18)
32(6)
47(7)
29(7)
-1(6)
6(6)
4(5)
C(19)
50(8)
70(9)
41(9)
-6(6)
14(8)
7(6)
C(20)
33(6)
49(8)
30(7)
-7(6)
13(6)
-10(6)
C(21)
49(7)
42(7)
52(7)
-11(6)
20(6)
-2(6)
C(22)
149(19)
78(12)
110(16)
-10(10)
108(16)
8(12)
C(23)
65(11)
84(13)
120(16)
-49(11)
26(11)
-25(9)
C(24)
77(15)
58(11)
64(11)
2(8)
8(10)
20(9)
191
N(1)
30(6)
33(5)
53(5)
-3(4)
11(4)
-6(5)
N(2)
40(6)
26(6)
36(5)
3(4)
14(4)
10(5)
N(3)
48(6)
45(6)
74(7)
-12(5)
15(5)
-12(5)
N(4)
57(6)
39(6)
38(6)
8(4)
28(5)
4(4)
N(5)
38(5)
40(6)
34(5)
0(5)
18(4)
6(4)
N(6)
90(9)
149(12)
69(8)
-43(8)
53(7)
-44(8)
N(7)
30(5)
33(6)
37(6)
-3(4)
12(4)
2(4)
N(8)
34(5)
33(6)
34(6)
0(4)
14(5)
3(4)
N(9)
75(8)
104(9)
48(7)
4(6)
-9(7)
13(7)
_______________________________________________________________________________
Table A.60: Bond distances [Å] for Ag-4.
Ag(1)-N(3)#1
2.158(10)
C(11)-N(6)
1.128(14)
Ag(1)-N(7)
2.300(8)
C(12)-C(13)
1.529(16)
Ag(1)-N(1)
2.385(8)
C(13)-C(16)
1.512(18)
Ag(1)-N(4)
2.396(8)
C(13)-C(15)
1.538(16)
B(1)-N(8)
1.538(13)
C(13)-C(14)
1.55(2)
B(1)-N(2)
1.540(13)
C(17)-N(8)
1.322(11)
B(1)-N(5)
1.543(13)
C(17)-C(18)
1.379(13)
C(1)-N(2)
1.322(12)
C(18)-C(20)
1.416(13)
C(1)-C(2)
1.373(13)
C(18)-C(19)
1.418(16)
C(2)-C(3)
1.392(16)
C(19)-N(9)
1.137(14)
C(2)-C(4)
1.412(14)
C(20)-N(7)
1.329(11)
C(3)-N(3)
1.153(13)
C(20)-C(21)
1.520(14)
C(4)-N(1)
1.318(12)
C(21)-C(22)
1.526(17)
C(4)-C(5)
1.550(15)
C(21)-C(24)
1.572(18)
C(5)-C(8)
1.48(2)
C(21)-C(23)
1.626(18)
C(5)-C(6)
1.56(2)
C(101)-C(103)
1.55(5)
C(5)-C(7)
1.63(2)
C(12)-N(4)
1.341(13)
C(9)-N(5)
1.328(12)
C(101)-O(101)
1.92(4)
C(9)-C(10)
1.356(14)
C(102)-C(103)
1.90(5)
C(10)-C(12)
1.409(14)
C(103)-O(101)
1.87(4)
C(10)-C(11)
1.435(17)
N(1)-N(2)
1.370(10)
192
N(3)-Ag(1)#2
2.158(10)
N(4)-N(5)
1.369(10)
N(7)-N(8)
1.372(10)
Table A.61: Bond angles [°] for Ag-4.
(3)#1-Ag(1)-N(7)
138.4(3)
N(4)-C(12)-C(13)
120.2(11)
N(3)#1-Ag(1)-N(1)
121.8(3)
C(10)-C(12)-C(13)
130.0(12)
87.8(3)
C(16)-C(13)-C(12)
111.5(11)
123.1(3)
C(16)-C(13)-C(15)
110.2(12)
N(7)-Ag(1)-N(4)
83.9(3)
C(12)-C(13)-C(15)
109.7(11)
N(1)-Ag(1)-N(4)
86.0(3)
C(16)-C(13)-C(14)
110.7(13)
N(8)-B(1)-N(2)
112.1(8)
C(12)-C(13)-C(14)
105.4(11)
N(8)-B(1)-N(5)
113.0(8)
C(15)-C(13)-C(14)
109.3(11)
N(2)-B(1)-N(5)
107.6(7)
N(8)-C(17)-C(18)
108.9(8)
N(2)-C(1)-C(2)
109.1(9)
C(17)-C(18)-C(20)
104.7(8)
C(1)-C(2)-C(3)
125.3(10)
C(17)-C(18)-C(19)
123.6(10)
C(1)-C(2)-C(4)
104.2(9)
C(20)-C(18)-C(19)
131.7(10)
C(3)-C(2)-C(4)
130.5(10)
N(9)-C(19)-C(18)
177.0(13)
N(3)-C(3)-C(2)
177.0(11)
N(7)-C(20)-C(18)
109.4(8)
N(1)-C(4)-C(2)
110.2(9)
N(7)-C(20)-C(21)
122.0(9)
N(1)-C(4)-C(5)
123.1(9)
C(18)-C(20)-C(21)
128.5(9)
C(2)-C(4)-C(5)
126.7(10)
C(20)-C(21)-C(22)
109.7(9)
C(8)-C(5)-C(4)
111.2(10)
C(20)-C(21)-C(24)
113.3(9)
C(8)-C(5)-C(6)
122.7(17)
C(22)-C(21)-C(24)
111.2(12)
C(4)-C(5)-C(6)
107.9(11)
C(20)-C(21)-C(23)
107.9(9)
C(8)-C(5)-C(7)
105.7(17)
C(22)-C(21)-C(23)
106.2(11)
C(4)-C(5)-C(7)
105.9(11)
C(24)-C(21)-C(23)
108.2(12)
C(6)-C(5)-C(7)
101.7(13)
C(103)-C(101)-O(101)
64(2)
N(5)-C(9)-C(10)
109.7(10)
C(101)-C(103)-O(101)
68(2)
C(9)-C(10)-C(12)
104.7(9)
C(101)-C(103)-C(102)
77(3)
C(9)-C(10)-C(11)
125.4(12)
O(101)-C(103)-C(102)
62.1(18)
C(12)-C(10)-C(11)
129.4(12)
C(4)-N(1)-N(2)
106.6(8)
N(6)-C(11)-C(10)
179.4(14)
C(4)-N(1)-Ag(1)
141.6(7)
N(4)-C(12)-C(10)
109.7(9)
N(2)-N(1)-Ag(1)
111.7(6)
N(7)-Ag(1)-N(1)
N(3)#1-Ag(1)-N(4)
193
C(1)-N(2)-N(1)
109.9(8)
N(4)-N(5)-B(1)
124.5(8)
C(1)-N(2)-B(1)
126.5(9)
C(20)-N(7)-N(8)
106.9(7)
N(1)-N(2)-B(1)
123.3(8)
C(20)-N(7)-Ag(1)
141.0(7)
C(3)-N(3)-Ag(1)#2
167.0(9)
N(8)-N(7)-Ag(1)
112.1(5)
C(12)-N(4)-N(5)
106.0(8)
C(17)-N(8)-N(7)
110.1(7)
C(12)-N(4)-Ag(1)
133.6(7)
C(17)-N(8)-B(1)
124.9(8)
N(5)-N(4)-Ag(1)
109.5(6)
N(7)-N(8)-B(1)
124.9(8)
C(9)-N(5)-N(4)
109.8(8)
C(103)-O(101)-C(101)
C(9)-N(5)-B(1)
124.3(9)
48.1(15)
Table A.62: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103) for {(Hpz)4Cu(ClO4)}n. U(eq) is defined as one third of the trace of the orthogonalized Uij
tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
C(1)
3520(2)
8549(6)
7628(6)
44(2)
C(2)
3392(2)
7558(6)
7575(6)
43(2)
C(3)
3261(2)
7054(7)
6653(7)
60(3)
C(4)
3444(2)
7155(6)
8573(6)
38(2)
C(5)
3362(2)
6141(6)
9021(7)
47(2)
C(6)
3433(2)
6181(7)
10198(8)
83(3)
C(7)
3534(3)
5258(7)
8632(10)
106(4)
C(8)
3038(2)
5965(8)
8727(9)
98(4)
C(9)
3294(2)
11416(6)
8378(6)
44(2)
C(10)
3000(2)
11370(7)
8514(6)
52(2)
C(11)
2771(2)
11983(8)
7944(7)
67(3)
C(12)
2982(2)
10650(7)
9283(6)
46(2)
C(13)
2732(2)
10230(8)
9777(6)
62(3)
C(14)
2788(3)
9146(16)
10087(16)
265(15)
C(15)
2711(5)
10830(20)
10662(17)
390(20)
C(16)
2464(2)
10183(12)
9037(11)
146(6)
C(17)
4122(1)
12398(6)
8897(6)
35(2)
194
C(18)
4212(2)
13232(6)
9559(5)
35(2)
C(19)
4306(2)
14211(7)
9264(6)
48(2)
C(20)
4198(1)
12881(6)
10539(5)
30(2)
C(21)
4255(2)
13437(5)
11567(5)
34(2)
C(22)
4204(2)
12705(6)
12434(5)
40(2)
C(23)
4035(2)
14349(6)
11507(6)
51(2)
C(24)
4567(2)
13862(6)
11781(6)
46(2)
C(25)
4487(2)
9671(5)
8693(5)
30(2)
C(26)
4727(2)
9057(6)
9083(5)
34(2)
C(27)
5014(2)
9100(6)
8808(5)
40(2)
C(28)
4639(2)
8434(6)
9839(5)
32(2)
C(29)
4796(2)
7592(6)
10529(6)
38(2)
C(30)
5060(2)
8097(6)
11177(6)
50(2)
C(31)
4906(2)
6763(6)
9827(6)
51(2)
C(32)
4594(2)
7089(6)
11175(6)
48(2)
Cl(1)
3808(1)
9153(2)
11400(1)
40(1)
Cu(1)
3859(1)
10153(1)
9056(1)
35(1)
N(1)
3651(1)
8764(5)
8578(4)
33(2)
N(2)
3600(1)
7906(5)
9128(5)
38(2)
N(3)
3175(2)
6649(6)
5904(7)
78(3)
N(4)
3450(1)
10780(5)
9030(4)
37(2)
N(5)
3255(1)
10326(5)
9565(4)
39(2)
N(6)
2598(2)
12463(8)
7463(7)
104(3)
N(7)
4053(1)
11591(5)
9430(4)
33(1)
N(8)
4100(1)
11910(4)
10430(4)
32(1)
N(9)
4376(2)
15019(6)
9033(6)
77(3)
N(10)
4265(1)
9466(4)
9169(4)
29(1)
N(11)
4358(1)
8705(4)
9857(4)
30(1)
N(12)
5246(2)
9129(5)
8607(5)
51(2)
O(1)
3896(1)
10026(3)
10773(4)
38(1)
O(2)
3942(1)
8178(3)
11070(4)
36(1)
O(3)
3907(1)
9370(4)
12482(3)
44(1)
O(4)
3489(1)
9051(4)
11185(4)
40(1)
________________________________________________________________________________
195
Anisotropic displacement parameters (Å2x 103) for {(Hpz)4Cu(ClO4)}n. The
anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
Table A.63:
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
C(1)
31(5)
58(6)
40(5)
4(4)
-4(4)
-4(4)
C(2)
25(4)
51(6)
51(6)
0(4)
1(4)
-8(4)
C(3)
55(6)
60(7)
60(7)
-2(5)
-11(5)
-19(5)
C(4)
24(4)
39(5)
52(5)
0(4)
4(4)
-2(4)
C(5)
32(5)
42(6)
64(6)
8(4)
-2(4)
-7(4)
C(6)
114(9)
47(6)
87(8)
20(5)
6(7)
-22(6)
C(7)
114(10)
46(7)
171(12)
20(7)
62(9)
8(6)
C(8)
41(6)
109(9)
139(11)
37(8)
-7(6)
-29(6)
C(9)
48(5)
52(6)
35(5)
8(4)
11(4)
9(4)
C(10)
39(5)
78(7)
37(5)
3(5)
-3(4)
25(5)
C(11)
50(6)
95(8)
54(6)
18(6)
5(5)
29(6)
C(12)
30(5)
73(6)
35(5)
10(4)
5(4)
9(4)
C(13)
25(5)
110(8)
50(6)
19(6)
9(4)
0(5)
C(14)
45(8)
340(30)
410(30)
320(30)
37(12)
9(12)
C(15)
370(30)
560(40)
320(30)
-350(30)
330(30)
-400(30)
C(16)
56(8)
206(16)
164(13)
82(12)
-23(8)
-32(9)
C(17)
30(4)
39(5)
35(5)
9(4)
3(3)
8(4)
C(18)
38(5)
35(5)
33(5)
3(4)
4(4)
0(4)
C(19)
61(6)
43(6)
35(5)
9(4)
-8(4)
-9(5)
C(20)
27(4)
27(5)
35(5)
0(4)
-1(3)
6(3)
C(21)
41(5)
27(4)
34(4)
8(3)
5(4)
5(4)
C(22)
49(5)
39(5)
28(4)
3(4)
1(4)
-5(4)
C(23)
54(5)
39(5)
55(6)
0(4)
-2(4)
13(4)
C(24)
47(5)
53(6)
38(5)
2(4)
4(4)
1(4)
C(25)
32(4)
30(4)
27(4)
1(3)
4(3)
-7(3)
C(26)
24(4)
47(5)
29(4)
-2(4)
0(3)
-8(4)
C(27)
40(5)
49(5)
31(5)
-1(4)
2(4)
-6(4)
C(28)
27(4)
35(5)
33(4)
-11(4)
2(3)
-10(3)
C(29)
36(5)
36(5)
42(5)
-1(4)
4(4)
5(4)
C(30)
41(5)
61(6)
45(5)
7(4)
-2(4)
0(4)
196
C(31)
44(5)
51(6)
57(6)
3(4)
4(4)
5(4)
C(32)
38(5)
51(6)
53(5)
16(4)
4(4)
-3(4)
Cl(1)
35(1)
41(1)
45(1)
5(1)
7(1)
1(1)
Cu(1)
29(1)
39(1)
37(1)
0(1)
4(1)
-1(1)
N(1)
29(3)
35(4)
35(4)
1(3)
5(3)
-7(3)
N(2)
31(4)
39(4)
43(4)
4(3)
6(3)
-1(3)
N(3)
73(6)
75(6)
81(6)
-22(5)
-8(5)
-16(5)
N(4)
28(3)
42(4)
40(4)
8(3)
4(3)
2(3)
N(5)
30(4)
48(4)
40(4)
14(3)
7(3)
4(3)
N(6)
76(6)
145(10)
88(7)
42(6)
5(5)
46(6)
N(7)
34(4)
35(4)
28(4)
0(3)
1(3)
1(3)
N(8)
40(4)
28(4)
28(4)
5(3)
7(3)
2(3)
N(9)
105(7)
59(6)
57(5)
17(4)
-15(4)
-31(5)
N(10)
32(4)
27(4)
28(3)
-1(3)
3(3)
-5(3)
N(11)
28(4)
32(4)
31(4)
2(3)
5(3)
-2(3)
N(12)
36(4)
68(5)
49(4)
0(4)
4(3)
-7(4)
O(1)
37(3)
29(3)
48(3)
12(2)
8(2)
-2(2)
O(2)
34(3)
23(3)
54(3)
9(2)
19(2)
7(2)
O(3)
38(3)
65(4)
27(3)
-8(3)
-1(2)
3(3)
O(4)
23(3)
50(3)
44(3)
10(3)
1(2)
-5(2)
______________________________________________________________________________
Table A.64: Bond distances [Å] for {(Hpz)4Cu(ClO4)}n.
C(1)-N(1)
1.334(8)
C(6)-H(30A)
0.9800
C(1)-C(2)
1.400(10)
C(6)-H(30B)
0.9800
C(1)-H(22)
0.9500
C(6)-H(30C)
0.9800
C(2)-C(4)
1.401(10)
C(7)-H(33A)
0.9800
C(2)-C(3)
1.426(12)
C(7)-H(33B)
0.9800
C(3)-N(3)
1.134(10)
C(7)-H(33C)
0.9800
C(4)-N(2)
1.349(9)
C(8)-H(29A)
0.9800
C(4)-C(5)
1.501(10)
C(8)-H(29B)
0.9800
C(5)-C(8)
1.509(10)
C(8)-H(29C)
0.9800
C(5)-C(7)
1.517(12)
C(9)-N(4)
1.317(9)
C(5)-C(6)
1.539(12)
C(9)-C(10)
1.403(10)
197
C(9)-H(19)
0.9500
C(24)-H(24A)
0.9800
C(10)-C(12)
1.383(11)
C(24)-H(24B)
0.9800
C(10)-C(11)
1.435(11)
C(24)-H(24C)
0.9800
C(11)-N(6)
1.125(10)
C(25)-N(10)
1.312(8)
C(12)-N(5)
1.330(9)
C(25)-C(26)
1.392(9)
C(12)-C(13)
1.515(11)
C(25)-H(1)
0.9500
C(13)-C(15)
1.410(15)
C(26)-C(28)
1.388(9)
C(13)-C(16)
1.457(13)
C(26)-C(27)
1.433(10)
C(13)-C(14)
1.461(17)
C(27)-N(12)
1.145(9)
C(14)-H(31A)
0.9800
C(28)-N(11)
1.351(8)
C(14)-H(31B)
0.9800
C(28)-C(29)
1.522(10)
C(14)-H(31C)
0.9800
C(29)-C(32)
1.504(10)
C(15)-H(19A)
0.9871
C(29)-C(30)
1.525(10)
C(15)-H(19B)
0.9871
C(29)-C(31)
1.547(10)
C(15)-H(19C)
0.9874
C(30)-H(6A)
0.9800
C(16)-H(18A)
0.9800
C(30)-H(6B)
0.9800
C(16)-H(18B)
0.9800
C(30)-H(6C)
0.9800
C(16)-H(18C)
0.9800
C(31)-H(7A)
0.9800
C(17)-N(7)
1.318(8)
C(31)-H(7B)
0.9800
C(17)-C(18)
1.402(10)
C(31)-H(7C)
0.9800
C(17)-H(20)
0.9500
C(32)-H(8A)
0.9800
C(18)-C(20)
1.380(9)
C(32)-H(8B)
0.9800
C(18)-C(19)
1.404(11)
C(32)-H(8C)
0.9800
C(19)-N(9)
1.139(9)
Cl(1)-O(3)
1.457(5)
C(20)-N(8)
1.323(8)
Cl(1)-O(4)
1.467(4)
C(20)-C(21)
1.520(9)
Cl(1)-O(1)
1.486(5)
C(21)-C(22)
1.527(9)
Cl(1)-O(2)
1.489(5)
C(21)-C(24)
1.530(9)
Cu(1)-N(4)
2.052(6)
C(21)-C(23)
1.546(9)
Cu(1)-N(10)
2.062(6)
C(22)-H(26A)
0.9800
Cu(1)-N(1)
2.074(6)
C(22)-H(26B)
0.9800
Cu(1)-N(7)
2.077(6)
C(22)-H(26C)
0.9800
Cu(1)-O(3)#1
2.210(5)
C(23)-H(25A)
0.9800
Cu(1)-O(1)
2.252(5)
C(23)-H(25B)
0.9800
N(1)-N(2)
1.359(7)
C(23)-H(25C)
0.9800
N(2)-H(2)
0.8800
198
N(4)-N(5)
1.359(7)
N(10)-N(11)
1.356(7)
N(5)-H(5)
0.8800
N(11)-H(11)
0.8800
N(7)-N(8)
1.367(7)
O(3)-Cu(1)#2
2.210(5)
N(8)-H(8)
0.8800
Table A.65: Bond angles [°] for {(Hpz)4Cu(ClO4)}n.
N(1)-C(1)-C(2)
111.2(7)
H(33B)-C(7)-H(33C)
109.5
N(1)-C(1)-H(22)
124.4
C(5)-C(8)-H(29A)
109.5
C(2)-C(1)-H(22)
124.4
C(5)-C(8)-H(29B)
109.5
C(1)-C(2)-C(4)
106.1(7)
H(29A)-C(8)-H(29B)
109.5
C(1)-C(2)-C(3)
125.0(8)
C(5)-C(8)-H(29C)
109.5
C(4)-C(2)-C(3)
128.6(8)
H(29A)-C(8)-H(29C)
109.5
N(3)-C(3)-C(2)
175.6(10)
H(29B)-C(8)-H(29C)
109.5
N(2)-C(4)-C(2)
104.4(7)
N(4)-C(9)-C(10)
109.6(7)
N(2)-C(4)-C(5)
123.3(7)
N(4)-C(9)-H(19)
125.2
C(2)-C(4)-C(5)
132.3(7)
C(10)-C(9)-H(19)
125.2
C(4)-C(5)-C(8)
109.2(7)
C(12)-C(10)-C(9)
106.9(7)
C(4)-C(5)-C(7)
109.6(7)
C(12)-C(10)-C(11)
128.8(8)
C(8)-C(5)-C(7)
110.7(8)
C(9)-C(10)-C(11)
124.3(8)
C(4)-C(5)-C(6)
110.0(7)
N(6)-C(11)-C(10)
177.1(11)
C(8)-C(5)-C(6)
108.2(8)
N(5)-C(12)-C(10)
104.6(6)
C(7)-C(5)-C(6)
109.0(8)
N(5)-C(12)-C(13)
121.8(7)
C(5)-C(6)-H(30A)
109.5
C(10)-C(12)-C(13)
133.5(7)
C(5)-C(6)-H(30B)
109.5
C(15)-C(13)-C(16)
114.7(15)
H(30A)-C(6)-H(30B)
109.5
C(15)-C(13)-C(14)
108.4(15)
C(5)-C(6)-H(30C)
109.5
C(16)-C(13)-C(14)
104.2(11)
H(30A)-C(6)-H(30C)
109.5
C(15)-C(13)-C(12)
108.6(9)
H(30B)-C(6)-H(30C)
109.5
C(16)-C(13)-C(12)
110.8(8)
C(5)-C(7)-H(33A)
109.5
C(14)-C(13)-C(12)
110.0(8)
C(5)-C(7)-H(33B)
109.5
C(13)-C(14)-H(31A)
109.4
H(33A)-C(7)-H(33B)
109.5
C(13)-C(14)-H(31B)
109.6
C(5)-C(7)-H(33C)
109.5
H(31A)-C(14)-H(31B)
109.5
H(33A)-C(7)-H(33C)
109.5
C(13)-C(14)-H(31C)
109.4
199
H(31A)-C(14)-H(31C)
109.5
H(26B)-C(22)-H(26C)
109.5
H(31B)-C(14)-H(31C)
109.5
C(21)-C(23)-H(25A)
109.5
C(13)-C(15)-H(19A)
110.2
C(21)-C(23)-H(25B)
109.5
C(13)-C(15)-H(19B)
110.1
H(25A)-C(23)-H(25B)
109.5
H(19A)-C(15)-H(19B)
108.7
C(21)-C(23)-H(25C)
109.5
C(13)-C(15)-H(19C)
110.5
H(25A)-C(23)-H(25C)
109.5
H(19A)-C(15)-H(19C)
108.7
H(25B)-C(23)-H(25C)
109.5
H(19B)-C(15)-H(19C)
108.6
C(21)-C(24)-H(24A)
109.5
C(13)-C(16)-H(18A)
109.5
C(21)-C(24)-H(24B)
109.5
C(13)-C(16)-H(18B)
109.5
H(24A)-C(24)-H(24B)
109.5
H(18A)-C(16)-H(18B)
109.5
C(21)-C(24)-H(24C)
109.5
C(13)-C(16)-H(18C)
109.5
H(24A)-C(24)-H(24C)
109.5
H(18A)-C(16)-H(18C)
109.5
H(24B)-C(24)-H(24C)
109.5
H(18B)-C(16)-H(18C)
109.5
N(10)-C(25)-C(26)
110.5(6)
N(7)-C(17)-C(18)
109.8(7)
N(10)-C(25)-H(1)
124.8
N(7)-C(17)-H(20)
125.1
C(26)-C(25)-H(1)
124.8
C(18)-C(17)-H(20)
125.1
C(28)-C(26)-C(25)
106.6(6)
C(20)-C(18)-C(17)
106.4(7)
C(28)-C(26)-C(27)
126.3(7)
C(20)-C(18)-C(19)
127.9(7)
C(25)-C(26)-C(27)
127.1(7)
C(17)-C(18)-C(19)
125.7(7)
N(12)-C(27)-C(26)
178.7(8)
N(9)-C(19)-C(18)
177.9(10)
N(11)-C(28)-C(26)
104.8(6)
N(8)-C(20)-C(18)
105.7(6)
N(11)-C(28)-C(29)
123.0(6)
N(8)-C(20)-C(21)
123.2(6)
C(26)-C(28)-C(29)
132.2(7)
C(18)-C(20)-C(21)
131.1(7)
C(32)-C(29)-C(28)
111.3(6)
C(20)-C(21)-C(22)
110.8(6)
C(32)-C(29)-C(30)
112.3(6)
C(20)-C(21)-C(24)
111.2(6)
C(28)-C(29)-C(30)
107.6(6)
C(22)-C(21)-C(24)
109.4(6)
C(32)-C(29)-C(31)
109.7(6)
C(20)-C(21)-C(23)
106.6(6)
C(28)-C(29)-C(31)
107.4(6)
C(22)-C(21)-C(23)
109.0(6)
C(30)-C(29)-C(31)
108.5(6)
C(24)-C(21)-C(23)
109.7(6)
C(29)-C(30)-H(6A)
109.5
C(21)-C(22)-H(26A)
109.5
C(29)-C(30)-H(6B)
109.5
C(21)-C(22)-H(26B)
109.5
H(6A)-C(30)-H(6B)
109.5
H(26A)-C(22)-H(26B)
109.5
C(29)-C(30)-H(6C)
109.5
C(21)-C(22)-H(26C)
109.5
H(6A)-C(30)-H(6C)
109.5
H(26A)-C(22)-H(26C)
109.5
H(6B)-C(30)-H(6C)
109.5
200
C(29)-C(31)-H(7A)
109.5
N(1)-Cu(1)-O(1)
101.8(2)
C(29)-C(31)-H(7B)
109.5
N(7)-Cu(1)-O(1)
82.0(2)
H(7A)-C(31)-H(7B)
109.5
O(3)#1-Cu(1)-O(1)
164.29(18)
C(29)-C(31)-H(7C)
109.5
C(1)-N(1)-N(2)
104.2(6)
H(7A)-C(31)-H(7C)
109.5
C(1)-N(1)-Cu(1)
125.7(5)
H(7B)-C(31)-H(7C)
109.5
N(2)-N(1)-Cu(1)
130.0(5)
C(29)-C(32)-H(8A)
109.5
C(4)-N(2)-N(1)
114.1(6)
C(29)-C(32)-H(8B)
109.5
C(4)-N(2)-H(2)
122.9
H(8A)-C(32)-H(8B)
109.5
N(1)-N(2)-H(2)
122.9
C(29)-C(32)-H(8C)
109.5
C(9)-N(4)-N(5)
105.3(6)
H(8A)-C(32)-H(8C)
109.5
C(9)-N(4)-Cu(1)
131.7(5)
H(8B)-C(32)-H(8C)
109.5
N(5)-N(4)-Cu(1)
120.5(4)
O(3)-Cl(1)-O(4)
111.2(3)
C(12)-N(5)-N(4)
113.5(6)
O(3)-Cl(1)-O(1)
109.3(3)
C(12)-N(5)-H(5)
123.2
O(4)-Cl(1)-O(1)
108.4(3)
N(4)-N(5)-H(5)
123.2
O(3)-Cl(1)-O(2)
111.3(3)
C(17)-N(7)-N(8)
105.3(6)
O(4)-Cl(1)-O(2)
108.7(3)
C(17)-N(7)-Cu(1)
134.6(5)
O(1)-Cl(1)-O(2)
107.9(3)
N(8)-N(7)-Cu(1)
119.6(4)
N(4)-Cu(1)-N(10)
176.1(2)
C(20)-N(8)-N(7)
112.8(6)
N(4)-Cu(1)-N(1)
87.0(2)
C(20)-N(8)-H(8)
123.6
N(10)-Cu(1)-N(1)
91.8(2)
N(7)-N(8)-H(8)
123.6
N(4)-Cu(1)-N(7)
91.2(2)
C(25)-N(10)-N(11)
105.8(5)
N(10)-Cu(1)-N(7)
90.2(2)
C(25)-N(10)-Cu(1)
130.9(5)
N(1)-Cu(1)-N(7)
175.7(2)
N(11)-N(10)-Cu(1)
123.2(4)
N(4)-Cu(1)-O(3)#1
95.9(2)
C(28)-N(11)-N(10)
112.4(6)
N(10)-Cu(1)-O(3)#1
87.9(2)
C(28)-N(11)-H(11)
123.8
N(1)-Cu(1)-O(3)#1
93.5(2)
N(10)-N(11)-H(11)
123.8
N(7)-Cu(1)-O(3)#1
82.8(2)
Cl(1)-O(1)-Cu(1)
129.0(3)
N(4)-Cu(1)-O(1)
88.4(2)
Cl(1)-O(3)-Cu(1)#2
155.7(3)
N(10)-Cu(1)-O(1)
88.21(19)
201
Table A.66: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103) for {(Hpzt-Bu,4CN)4Cu(PF6)}n. U(eq) is defined as one third of the trace of the orthogonalized Uij
tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
C(1)
4243(2)
1685(2)
4227(4)
27(1)
C(2)
5045(2)
1369(2)
4912(4)
28(1)
C(3)
5727(2)
900(2)
4038(4)
33(1)
C(4)
5014(2)
1558(2)
6628(4)
25(1)
C(5)
5676(2)
1375(2)
8014(4)
31(1)
C(6)
5347(2)
1750(2)
9680(5)
44(1)
C(7)
5800(2)
366(2)
8179(5)
37(1)
C(8)
6574(2)
1798(2)
7542(5)
48(1)
Cu(1)
2500
2500
5372(1)
17(1)
F(1)
2500
2500
2450(4)
49(1)
F(2)
2864(2)
1468(1)
294(4)
72(1)
F(3)
2500
2500
-1779(5)
82(2)
N(1)
3752(1)
2033(1)
5437(3)
23(1)
N(2)
4231(1)
1950(1)
6886(3)
24(1)
N(3)
6259(2)
499(2)
3352(4)
46(1)
P(1)
2500
372(2)
27(1)
2500
________________________________________________________________________________
Anisotropic displacement parameters (Å2x 103) for {(Hpzt-Bu,4CN)4Cu(PF6)}n. The
anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]
Table A.67:
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
C(1)
19(1)
22(1)
40(2)
1(1)
0(1)
1(1)
C(2)
16(1)
21(1)
46(2)
1(1)
2(1)
0(1)
C(3)
19(1)
31(2)
49(2)
2(1)
-1(1)
2(1)
C(4)
17(1)
14(1)
45(2)
2(1)
-5(1)
-3(1)
C(5)
24(1)
19(1)
49(2)
3(1)
-13(1)
-2(1)
C(6)
47(2)
34(2)
52(2)
-5(2)
-22(2)
5(1)
202
C(7)
32(2)
22(2)
56(2)
4(1)
-14(2)
2(1)
C(8)
26(2)
35(2)
83(3)
15(2)
-24(2)
-9(1)
Cu(1)
14(1)
14(1)
23(1)
0
0
0
F(1)
63(2)
63(2)
19(2)
0
0
0
F(2)
72(2)
30(1)
113(2)
-9(1)
10(2)
15(1)
F(3)
113(3)
113(3)
22(2)
0
0
0
N(1)
17(1)
19(1)
34(1)
-1(1)
-1(1)
0(1)
N(2)
18(1)
19(1)
34(1)
0(1)
-4(1)
0(1)
N(3)
25(1)
47(2)
65(2)
-4(2)
5(1)
7(1)
P(1)
26(1)
26(1)
27(1)
0
0
0
______________________________________________________________________________
Table A.68: Bond distances [Å] for {(Hpzt-Bu,4CN)4Cu(PF6)}n.
C(1)-N(1)
1.320(4)
(C(8)-H(4B)
0.9800
C(1)-C(2)
1.409(4)
C(8)-H(4C)
0.9800
C(1)-H(8)
0.9500
Cu(1)-N(1)#1
2.016(2)
C(2)-C(4)
1.390(4)
Cu(1)-N(1)#2
2.016(2)
C(2)-C(3)
1.426(4)
Cu(1)-N(1)
2.016(2)
C(3)-N(3)
1.142(4)
Cu(1)-N(1)#3
2.016(2)
C(4)-N(2)
1.336(3)
Cu(1)-F(3)#4
2.257(4)
C(4)-C(5)
1.510(4)
Cu(1)-F(1)
2.315(4)
C(5)-C(6)
1.519(5)
F(1)-P(1)
1.646(4)
C(5)-C(7)
1.538(4)
F(2)-P(1)
1.651(2)
C(5)-C(8)
1.543(4)
F(3)-P(1)
1.705(5)
C(6)-H(2A)
0.9800
F(3)-Cu(1)#5
2.257(4)
C(6)-H(2B)
0.9800
N(1)-N(2)
1.361(3)
C(6)-H(2C)
0.9800
N(2)-H(2)
0.8800
C(7)-H(3A)
0.9800
P(1)-F(2)#1
1.651(2)
C(7)-H(3B)
0.9800
P(1)-F(2)#2
1.651(2)
C(7)-H(3C)
0.9800
P(1)-F(2)#3
1.651(2)
C(8)-H(4A)
0.9800
203
Table A.69: Bond angles [°] for {(Hpzt-Bu,4CN)4Cu(PF6)}n.
N(1)-C(1)-C(2)
109.6(3)
H(4B)-C(8)-H(4C)
109.5
N(1)-C(1)-H(8)
125.2
N(1)#1-Cu(1)-N(1)#2
177.06(14)
C(2)-C(1)-H(8)
125.2
N(1)#1-Cu(1)-N(1)
89.962(4)
C(4)-C(2)-C(1)
106.1(2)
N(1)#2-Cu(1)-N(1)
89.962(4)
C(4)-C(2)-C(3)
126.9(3)
N(1)#1-Cu(1)-N(1)#3
89.962(4)
C(1)-C(2)-C(3)
126.8(3)
N(1)#2-Cu(1)-N(1)#3
89.962(4)
N(3)-C(3)-C(2)
177.7(3)
N(1)-Cu(1)-N(1)#3
N(2)-C(4)-C(2)
105.7(2)
N(1)#1-Cu(1)-F(3)#4
88.53(7)
N(2)-C(4)-C(5)
123.6(3)
N(1)#2-Cu(1)-F(3)#4
88.53(7)
C(2)-C(4)-C(5)
130.6(3)
N(1)-Cu(1)-F(3)#4
88.53(7)
C(4)-C(5)-C(6)
110.4(2)
N(1)#3-Cu(1)-F(3)#4
88.53(7)
C(4)-C(5)-C(7)
108.9(2)
N(1)#1-Cu(1)-F(1)
91.47(7)
C(6)-C(5)-C(7)
109.5(3)
N(1)#2-Cu(1)-F(1)
91.47(7)
C(4)-C(5)-C(8)
109.2(3)
N(1)-Cu(1)-F(1)
91.47(7)
C(6)-C(5)-C(8)
110.1(3)
N(1)#3-Cu(1)-F(1)
91.47(7)
C(7)-C(5)-C(8)
108.8(2)
F(3)#4-Cu(1)-F(1)
180.000(1)
C(5)-C(6)-H(2A)
109.5
P(1)-F(1)-Cu(1)
180.0
C(5)-C(6)-H(2B)
109.5
P(1)-F(3)-Cu(1)#5
180.0
H(2A)-C(6)-H(2B)
109.5
C(1)-N(1)-N(2)
106.2(2)
C(5)-C(6)-H(2C)
109.5
C(1)-N(1)-Cu(1)
130.2(2)
H(2A)-C(6)-H(2C)
109.5
N(2)-N(1)-Cu(1)
123.36(17)
H(2B)-C(6)-H(2C)
109.5
C(4)-N(2)-N(1)
112.3(2)
C(5)-C(7)-H(3A)
109.5
C(4)-N(2)-H(2)
123.8
C(5)-C(7)-H(3B)
109.5
N(1)-N(2)-H(2)
123.8
H(3A)-C(7)-H(3B)
109.5
F(1)-P(1)-F(2)#1
92.15(11)
C(5)-C(7)-H(3C)
109.5
F(1)-P(1)-F(2)#2
92.15(11)
H(3A)-C(7)-H(3C)
109.5
F(2)#1-P(1)-F(2)#2
H(3B)-C(7)-H(3C)
109.5
F(1)-P(1)-F(2)
92.15(11)
C(5)-C(8)-H(4A)
109.5
F(2)#1-P(1)-F(2)
89.920(9)
C(5)-C(8)-H(4B)
109.5
F(2)#2-P(1)-F(2)
89.920(9)
H(4A)-C(8)-H(4B)
109.5
F(1)-P(1)-F(2)#3
92.15(11)
C(5)-C(8)-H(4C)
109.5
F(2)#1-P(1)-F(2)#3
89.919(9)
H(4A)-C(8)-H(4C)
109.5
F(2)#2-P(1)-F(2)#3
89.919(9)
204
177.06(14)
175.7(2)
F(2)-P(1)-F(2)#3
175.7(2)
F(2)#2-P(1)-F(3)
87.85(11)
F(1)-P(1)-F(3)
180.000(1)
F(2)-P(1)-F(3)
87.85(11)
F(2)#3-P(1)-F(3)
87.85(11)
F(2)#1-P(1)-F(3)
87.85(11)
Table A.70: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103) for {(HpztBu,4CN)2Mn(CF3COO)2}n·C7H8. U(eq) is defined as one third of the trace of the
orthogonalized Uij tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
C(1)
5150(4)
6252(2)
8855(3)
36(1)
C(2)
5062(3)
8212(2)
6813(3)
34(1)
C(3)
5787(3)
7748(2)
7964(3)
32(1)
C(4)
5436(4)
6919(3)
8467(3)
39(1)
C(5)
6888(3)
8268(3)
8492(3)
36(1)
C(6)
8021(4)
8116(4)
9713(4)
61(1)
C(7)
8534(6)
7083(7)
9658(6)
127(4)
C(8)
7663(4)
8117(4)
10785(4)
56(1)
C(9)
8946(6)
8905(8)
9884(6)
172(5)
C(10)
2232(4)
9362(4)
3759(4)
71(2)
C(11)
1336(6)
8747(9)
4075(6)
123(4)
C(101)
5360(20)
24(9)
1242(17)
227(12)
C(102)
5980(20)
596(12)
748(18)
306(17)
C(103)
5610(20)
551(10)
-561(16)
220(12)
C(105)
7250(40)
980(30)
1520(50)
530(30)
F(1)
1811(5)
8243(7)
5040(5)
259(5)
F(2)
523(10)
9370(6)
4145(14)
325(7)
F(3)
680(5)
8156(5)
3244(5)
191(4)
Mn(1)
5000
N(1)
6766(3)
N(2)
10000
5000
21(1)
8979(2)
7667(3)
35(1)
5661(3)
8963(2)
6638(2)
28(1)
O(1)
1857(3)
9599(4)
2652(3)
106(2)
O(2)
3219(2)
9509(2)
4652(3)
205
51(1)________________
Table
A.71:
Anisotropic
displacement
parameters
(Å2x
103)
for
{(HpztBu,4CN
)2Mn(CF3COO)2}n·C7H8. The anisotropic displacement factor exponent takes the form: -2π2[
h2a*2U11 + ... + 2 h k a* b* U12 ].
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
C(1)
69(2)
16(2)
22(2)
4(1)
22(2)
-10(2)
C(2)
45(2)
24(2)
27(2)
4(1)
12(2)
-8(1)
C(3)
45(2)
24(2)
28(2)
6(1)
18(2)
2(1)
C(4)
59(2)
29(2)
27(2)
1(1)
19(2)
2(2)
C(5)
36(2)
45(2)
31(2)
15(2)
18(2)
8(2)
C(6)
32(2)
102(4)
41(2)
37(2)
11(2)
5(2)
C(7)
103(5)
215(9)
73(4)
70(5)
49(4)
118(6)
C(8)
52(2)
74(3)
30(2)
8(2)
8(2)
-4(2)
C(9)
64(4)
294(12)
80(4)
112(6)
-37(3)
-91(6)
C(10)
44(2)
101(4)
51(3)
31(3)
4(2)
-33(3)
C(11)
49(3)
235(11)
61(4)
49(5)
2(3)
-50(5)
C(101) 520(30)
103(8)
218(16)
99(9)
310(20)
173(14)
C(102) 590(40)
213(15)
340(20)
191(16)
410(30)
290(20)
C(103) 470(30)
107(9)
181(14)
86(9)
230(20)
165(15)
C(105) 510(60)
420(50)
690(80)
10(50)
280(60)
110(50)
F(1)
129(4)
419(11)
132(4)
172(6)
-30(3)
-161(6)
F(2)
355(12)
164(6)
700(20)
28(10)
456(16)
-31(8)
F(3)
136(4)
243(7)
128(4)
70(4)
-2(3)
-138(5)
Mn(1)
28(1)
14(1)
19(1)
0(1)
11(1)
-1(1)
N(1)
30(1)
43(2)
28(1)
11(1)
10(1)
-5(1)
N(2)
33(1)
23(1)
24(1)
4(1)
10(1)
-2(1)
O(1)
63(2)
164(4)
52(2)
51(2)
-11(2)
-68(3)
O(2)
32(1)
71(2)
44(2)
22(1)
10(1)
-12(1)
______________________________________________________________________________
206
Table A.72: Bond distances [Å] for {(HpztBu,4CN)2Mn(CF3COO)2}n·C7H8.
C(1)-C(4)
1.135(5)
C(11)-F(1)
1.235(8)
C(1)-Mn(1)#1
2.229(3)
C(11)-F(2)
1.329(12)
C(2)-N(2)
1.317(4)
C(101)-C(103)#2
1.35(3)
C(2)-C(3)
1.406(5)
C(101)-C(102)
1.38(2)
C(3)-C(5)
1.391(5)
C(102)-C(103)
1.42(2)
C(3)-C(4)
1.421(5)
C(102)-C(105)
1.50(5)
C(5)-N(1)
1.334(4)
C(103)-C(101)#2
1.35(3)
C(5)-C(6)
1.508(5)
Mn(1)-O(2)#3
2.124(3)
C(6)-C(9)
1.496(8)
Mn(1)-O(2)
2.124(3)
C(6)-C(8)
1.524(6)
Mn(1)-C(1)#4
2.229(3)
C(6)-C(7)
1.539(9)
Mn(1)-C(1)#5
2.229(3)
C(10)-O(2)
1.215(5)
Mn(1)-N(2)#3
2.240(3)
C(10)-O(1)
1.231(5)
Mn(1)-N(2)
2.240(3)
C(10)-C(11)
1.546(7)
N(1)-N(2)
1.358(4)
C(11)-F(3)
1.245(10)
Table A.73: Bond angles [°] for {(HpztBu,4CN)2Mn(CF3COO)2}n·C7H8.
C(4)-C(1)-Mn(1)#1
166.8(3)
C(5)-C(6)-C(7)
107.3(5)
N(2)-C(2)-C(3)
110.2(3)
O(2)-C(10)-O(1)
130.3(4)
C(5)-C(3)-C(2)
106.1(3)
O(2)-C(10)-C(11)
113.8(4)
C(5)-C(3)-C(4)
128.0(3)
O(1)-C(10)-C(11)
115.8(4)
C(2)-C(3)-C(4)
125.9(3)
F(3)-C(11)-F(1)
104.9(9)
C(1)-C(4)-C(3)
179.2(4)
F(3)-C(11)-F(2)
102.9(8)
N(1)-C(5)-C(3)
105.1(3)
F(1)-C(11)-F(2)
110.0(9)
N(1)-C(5)-C(6)
124.3(3)
F(3)-C(11)-C(10)
114.9(6)
C(3)-C(5)-C(6)
130.6(3)
F(1)-C(11)-C(10)
115.7(5)
C(9)-C(6)-C(8)
111.3(6)
F(2)-C(11)-C(10)
107.6(8)
C(9)-C(6)-C(5)
110.1(4)
C(103)#2-C(101)-C(102) 124.5(17)
C(8)-C(6)-C(5)
109.2(3)
C(101)-C(102)-C(103)
119(2)
C(9)-C(6)-C(7)
110.8(6)
C(101)-C(102)-C(105)
123(2)
C(8)-C(6)-C(7)
108.0(4)
C(103)-C(102)-C(105)
115(2)
207
C(101)#2-C(103)-C(102) 117(2)
O(2)#3-Mn(1)-N(2)
94.88(10)
O(2)#3-Mn(1)-O(2)
O(2)-Mn(1)-N(2)
85.11(10)
180.00(16)
O(2)#3-Mn(1)-C(1)#4
90.07(14)
C(1)#4-Mn(1)-N(2)
88.01(11)
O(2)-Mn(1)-C(1)#4
89.93(14)
C(1)#5-Mn(1)-N(2)
91.99(11)
O(2)#3-Mn(1)-C(1)#5
89.93(14)
N(2)#3-Mn(1)-N(2)
180.0
O(2)-Mn(1)-C(1)#5
90.07(14)
C(5)-N(1)-N(2)
113.2(3)
C(1)#4-Mn(1)-C(1)#5
180.00(14)
C(2)-N(2)-N(1)
105.4(3)
O(2)#3-Mn(1)-N(2)#3
85.12(10)
C(2)-N(2)-Mn(1)
127.5(2)
O(2)-Mn(1)-N(2)#3
94.88(10)
N(1)-N(2)-Mn(1)
127.1(2)
C(1)#4-Mn(1)-N(2)#3
91.99(11)
C(10)-O(2)-Mn(1)
138.3(3)
C(1)#5-Mn(1)-N(2)#3
88.01(11)
Table A.74: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103) for [(Hpzt-Bu,4CN)2CuCl(η-Cl)]2 . U(eq) is defined as one third of the trace of the orthogonalized
Uij tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
C(1)
-4352(3)
-352(1)
8194(2)
18(1)
C(2)
-5344(3)
-713(1)
7373(2)
17(1)
C(3)
-7195(3)
-996(1)
7366(2)
21(1)
C(4)
-4176(3)
-736(1)
6602(2)
17(1)
C(5)
-4463(3)
-1040(1)
5522(2)
20(1)
C(6)
-2799(5)
-884(2)
4952(2)
59(1)
C(7)
-4329(5)
-1632(1)
5779(2)
40(1)
C(8)
-6574(5)
-904(1)
4774(2)
47(1)
C(9)
1375(3)
1268(1)
10315(2)
18(1)
C(10)
2756(3)
1689(1)
10338(2)
19(1)
C(11)
3203(3)
2107(1)
11141(2)
23(1)
C(12)
3503(3)
1627(1)
9404(2)
20(1)
208
C(13)
5006(4)
1951(1)
8955(2)
25(1)
C(14)
4004(4)
2487(1)
8552(3)
41(1)
C(15)
6956(4)
2036(1)
9883(2)
35(1)
C(16)
5561(6)
1649(1)
8008(3)
56(1)
Cl(1)
-2106(1)
405(1)
10149(1)
17(1)
Cl(2)
890(1)
352(1)
7252(1)
19(1)
Cu(1)
-484(1)
340(1)
8759(1)
14(1)
N(1)
-2678(3)
-164(1)
7957(1)
16(1)
N(2)
-2607(3)
-405(1)
6990(1)
17(1)
N(3)
-8666(3)
-1218(1)
7382(2)
30(1)
N(4)
1262(3)
967(1)
9423(2)
18(1)
N(5)
2578(3)
1192(1)
8895(2)
20(1)
N(6)
3538(3)
2443(1)
11781(2)
36(1)
________________________________________________________________________________
Anisotropic displacement parameters (Å2x 103) for [(Hpzt-Bu,4CN)2CuCl(η-Cl)]2. The
anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
Table A.75:
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
C(1)
15(1)
21(1)
20(1)
-1(1)
6(1)
-1(1)
C(2)
15(1)
16(1)
20(1)
-1(1)
4(1)
-1(1)
C(3)
21(1)
22(1)
22(1)
-9(1)
7(1)
-1(1)
C(4)
17(1)
16(1)
16(1)
2(1)
1(1)
0(1)
C(5)
21(1)
24(1)
15(1)
-4(1)
4(1)
-3(1)
C(6)
65(2)
90(3)
34(2)
-37(2)
33(2)
-47(2)
C(7)
61(2)
25(1)
34(2)
-7(1)
12(1)
7(1)
C(8)
48(2)
57(2)
26(1)
-13(1)
-11(1)
20(2)
C(9)
16(1)
17(1)
20(1)
-1(1)
5(1)
2(1)
C(10)
18(1)
16(1)
22(1)
-1(1)
3(1)
1(1)
C(11)
21(1)
23(1)
25(1)
-2(1)
7(1)
-1(1)
C(12)
21(1)
15(1)
22(1)
-1(1)
5(1)
-2(1)
C(13)
29(1)
18(1)
30(1)
-1(1)
12(1)
-8(1)
209
C(14)
29(1)
34(2)
53(2)
22(1)
0(1)
-8(1)
C(15)
19(1)
31(1)
52(2)
9(1)
9(1)
-2(1)
C(16)
83(2)
47(2)
59(2)
-20(2)
54(2)
-38(2)
Cl(1)
16(1)
19(1)
16(1)
-2(1)
7(1)
-2(1)
Cl(2)
20(1)
23(1)
15(1)
-1(1)
7(1)
-6(1)
Cu(1)
14(1)
16(1)
13(1)
-1(1)
5(1)
-3(1)
N(1)
16(1)
20(1)
14(1)
-2(1)
4(1)
-1(1)
N(2)
18(1)
23(1)
13(1)
-1(1)
6(1)
-3(1)
N(3)
24(1)
30(1)
39(1)
-14(1)
14(1)
-9(1)
N(4)
17(1)
17(1)
20(1)
1(1)
8(1)
-2(1)
N(5)
23(1)
19(1)
21(1)
-2(1)
11(1)
-7(1)
N(6)
37(1)
33(1)
39(1)
-13(1)
12(1)
-4(1)
______________________________________________________________________________
Table A.76: Bond distances [Å] for [(Hpzt-Bu,4CN)2CuCl(η-Cl)]2.
C(1)-N(1)
1.325(3)
C(8)-H(8C)
0.9800
C(1)-C(2)
1.400(3)
C(9)-N(4)
1.329(3)
C(1)-H(1)
0.9500
C(9)-C(10)
1.403(3)
C(2)-C(4)
1.391(3)
C(9)-H(16)
0.9500
C(2)-C(3)
1.434(3)
C(10)-C(12)
1.390(3)
C(3)-N(3)
1.143(3)
C(10)-C(11)
1.427(3)
C(4)-N(2)
1.333(3)
C(11)-N(6)
1.142(3)
C(4)-C(5)
1.514(3)
C(12)-N(5)
1.334(3)
C(5)-C(7)
1.519(3)
C(12)-C(13)
1.514(3)
C(5)-C(8)
1.524(3)
C(13)-C(15)
1.524(3)
C(5)-C(6)
1.524(3)
C(13)-C(16)
1.526(4)
C(6)-H(6A)
0.9800
C(13)-C(14)
1.531(3)
C(6)-H(6B)
0.9800
C(14)-H(10A)
0.9800
C(6)-H(6C)
0.9800
C(14)-H(10B)
0.9800
C(7)-H(7A)
0.9800
C(14)-H(10C)
0.9800
C(7)-H(7B)
0.9800
C(15)-H(11A)
0.9800
C(7)-H(7C)
0.9800
C(15)-H(11B)
0.9800
C(8)-H(8A)
0.9800
C(15)-H(11C)
0.9800
C(8)-H(8B)
0.9800
C(16)-H(9A)
0.9800
210
C(16)-H(9B)
0.9800
Cu(1)-N(4)
2.0115(18)
C(16)-H(9C)
0.9800
Cu(1)-Cl(1)#1
2.6779(6)
Cl(1)-Cu(1)
2.2787(5)
N(1)-N(2)
1.358(2)
Cl(1)-Cu(1)#1
2.6779(6)
N(2)-H(2)
0.8800
Cl(2)-Cu(1)
2.2965(6)
N(4)-N(5)
1.356(2)
Cu(1)-N(1)
2.0060(17)
N(5)-H(5)
0.8800
Table A.77: Bond angles [°] for [(Hpzt-Bu,4CN)2CuCl(η-Cl)]2.
N(1)-C(1)-C(2)
110.03(19)
C(5)-C(7)-H(7C)
109.5
N(1)-C(1)-H(1)
125.0
H(7A)-C(7)-H(7C)
109.5
C(2)-C(1)-H(1)
125.0
H(7B)-C(7)-H(7C)
109.5
C(4)-C(2)-C(1)
106.24(18)
C(5)-C(8)-H(8A)
109.5
C(4)-C(2)-C(3)
128.6(2)
C(5)-C(8)-H(8B)
109.5
C(1)-C(2)-C(3)
125.2(2)
H(8A)-C(8)-H(8B)
109.5
N(3)-C(3)-C(2)
178.6(2)
C(5)-C(8)-H(8C)
109.5
N(2)-C(4)-C(2)
105.27(18)
H(8A)-C(8)-H(8C)
109.5
N(2)-C(4)-C(5)
122.87(19)
H(8B)-C(8)-H(8C)
109.5
C(2)-C(4)-C(5)
131.85(19)
N(4)-C(9)-C(10)
109.87(19)
C(4)-C(5)-C(7)
108.64(19)
N(4)-C(9)-H(16)
125.1
C(4)-C(5)-C(8)
108.30(19)
C(10)-C(9)-H(16)
125.1
C(7)-C(5)-C(8)
110.0(2)
C(12)-C(10)-C(9)
106.35(19)
C(4)-C(5)-C(6)
110.07(19)
C(12)-C(10)-C(11)
127.7(2)
C(7)-C(5)-C(6)
109.7(2)
C(9)-C(10)-C(11)
125.9(2)
C(8)-C(5)-C(6)
110.1(2)
N(6)-C(11)-C(10)
179.2(3)
C(5)-C(6)-H(6A)
109.5
N(5)-C(12)-C(10)
105.14(19)
C(5)-C(6)-H(6B)
109.5
N(5)-C(12)-C(13)
122.7(2)
H(6A)-C(6)-H(6B)
109.5
C(10)-C(12)-C(13)
132.1(2)
C(5)-C(6)-H(6C)
109.5
C(12)-C(13)-C(15)
108.9(2)
H(6A)-C(6)-H(6C)
109.5
C(12)-C(13)-C(16)
109.85(19)
H(6B)-C(6)-H(6C)
109.5
C(15)-C(13)-C(16)
108.5(2)
C(5)-C(7)-H(7A)
109.5
C(12)-C(13)-C(14)
108.2(2)
C(5)-C(7)-H(7B)
109.5
C(15)-C(13)-C(14)
110.3(2)
H(7A)-C(7)-H(7B)
109.5
C(16)-C(13)-C(14)
111.1(2)
211
C(13)-C(14)-H(10A)
109.5
N(4)-Cu(1)-Cl(1)
88.69(5)
C(13)-C(14)-H(10B)
109.5
N(1)-Cu(1)-Cl(2)
90.21(5)
H(10A)-C(14)-H(10B)
109.5
N(4)-Cu(1)-Cl(2)
90.45(5)
C(13)-C(14)-H(10C)
109.5
Cl(1)-Cu(1)-Cl(2)
173.22(2)
H(10A)-C(14)-H(10C)
109.5
N(1)-Cu(1)-Cl(1)#1
96.38(5)
H(10B)-C(14)-H(10C)
109.5
N(4)-Cu(1)-Cl(1)#1
95.93(5)
C(13)-C(15)-H(11A)
109.5
Cl(1)-Cu(1)-Cl(1)#1
92.493(18)
C(13)-C(15)-H(11B)
109.5
Cl(2)-Cu(1)-Cl(1)#1
94.290(19)
H(11A)-C(15)-H(11B)
109.5
C(1)-N(1)-N(2)
105.41(17)
C(13)-C(15)-H(11C)
109.5
C(1)-N(1)-Cu(1)
132.46(15)
H(11A)-C(15)-H(11C)
109.5
N(2)-N(1)-Cu(1)
122.09(13)
H(11B)-C(15)-H(11C)
109.5
C(4)-N(2)-N(1)
113.05(17)
C(13)-C(16)-H(9A)
109.5
C(4)-N(2)-H(2)
123.5
C(13)-C(16)-H(9B)
109.5
N(1)-N(2)-H(2)
123.5
H(9A)-C(16)-H(9B)
109.5
C(9)-N(4)-N(5)
105.29(17)
C(13)-C(16)-H(9C)
109.5
C(9)-N(4)-Cu(1)
133.60(15)
H(9A)-C(16)-H(9C)
109.5
N(5)-N(4)-Cu(1)
120.95(13)
H(9B)-C(16)-H(9C)
109.5
C(12)-N(5)-N(4)
113.34(18)
C(12)-N(5)-H(5)
123.3
N(4)-N(5)-H(5)
123.3
Cu(1)-Cl(1)-Cu(1)#1
87.507(18)
N(1)-Cu(1)-N(4)
167.59(7)
N(1)-Cu(1)-Cl(1)
89.20(5)
Table A.78: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x
103) for {[(pzt-Bu,4CN)3Ag3]}n·CH3CN. U(eq) is defined as one third of the trace of the
orthogonalized Uij tensor.
________________________________________________________________________________
x
y
z
U(eq)
________________________________________________________________________________
Ag(1)
9636(1)
3507(1)
4519(1)
24(1)
Ag(2)
8986(1)
4412(1)
6795(1)
24(1)
Ag(3)
11651(1)
2126(1)
5988(1)
22(1)
C(1)
6999(6)
5531(4)
4668(4)
22(1)
C(2)
5849(5)
6134(4)
5392(4)
21(1)
C(3)
4576(6)
6850(4)
5262(4)
25(1)
C(4)
6220(5)
5901(4)
6253(4)
20(1)
212
C(5)
5339(6)
6320(5)
7263(4)
27(1)
C(6)
6044(7)
5782(6)
8043(4)
48(2)
C(7)
3845(6)
5942(5)
7512(4)
35(2)
C(8)
5144(7)
7706(5)
7277(5)
45(2)
C(9)
10574(6)
4324(4)
8355(4)
22(1)
C(10)
11691(5)
3610(4)
8629(4)
20(1)
C(11)
12114(6)
3815(5)
9461(4)
28(1)
C(12)
12284(5)
2722(4)
7924(4)
17(1)
C(13)
13533(5)
1699(4)
7895(4)
22(1)
C(14)
13984(6)
982(5)
6959(4)
29(1)
C(15)
14847(6)
2219(5)
7945(5)
42(2)
C(16)
13052(7)
856(5)
8777(4)
43(2)
C(17)
11935(5)
102(4)
4590(4)
21(1)
C(18)
11554(5)
-110(4)
3774(4)
18(1)
C(19)
11607(5)
-1268(5)
3425(4)
21(1)
C(20)
10967(5)
1033(4)
3465(4)
17(1)
C(21)
10458(5)
1310(4)
2599(4)
19(1)
C(22)
10045(7)
2663(5)
2441(4)
32(1)
C(23)
9159(6)
710(5)
2706(4)
33(1)
C(24)
11695(7)
831(6)
1691(4)
39(2)
C(101)
7278(9)
2916(7)
9364(6)
65(2)
C(102)
8215(9)
2374(7)
9897(6)
60(2)
N(1)
8011(4)
4980(4)
5056(3)
20(1)
N(2)
7527(4)
5211(3)
6035(3)
21(1)
N(3)
3566(5)
7421(4)
5167(4)
38(1)
N(4)
10497(4)
3892(4)
7555(3)
21(1)
N(5)
11561(4)
2898(3)
7284(3)
20(1)
N(6)
12427(6)
3987(5)
10127(4)
49(2)
N(7)
11607(4)
1268(3)
4774(3)
20(1)
N(8)
10998(4)
1836(3)
4082(3)
19(1)
N(9)
11617(5)
-2203(4)
3166(4)
31(1)
1949(9)
10316(7)
113(3)
N(101)
8971(10)
________________________________________________________________________________
213
Table A.79: Anisotropic displacement parameters (Å2x 103) for {[(pzt-Bu,4CN)3Ag3]}n·CH3CN. The
anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
______________________________________________________________________________
U11
U22
U33
U23
U13
U12
______________________________________________________________________________
Ag(1)
24(1)
17(1)
29(1)
-4(1)
-9(1)
4(1)
Ag(2)
19(1)
24(1)
31(1)
-1(1)
-13(1)
3(1)
Ag(3)
24(1)
21(1)
24(1)
-5(1)
-11(1)
-1(1)
C(1)
26(3)
23(3)
20(3)
4(2)
-12(3)
-4(2)
C(2)
15(3)
15(2)
32(3)
1(2)
-11(3)
3(2)
C(3)
24(3)
20(3)
30(3)
7(2)
-10(3)
-4(2)
C(4)
14(3)
11(2)
33(3)
-1(2)
-7(2)
-1(2)
C(5)
21(3)
28(3)
32(3)
-3(2)
-6(3)
-1(2)
C(6)
34(4)
72(5)
32(4)
-17(3)
-12(3)
15(3)
C(7)
22(3)
43(4)
34(4)
-1(3)
-1(3)
-4(3)
C(8)
42(4)
27(3)
63(5)
-19(3)
-9(4)
-2(3)
C(9)
21(3)
23(3)
20(3)
-7(2)
-3(2)
0(2)
C(10)
14(3)
24(3)
24(3)
-5(2)
-6(2)
-2(2)
C(11)
27(3)
29(3)
25(3)
-8(3)
-7(3)
6(2)
C(12)
10(3)
18(2)
22(3)
-2(2)
-3(2)
-2(2)
C(13)
14(3)
24(3)
26(3)
-2(2)
-8(2)
2(2)
C(14)
22(3)
28(3)
35(4)
-7(3)
-11(3)
7(2)
C(15)
20(3)
43(4)
64(5)
-17(3)
-19(3)
5(3)
C(16)
49(4)
38(3)
36(4)
8(3)
-16(3)
10(3)
C(17)
16(3)
19(3)
28(3)
-3(2)
-10(2)
3(2)
C(18)
11(3)
18(2)
23(3)
-4(2)
-2(2)
0(2)
C(19)
15(3)
22(3)
24(3)
-2(2)
-2(2)
-1(2)
C(20)
13(3)
15(2)
19(3)
-2(2)
-2(2)
1(2)
C(21)
21(3)
20(3)
18(3)
-2(2)
-9(2)
-3(2)
C(22)
45(4)
28(3)
32(4)
7(3)
-24(3)
-7(3)
C(23)
36(4)
37(3)
36(4)
7(3)
-22(3)
-15(3)
C(24)
40(4)
48(4)
23(3)
-2(3)
-9(3)
2(3)
C(101)
74(6)
72(5)
60(5)
-2(4)
-38(5)
-12(4)
C(102)
65(6)
78(6)
42(5)
7(4)
-23(4)
-14(4)
214
N(1)
17(2)
21(2)
22(3)
-1(2)
-7(2)
0(2)
N(2)
14(2)
19(2)
29(3)
-2(2)
-7(2)
1(2)
N(3)
28(3)
35(3)
50(4)
8(2)
-17(3)
5(2)
N(4)
19(2)
19(2)
24(3)
-4(2)
-11(2)
4(2)
N(5)
18(2)
19(2)
23(3)
-3(2)
-11(2)
2(2)
N(6)
53(4)
59(4)
39(4)
-17(3)
-30(3)
14(3)
N(7)
19(2)
19(2)
20(2)
-2(2)
-6(2)
1(2)
N(8)
19(2)
14(2)
23(3)
-4(2)
-7(2)
4(2)
N(9)
30(3)
23(3)
39(3)
-4(2)
-11(2)
-3(2)
N(101) 101(7)
153(9)
92(7)
30(6)
-49(6)
-19(6)
______________________________________________________________________________
Table A.80: Bond distances [Å] for {[(pzt-Bu,4CN)3Ag3]}n·CH3CN.
Ag(1)-N(1)
2.101(4)
C(6)-H(23C)
0.9800
Ag(1)-N(8)
2.125(4)
C(7)-H(25A)
0.9800
Ag(1)-Ag(2)#1
3.1493(7)
C(7)-H(25B)
0.9800
Ag(2)-N(4)
2.109(4)
C(7)-H(25C)
0.9800
Ag(2)-N(2)
2.128(4)
C(8)-H(22A)
0.9800
Ag(2)-Ag(1)#1
3.1493(7)
C(8)-H(22B)
0.9800
Ag(3)-N(7)
2.091(4)
C(8)-H(22C)
0.9800
Ag(3)-N(5)
2.104(4)
C(9)-N(4)
1.322(7)
C(1)-N(1)
1.340(6)
C(9)-C(10)
1.397(7)
C(1)-C(2)
1.393(7)
C(9)-H(9)
0.9500
C(1)-H(1)
0.9500
C(10)-C(12)
1.400(7)
C(2)-C(4)
1.408(7)
C(10)-C(11)
1.446(8)
C(2)-C(3)
1.431(7)
C(11)-N(6)
1.145(7)
C(3)-N(3)
1.132(6)
C(12)-N(5)
1.328(6)
C(4)-N(2)
1.342(6)
C(12)-C(13)
1.528(6)
C(4)-C(5)
1.513(8)
C(13)-C(14)
1.535(7)
C(5)-C(7)
1.540(8)
C(13)-C(16)
1.543(7)
C(5)-C(8)
1.545(7)
C(13)-C(15)
1.546(8)
C(5)-C(6)
1.548(8)
C(14)-H(19A)
0.9800
C(6)-H(23A)
0.9800
C(14)-H(19B)
0.9800
C(6)-H(23B)
0.9800
C(14)-H(19C)
0.9800
215
C(15)-H(20A)
0.9800
C(22)-H(13A)
0.9800
C(15)-H(20B)
0.9800
C(22)-H(13B)
0.9800
C(15)-H(20C)
0.9800
C(22)-H(13C)
0.9800
C(16)-H(21A)
0.9800
C(23)-H(14A)
0.9800
C(16)-H(21B)
0.9800
C(23)-H(14B)
0.9800
C(16)-H(21C)
0.9800
C(23)-H(14C)
0.9800
C(17)-N(7)
1.326(6)
C(24)-H(17A)
0.9800
C(17)-C(18)
1.401(7)
C(24)-H(17B)
0.9800
C(17)-H(17)
0.9500
C(24)-H(17C)
0.9800
C(18)-C(20)
1.423(6)
C(101)-C(102)
1.422(10)
C(18)-C(19)
1.425(7)
C(101)-H(10A)
0.9800
C(19)-N(9)
1.144(6)
C(101)-H(10B)
0.9800
C(20)-N(8)
1.332(6)
C(101)-H(10C)
0.9800
C(20)-C(21)
1.492(7)
C(102)-N(101)
1.132(10)
C(21)-C(23)
1.521(7)
N(1)-N(2)
1.380(6)
C(21)-C(22)
1.532(7)
N(4)-N(5)
1.382(5)
C(21)-C(24)
1.545(7)
N(7)-N(8)
1.393(5)
Table A.81: Bond angles [°] for {[(pzt-Bu,4CN)3Ag3]}n·CH3CN.
N(1)-Ag(1)-N(8)
170.19(16)
N(3)-C(3)-C(2)
179.4(7)
N(1)-Ag(1)-Ag(2)#1
79.85(11)
N(2)-C(4)-C(2)
108.0(5)
N(8)-Ag(1)-Ag(2)#1
109.32(11)
N(2)-C(4)-C(5)
124.2(5)
N(4)-Ag(2)-N(2)
171.12(16)
C(2)-C(4)-C(5)
127.8(4)
N(4)-Ag(2)-Ag(1)#1
99.74(12)
C(4)-C(5)-C(7)
108.7(5)
N(2)-Ag(2)-Ag(1)#1
72.99(11)
C(4)-C(5)-C(8)
108.7(5)
N(7)-Ag(3)-N(5)
174.97(16)
C(7)-C(5)-C(8)
108.9(5)
N(1)-C(1)-C(2)
109.2(5)
C(4)-C(5)-C(6)
112.8(4)
N(1)-C(1)-H(1)
125.4
C(7)-C(5)-C(6)
108.5(5)
C(2)-C(1)-H(1)
125.4
C(8)-C(5)-C(6)
109.2(5)
C(1)-C(2)-C(4)
105.7(4)
C(5)-C(6)-H(23A)
109.5
C(1)-C(2)-C(3)
126.1(5)
C(5)-C(6)-H(23B)
109.5
C(4)-C(2)-C(3)
128.2(5)
H(23A)-C(6)-H(23B)
109.5
216
C(5)-C(6)-H(23C)
109.5
H(19A)-C(14)-H(19C)
109.5
H(23A)-C(6)-H(23C)
109.5
H(19B)-C(14)-H(19C)
109.5
H(23B)-C(6)-H(23C)
109.5
C(13)-C(15)-H(20A)
109.5
C(5)-C(7)-H(25A)
109.5
C(13)-C(15)-H(20B)
109.5
C(5)-C(7)-H(25B)
109.5
H(20A)-C(15)-H(20B)
109.5
H(25A)-C(7)-H(25B)
109.5
C(13)-C(15)-H(20C)
109.5
C(5)-C(7)-H(25C)
109.5
H(20A)-C(15)-H(20C)
109.5
H(25A)-C(7)-H(25C)
109.5
H(20B)-C(15)-H(20C)
109.5
H(25B)-C(7)-H(25C)
109.5
C(13)-C(16)-H(21A)
109.5
C(5)-C(8)-H(22A)
109.5
C(13)-C(16)-H(21B)
109.5
C(5)-C(8)-H(22B)
109.5
H(21A)-C(16)-H(21B)
109.5
H(22A)-C(8)-H(22B)
109.5
C(13)-C(16)-H(21C)
109.5
C(5)-C(8)-H(22C)
109.5
H(21A)-C(16)-H(21C)
109.5
H(22A)-C(8)-H(22C)
109.5
H(21B)-C(16)-H(21C)
109.5
H(22B)-C(8)-H(22C)
109.5
N(7)-C(17)-C(18)
109.2(4)
N(4)-C(9)-C(10)
109.0(5)
N(7)-C(17)-H(17)
125.4
N(4)-C(9)-H(9)
125.5
C(18)-C(17)-H(17)
125.4
C(10)-C(9)-H(9)
125.5
C(17)-C(18)-C(20)
106.0(4)
C(9)-C(10)-C(12)
105.3(5)
C(17)-C(18)-C(19)
125.0(4)
C(9)-C(10)-C(11)
124.9(5)
C(20)-C(18)-C(19)
128.6(5)
C(12)-C(10)-C(11)
129.7(5)
N(9)-C(19)-C(18)
178.1(6)
N(6)-C(11)-C(10)
179.0(6)
N(8)-C(20)-C(18)
106.9(4)
N(5)-C(12)-C(10)
108.6(4)
N(8)-C(20)-C(21)
125.7(4)
N(5)-C(12)-C(13)
125.0(4)
C(18)-C(20)-C(21)
127.4(5)
C(10)-C(12)-C(13)
126.4(5)
C(20)-C(21)-C(23)
110.2(4)
C(12)-C(13)-C(14)
111.4(4)
C(20)-C(21)-C(22)
112.4(4)
C(12)-C(13)-C(16)
108.5(4)
C(23)-C(21)-C(22)
108.7(4)
C(14)-C(13)-C(16)
109.5(5)
C(20)-C(21)-C(24)
108.6(4)
C(12)-C(13)-C(15)
109.6(4)
C(23)-C(21)-C(24)
109.6(5)
C(14)-C(13)-C(15)
108.3(4)
C(22)-C(21)-C(24)
107.3(4)
C(16)-C(13)-C(15)
109.5(5)
C(21)-C(22)-H(13A)
109.5
C(13)-C(14)-H(19A)
109.5
C(21)-C(22)-H(13B)
109.5
C(13)-C(14)-H(19B)
109.5
H(13A)-C(22)-H(13B)
109.5
H(19A)-C(14)-H(19B)
109.5
C(21)-C(22)-H(13C)
109.5
C(13)-C(14)-H(19C)
109.5
H(13A)-C(22)-H(13C)
109.5
217
H(13B)-C(22)-H(13C)
109.5
N(101)-C(102)-C(101)
179.4(11)
C(21)-C(23)-H(14A)
109.5
C(1)-N(1)-N(2)
108.0(4)
C(21)-C(23)-H(14B)
109.5
C(1)-N(1)-Ag(1)
128.2(4)
H(14A)-C(23)-H(14B)
109.5
N(2)-N(1)-Ag(1)
119.9(3)
C(21)-C(23)-H(14C)
109.5
C(4)-N(2)-N(1)
109.1(4)
H(14A)-C(23)-H(14C)
109.5
C(4)-N(2)-Ag(2)
136.8(4)
H(14B)-C(23)-H(14C)
109.5
N(1)-N(2)-Ag(2)
114.1(3)
C(21)-C(24)-H(17A)
109.5
C(9)-N(4)-N(5)
108.5(4)
C(21)-C(24)-H(17B)
109.5
C(9)-N(4)-Ag(2)
130.2(3)
H(17A)-C(24)-H(17B)
109.5
N(5)-N(4)-Ag(2)
121.0(3)
C(21)-C(24)-H(17C)
109.5
C(12)-N(5)-N(4)
108.5(4)
H(17A)-C(24)-H(17C)
109.5
C(12)-N(5)-Ag(3)
137.6(3)
H(17B)-C(24)-H(17C)
109.5
N(4)-N(5)-Ag(3)
113.8(3)
C(102)-C(101)-H(10A)
109.5
C(17)-N(7)-N(8)
107.8(4)
C(102)-C(101)-H(10B)
109.5
C(17)-N(7)-Ag(3)
127.8(3)
H(10A)-C(101)-H(10B)
109.5
N(8)-N(7)-Ag(3)
123.8(3)
C(102)-C(101)-H(10C)
109.5
C(20)-N(8)-N(7)
110.1(4)
H(10A)-C(101)-H(10C)
109.5
C(20)-N(8)-Ag(1)
130.1(3)
H(10B)-C(101)-H(10C)
109.5
N(7)-N(8)-Ag(1)
114.5(3)
218