CYAOSCORPIOATES: EW STRUCTURAL MOTIFS FOR TRASITIO METAL COMPLEXES AD COIAGE METAL POLYMERS. A Thesis by John C. Bullinger Bachelor of Science, Wichita State University, 2005 Submitted to the Department of Chemistry and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Masters of Science. May 2009 Copyright 2009 by John C. Bullinger All Rights Reserved CYAOSCORPIOATES: EW STRUCTURAL MOTIFS FOR TRASITIO METAL COMPLEXES AD COIAGE METAL POLYMERS. The following faculty members have examined the final copy of the this thesis for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science with a major in Chemistry. David M. Eichhorn, Committee Chair D. Paul Rillema, Committee Member Michael Van Stipdonk, Committee Member Francis D’Souza, Committee Member Peer H. Moore-Jansen, Committee Member Accepted for the College of Liberal Arts & Sciences William D. Bischoff, Dean Accepted for the Graduate School J. David McDonald, Associate Provost of Research And Dean of the Graduate School iii DEDICATIO For My Family iv ACKOWLEDGEMETS First and foremost, I would like to thank my beautiful wife Cathy, for believing in me and giving me the support I needed to succeed, both emotional as well as financially. I would also like to thank my children, Alex and Will for their unconditional love which has made my life complete and worthwhile. I must give a special thanks to my dad for teaching me to be gracious and caring towards other people, and my mother for always standing by me even when she shouldn’t have. Finally, I would like to give my big thanks to my In-Laws, Bill and Vicki who are truly wonderful people that have helped me as well as my family in numerous way, and for some strange reason thought I was good enough for their daughter. Graduate school would not have been possible if it were not for Dr. David Eichhorn’s advice and encouragement. As my graduate advisor, Dr. Eichhorn’s intelligence and knowledge is inspiring and he has always been encouraging and helpful even when I was pulling off solvent using the Schlenk line pump with no nitrogen in the solvent trap. I would also like to give a special thanks to Dr. Curtis Moore, for his crystallography knowledge as well as his friendship. They were both a key factor in my success as a graduate student. Finally, thanks to all of the professors of the Chemistry Department at Wichita State University for their knowledge and help. I would also like to thank Elaine in the Chemistry library for helping a greenhorn find his articles, and Brenda, who was a life saver on numerous occasions. v ABSTRACT New complexes have been synthesized of scorpionate ligands with cyano substituents in the 4positions of the pyrazoles and tert-butyl substituents in the 3-positions of the pyrazoles. Reaction of Co2+, Mn2+, and Ni(cyclam)2+ (cyclam=1,4,8,11-tetraazacyclotetradecane) salts with KTpt-Bu,4CN in a 1:2 ratio produced new octahedral metal complexes of the form (Tpt-Bu,4CN)2ML4 (L4=(H2O)4, (H2O)2(MeOH)2, or cyclam). Unlike the sandwich complexes previously isolated with TpPh,4CN, the crystal structures showed none of the pyrazole nitrogen atoms coordinated to the metal. Rather, the metal is coordinated to one CN nitrogen atom from each ligand, with two Tp anions coordinated trans to each other around the metal center. This leaves the Tp pyrazole nitrogen atoms open for another metal to coordinate, which could to lead to heterometallic complexes, new coordination polymers, as well as the framework for supramolecular complexes. Attempts to insert metal ions into the pyrazole coordination pockets of these complexes have to date been unsuccessful. However, these attempts resulted in new Cu(I) and Ag(I) coordination polymers of the cyano-substituted scorpionate ligands as well as several new metal complexes of 3-tert-butyl4-cyanopyrazole. The newly isolated Tpt-Bu,4CNCu(I) polymer has the same structure as the one previously synthesized except for the acetonitrile which is crystallized in the lattice. This is a very good indication that there is some type of channel or pocket within the lattice which was not previously recognized. The newly isolated Tpt-Bu,4CNAg(I) polymers show various coordination motifs giving rise to different structural networks. vi TABLE OF COTETS Chapter 1. 2. Page INTRODUCTION ...........................................................................................................1 1.1 General Introduction............................................................................................1 1.2 Molecular-Based Materials .................................................................................3 1.3 Supramolecular Complexes ................................................................................7 1.4 Polypyrazolylborates .........................................................................................10 CYANOSCORPIONATE METAL COMPLEXES ......................................................16 2.1 Introdcution .......................................................................................................16 2.2 KTpt-Bu,4CN and KTpPh,4CN ..................................................................................18 2.3 Tpt-Bu,4CN Complexes of Co, Mn, and Ni ...........................................................21 2.4 Non-isomerized (TpPh,4CN)2Co ...........................................................................27 2.5 Inverted Sandwich Complex (TpPh,4CN)2Mn ......................................................30 2.6 Conclusion .........................................................................................................36 2.7 Experimental ......................................................................................................38 2.7.1 General ..................................................................................................38 2.7.2 Synthesis of KTpt-Bu,4CN .........................................................................39 2.7.3 Synthesis of KTpPh,4CN ..........................................................................39 2.7.4 Synthesis of [(Tpt-Bu,4CN)2Co (H2O)4] ....................................................40 2.7.5 Synthesis of [(Tpt-Bu,4CN)2Mn(H2O)4] ....................................................40 2.7.6 Synthesis of [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2] .....................................41 2.7.7 Synthesis of [(Tpt-Bu,4CN)2 Mn(MeOH)2(H2O)2] ....................................41 2.7.8 Synthesis of [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH .......................................42 2.7.9 Synthesis of Co(κ3-TpPh,4CN)(κ2-TpPh,4CN) ..............................................42 vii TABLE OF COTETS (continued) Chapter Page 2.7.10 Synthesis of [(TpPh,4CN)2 Mn(MeOH)2(H2O)2] ......................................43 2.7.11 Synthesis of [(TpPh,4CN)2Mn(MeOH)4] ..................................................43 3. METAL COORDINATION POLYMERS ....................................................................45 3.1 Introduction .......................................................................................................45 3.2 Cu(I) Coordination Polymers{[Tpt-Bu,4CNCu][MeCN]}n and {[Tpt-Bu,4CNCu][MeOH]}n ..................................................................................47 3.3 Ag(I) Coordination Polymers {[Tpt-Bu,4CNAg]}n(Ag-1) ...................................50 3.4 Ag(I) Coordination Polymers (Ag-2.)...............................................................52 3.5 Ag(I) Coordination Polymers (Ag-3)................................................................54 3.6 Ag(I) Coordination Polymers (Ag-4) ...............................................................56 3.7 Experimental......................................................................................................58 3.8 4. 3.7.1 General .................................................................................................58 3.7.2 Synthesis of {[Tpt-Bu,4CNCu][MeCN]}n and {[Tpt-tu,4CNCu][MeOH]}n ......................................................................58 3.7.3 Synthesis of Ag-1 .................................................................................58 3.7.4 Synthesis of Ag-2 .................................................................................58 3.7.5 Synthesis of Ag-3 .................................................................................59 3.7.6 Synthesis of Ag-4 .................................................................................59 Conclusion 60 METAL PYRAZOLE COMPLEXES ...........................................................................61 4.1 Introduction .......................................................................................................61 4.2 Reaction of (Tpt-Bu,4CN)2C(MeOH)2(H2O)2 with CuSPh ...................................62 viii TABLE OF COTETS (continued) Chapter 4.3 Reaction of [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH with [Cu(CH3CN)4]PF6 and NaSPh ........................................................................................................64 4.4 Reaction of KTpt-Bu,4CN with Mn(CF3COO)2.....................................................66 4.5 Reaction of [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH with CuCl2 ...........,....................68 4.6 Reaction of (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2 with AgBF4 ..........,......................69 4.7 Experimental ......................................................................................................71 4.8 5. Page 4.7.1 General ..................................................................................................71 4.7.2 Synthesis of {(Hpzt-Bu,4CN)4Cu(ClO4)}n .................................................71 4.7.3 Synthesis of {(Hpzt-Bu,4CN)4Cu(PF6)}n ...................................................71 4.7.4 Synthesis of {(Hpzt-Bu,4CN)2Mn(CF3COO)2}n ........................................71 4.7.5 Synthesis of the [(Hpzt-Bu,4CN)4Cu2]Cl4 dimer .......................................72 4.7.6 Synthesis of {[(pzt-Bu,4CN)6Ag6]}n·CH3CN ............................................72 Conclusion .........................................................................................................73 CONCLUSION ..............................................................................................................74 REFERENCES ..............................................................................................................76 APPENDIX (CRYSTALLOGRAPHIC DATA)............................................................79 ix LIST OF TABLES Table Page Table 2.2.1 Bond Lengths (Å) and Angles (deg.) for KTpt-Bu,4CN .......................................19 Table 2.2.2: Bond Lengths (Å) and Angles (deg.) for KTpPh,4CN .........................................19 Table 2.3.1 Bond Lengths (Å) and Angles (deg) for KTpt-Bu,4CN , KTpPh,4CN, [(Tpt-Bu,4CN)2 Co(H2O)4], [(Tpt-Bu,4CN)2Mn(H2O)4], [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2], [(Tpt-Bu,4CN)2 Mn(MeOH)2(H2O)2], and [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH ........22 Table 2.4.1 Selected bond distances (Å) and angles (deg) for Co(κ3-TpPh,4CN) (κ2-TpPh,4CN) and Co(κ3-TpPh)(κ2-TpPh) ........................................................... 28 Table 2.5.1 Bond Lengths (Å) and Angles (deg) for (TpPh,4CN)2Mn(MeOH)2(H2O)2 and (TpPh,4CN)2Mn(MeOH)4 .....................................................................................32 Table 3.2.1 Bond Lengths (Å) and Angles (deg.) for{[Tpt-Bu,4CNCu][MeCN]}n and {[Tpt-u,4CNCu][MeOH]}n ....................................................................................49 Table 3.3.1 Bond Lengths (Å) and Angles (deg.) for Ag-1 .................................................51 Table 3.4.1 Bond Lengths (Å) and Angles (deg.) for Ag-2 .................................................52 Table 3.5.1 Bond Lengths (Å) and Angles (deg.) for Ag-3 .................................................54 Table 3.6.1 Bond Lengths (Å) and Angles (deg.) for Ag-4 .................................................56 Table 4.2.1 Bond Lengths (Å) and Angles (deg.) for{(Hpz)4Cu(ClO4)}n ........................... 62 Table 4.3.1 Bond Lengths (Å) and Angles (deg.) for {(Hpz)4Cu(PF6)}n .............................64 Table 4.4.1 Bond Lengths (Å) and Angles (deg.) for {(Hpzt-Bu,4CN)2Mn(CF3COO)}n .........66 Table 4.5.1 Bond Lengths (Å) and Angles (deg.) for [(Hpz)4Cu2]Cl4 ..................................68 Table 4.6.1 Bond Lengths (Å) and Angles (deg.) for {[(pzt-Bu,4CN)6Ag6]}n...........................70 Table A.1 Crystallographic Data ........................................................................................82 Table A.2 Atomic coordinates and isotropic displacement parameters for KTpt-Bu,4CN......91 Table A.3 Anisotropic displacement parameters for KTpt-Bu,4CN........................................92 Table A.4 Bond lengths [Å] for KTpt-Bu,4CN........................................................................93 x LIST OF TABLES (continued) Table Page Table A.5 Bond angles[°] for KTpt-Bu,4CN ..........................................................................95 Table A.6 Atomic Coordinates and isotropic displacement parameters for KTpPh,4CN ......97 Table A.7 Anisotropic displacement parameters for KTpPh 4CN .........................................98 Table A.8 Bond lengths [Å] for KTpPh,4CN .........................................................................98 Table A.9 Bond angles[°] for KTpPh,4CN ............................................................................99 Table A.10 Atomic coordinates and isotropic displacement parameters for [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2]·0.15MeOH ..................................................100 Table A.11 Anisotropic displacement parameters for [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2] ·0.15MeOH ......................................................................................................102 Table A.12 Bond lengths [Å] for [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2] ·0.15MeOH ...............103 Table A.13 Bond angles[°] for [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2] ·0.15MeOH ..................104 Table A.14 Atomic coordinates and isotropic displacement parameters for [(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2] ....................................................................107 Table A.15 Anisotropic displacement parameters for [(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2]...108 Table A.16 Bond lengths [Å] for [(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2] .................................110 Table A.17 Bond angles[°] for [(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2] .....................................111 Table A.18 Atomic coordinates and isotropic displacement parameters for [(Tpt-Bu,4CN)2Co(H2O)4] ....................................................................................113 Table A.19 Anisotropic displacement parameters for [(Tpt-Bu,4CN)2Co(H2O)4] ..................114 Table A.20 Bond lengths [Å] for [(Tpt-Bu,4CN)2Co(H2O)4 ...................................................115 Table A.21 Bond angles[°] for [(Tpt-Bu,4CN)2Co(H2O)4 .......................................................117 Table A.22 Atomic coordinates and isotropic displacement parameters for [(Tpt-Bu,4CN)2Mn(H2O)4] ...................................................................................119 Table A.23 Anisotropic displacement parameters for [(Tpt-Bu,4CN)2Mn(H2O)4] .................120 xi LIST OF TABLES (continued) Table Page Table A.24 Bond lengths [Å] for [(Tpt-Bu,4CN)2Mn(H2O)4 ..................................................121 Table A.25 Bond angles[°] for [(Tpt-Bu,4CN)2Mn(H2O)4 ......................................................123 Table A.26 Atomic coordinates and isotropic displacement parameters for [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH .....................................................................125 Table A.27 Anisotropic displacement parameters for [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH ...126 Table A.28 Bond lengths [Å] for [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH....................................128 Table A.29 Bond angles[°] for [(Tpt-Bu,4CN)2Mn(H2O)4.......................................................129 Table A.30 Atomic coordinates and isotropic displacement parameters for Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)·3C7H8 .................................................................132 Table A.31 Anisotropic displacement parameters for Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)·3C7H8 .................................................................135 Table A.32 Bond lengths [Å] for Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)·3C7H8 ...............................138 Table A.33 Bond angles[°] for Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)·3C7H8 ...................................141 Table A.34 Atomic coordinates and isotropic displacement parameters for [(TpPh,4CN)2Mn(MeOH)2(H2O)2]·H2O ..............................................................145 Table A.35 Anisotropic displacement parameters for [(TpPh,4CN)2Mn(MeOH)2(H2O)2]·H2O...............................................................146 Table A.36 Bond lengths [Å] for [(TpPh,4CN)2Mn(MeOH)2(H2O)2]·H2O............................148 Table A.37 Bond angles[°] for [(TpPh,4CN)2Mn(MeOH)2(H2O)2]·Η2Ο................................149 Table A.38 Atomic coordinates and isotropic displacement parameters for [(TpPh,4CN)2Mn(MeOH)4] .................................................................................151 Table A.39 Anisotropic displacement parameters for [(TpPh,4CN)2Mn(MeOH)4] ...............153 Table A.40 Bond lengths [Å] for [(TpPh,4CN)2Mn(MeOH)4] ...............................................154 Table A.41 Bond angles[°] for [(TpPh,4CN)2Mn(MeOH)4] ..................................................156 Table A.42 Atomic coordinates and isotropic displacement parameters for {[Tpt-Bu,4CNCu][MeCN]}n .................................................................................158 xii LIST OF TABLES (continued) Table Page Table A.43 Anisotropic displacement parameters for {[Tpt-Bu,4CNCu][MeCN]}n...............159 Table A.44 Bond lengths [Å] for {[Tpt-Bu,4CNCu][MeCN]}n ..............................................161 Table A.45 Bond angles[°] for {[Tpt-Bu,4CNCu][MeCN]}n ..................................................162 Table A.46 Atomic coordinates and isotropic displacement parameters for Ag-1.............164 Table A.47 Anisotropic displacement parameters for Ag-1...............................................166 Table A.48 Bond lengths [Å] for Ag-1 ..............................................................................167 Table A.49 Bond angles[°] for Ag-1 ..................................................................................168 Table A.50 Atomic coordinates and isotropic displacement parameters for Ag-2 ............169 Table A.51 Anisotropic displacement parameters for Ag-2................................................171 Table A.52 Bond lengths [Å] for Ag-2 ..............................................................................173 Table A.53 Bond angles[°] for Ag-2 ..................................................................................175 Table A.54 Atomic coordinates and isotropic displacement parameters for Ag-3 ............178 Table A.55 Anisotropic displacement parameters for Ag-3 ...............................................180 Table A.56 Bond lengths [Å] for Ag-3...............................................................................183 Table A.57 Bond angles[°] for Ag-3...................................................................................185 Table A.58 Atomic coordinates and isotropic displacement parameters for Ag-4.............188 Table A.59 Anisotropic displacement parameters for Ag-4................................................191 Table A.60 Bond lengths [Å] for Ag-4...............................................................................192 Table A.61 Bond angles[°] for Ag-4...................................................................................193 Table A.62 Atomic coordinates and isotropic displacement parameters for {(Hpz)4Cu(ClO4)}n ..........................................................................................194 Table A.63 Anisotropic displacement parameters for {(Hpz)4Cu(ClO4)}n ........................196 xiii LIST OF TABLES (continued) Table Page Table A.64 Bond lengths [Å] for {(Hpz)4Cu(ClO4)}n ........................................................197 Table A.65 Bond angles[°] for {(Hpz)4Cu(ClO4)}n ...........................................................199 Table A.66 Atomic coordinates and isotropic displacement parameters for {(Hpzt-Bu,4CN)4Cu(PF6)}n ..................................................................................202 Table A.67 Anisotropic displacement parameters for {(Hpzt-Bu,4CN)4Cu(PF6)}n ................202 Table A.68 Bond lengths [Å] for {(Hpzt-Bu,4CN)4Cu(PF6)}n ................................................203 Table A.69 Bond angles[°] for {(Hpzt-Bu,4CN)4Cu(PF6)}n ...................................................204 Table A.70 Atomic coordinates and isotropic displacement parameters for {(HpztBu,4CN)2Mn(CF3COO)2}n·C7H8 ...............................................................205 Table A.71 Anisotropic displacement parameters for {(HpztBu,4CN)2Mn(CF3COO)2}n·C7H8 ...............................................................206 Table A.72 Bond lengths [Å] for {(HpztBu,4CN)2Mn(CF3COO)2}n·C7H8 ............................207 Table A.73 Bond angles[°] for {(HpztBu,4CN)2Mn(CF3COO)2}n·C7H8 ................................207 Table A.74 Atomic coordinates and isotropic displacement parameters for [(Hpzt-Bu,4CN)2CuCl(η-Cl)]2 ..............................................................................208 Table A.75 Anisotropic displacement parameters for [(Hpzt-Bu,4CN)2CuCl(η-Cl)]2 ............209 Table A.76 Bond lengths [Å] for [(Hpzt-Bu,4CN)2CuCl(η-Cl)]2 ............................................210 Table A.77 Bond angles[°] for [(Hpzt-Bu,4CN)2CuCl(η-Cl)]2 ................................................211 Table A.78 Atomic coordinates and isotropic displacement parameters for {[(pzt-Bu,4CN)3Ag3]}n·CH3CN ............................................................................212 Table A.79 Anisotropic displacement parameters for {[(pzt-Bu,4CN)3Ag3]}n·CH3CN. .........214 Table A.80 Bond lengths [Å] for {[(pzt-Bu,4CN)3Ag3]}n·CH3CN ..........................................215 Table A.81 Bond angles[°] for {[(pzt-Bu,4CN)3Ag3]}n·CH3CN .............................................216 xiv LIST OF FIGURES Figure Page 1.2.1 Schematic illustration of band gaps for conductors, semiconductors , and insulators ...................................................................................................................4 1.2.2 Conductivity of some metals and conjugated polymers ..................................................5 1.3.1 Packing view down axis c of [Co(dpyo)(tp)(H2O)2]n,[Co(H2O)6 ....................................8 1.3.2 The supramolecular structure of Fe[(p-HC2C6H4)B(3-Mepz)3]2 .....................................8 1.3.3 Three-dimensional network structure of [hydrotris(pyrazolyl)borato]magnesium(II) built up through π•••Cl•••π 9 1.4.1 The three general types of polypyrazolylborates ...........................................................10 1.4.2 The “Sandwich“ and “Half-Sandwich" complexes ........................................................11 1.4.3 Structure of Mn(TpPh )2 showing bis-chelation ..............................................................11 1.4.4 Ligand isomerization through 1,2 borotropic shift ........................................................12 1.4.5 The structure of (TpPh,4CN)2Mn sandwich complex ........................................................13 1.4.6 The extended structure of {CuTpPh,4CN}n .......................................................................14 1.4.7 A cyanoscorpionate structure showing the two different types of metal nuclei ..........15 2.2.1 ORTEP drawing of KTpt-Bu,4CN ......................................................................................18 2.2.2 ORTEP drawing of KTpPh,4CN ........................................................................................20 2.3.1 The “Inverted-Sandwich” complex ................................................................................21 2.3.2 ORTEP drawing of (Tpt-Bu,4CN)2Co(H2O)4 , (Tpt-Bu,4CN)2 Co(MeOH)2(H2O)2, and (Tpt-Bu,4CN)2Ni(cyclam) ...................................................................................................21 2.3.3 H-bonding network of (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2 ................................................23 2.3.4 The H-bonding interaction scheme for an individual Tpt-Bu,4CN ligand for (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2 .....................................................................................23 2.3.5 H-bonding interaction scheme for (Tpt-Bu,4CN)2Ni(cyclam) ...........................................25 . 2.3.6 Two possible oligimerization patterns for (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2 and (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2 .....................................................................................26 xv LIST OF FIGURES (continued) Figure Page 2.4.1 ORTEP drawing of non-isomerizes [Co(κ3-TpPh,4CN)( κ2-TpPh,4CN)] .............................27 2.4.2 Mercury drawings of Co(κ3-TpPh,4CN)(κ2-TpPh,4CN) ........................................................29 2.5.1 The two possible heteropyrazolylborate ligands containing 3-phenyl and 3-tert-butyl-4cyano pyrazole .........................................................................................30 2.5.2 ORTEP drawing of (TpPh,4CN)2Mn(MeOH)2 (H2O)2 .......................................................31 2.5.3 H-bonding interaction scheme for (TpPh,4CN)2Mn(MeOH)2(H2O)2 ...............................32 2.5.4 H-bonding network for (TpPh,4CN)2Mn(MeOH)2(H2O)2 ................................................33 2.5.5 H-bonding network for (TpPh,4CN)2Mn(MeOH)4 ..........................................................34 3.2.1 Mercury drawing showing five units of the extended structures of {CuTpPh,4CN}n and {CuTpt-Bu,4CN}n .........................................................................................................47 3.2.2 Mercury drawings directed down the channels of (a) {TpPh,4CNCu}n and (b) {Tpt-Bu,4CNCu}n ...................................................................................................47 3.2.3 Mercury drawing of the top view of {[Tpt-Bu,4CNCu][MeCN]}n ...................................48 3.2.4 The reaction scheme for the various attempts to produce the desired heterometallic coordination polymer .............................................................................49 3.3.1 Mercury drawing of the monomer of Ag-1 ...................................................................50 3.4.1 Mercury drawing of the monomer of Ag-2 ..................................................................52 3.4.2 Mercury drawing of the 2-D network of Ag-2 ..............................................................53 3.4.3 Mercury drawing of the 2-dimensional polymeric network of Ag-2 ...........................53 3.5.1 Mercury drawing of the repeat unit of Ag-3 ................................................................54 3.5.2 Mercury drawing of the polymeric chain of Ag-3 ......................................................55 3.6.1 Mercury drawing of a) The monomeric unit for Ag-4 .................................................56 3.6.2 Mercury drawing of A-4 showing the stacking of the helical polymer chains .............57 4.2.1 ORTEP drawing of the monomer {(Hpz)4Cu(ClO4)}n ..................................................62 xvi LIST OF FIGURES (continued) Figure Page 4.2.2 Mercury drawing of three monomer units of{(Hpz)4Cu(ClO4)}n ..................................63 4.3.1 ORTEP drawing of the monomer {(Hpz)4Cu(PF6)}n ...................................................64 4.3.2 Mercury drawing of three monomer units of {(Hpz)4Cu(PF6)}n ...................................64 4.3.3 Mercury drawing of the eclipsed conformation of{(Hpz)4Cu(PF6)}n ............................65 4.4.1 ORTEP drawing of the monomer’s {(Hpz)2Mn(CF3COO)2}n coordination environment ...................................................................................................................66 4.4.2 Mercury drawing of five monomer units of {(Hpz)2Mn (CF3COO)2}n .........................66 4.4.3 Intramolecular H-bonding interactions of {(Hpz)2Mn(CF3COO)2}n .............................67 4.5.1 ORTEP drawing of the [(Hpz)4Cu2]Cl4 dimer ...............................................................68 4.6.1 ORTEP and Mercury drawings of {[(pzt-Bu,4CN)3Ag3]}n ..............................................69 4.6.2 Mercury drawing of chain elongation for {[(pzt-Bu,4CN)6Ag6]}n·CH3CN ........................70 xvii ITRODUCTIO 1.1 General Introduction The advances in technology that will be necessary as the 21st century progresses will require new materials for diverse purposes such as structural components, conductive and magnetic devices, gas storage, and catalytic surfaces. Currently used conductive and magnetic materials are predominantly atom-based materials made up of metals or metal-oxides. Functionally, these materials are extremely efficient, however, they are expensive to synthesize and process, and are heavy, opaque, and possess limited flexibility. These properties limit the applications of atom-based materials. Molecule-based materials can be synthesized by less expensive, lower energy methods. Comprised largely of light molecular weight elements, they are lighter and can potentially be imbued with desirable properties such as transparency or flexibility. Coordination polymers containing transition metal centers with unsaturated organic ligands are good candidates for such materials.1 These polymers have also received increased attention with respect to gas storage, in light of the push towards replacing hydrocarbon fuels with hydrogen.2 We have been investigating the synthesis of cyanoscorpionate ligands as components of coordination polymers. Polypyrazolylborate, or scorpionate, ligands have been a very popular class of inorganic ligands for the past four decades.3 The ease with which these ligands can be synthesized with the incorporation of various ring substituents allows for a wide variety of steric and electronic properties. However, scorpionate ligands containing strongly electron withdrawing ligands have not been the focus of many studies. Over the last several years, we have been investigating scorpionate ligands containing CN substituents in the 4-positions of the pyrazole rings. The cyano group has a strong electron-withdrawing character, raising the possibility of imbuing the metal complexes with interesting reactivity akin to those seen with CF3-substituted scorpionate ligands.4 In addition, the 1 cyano N atom can coordinate to a metal, allowing the scorpionate to form various coordination polymers in which two cyanoscorpionate complexes are bound to a metal ion through the cyano groups.5 Herein is presented recent work in this field, including the synthesis and structural characterization of complexes in which the Tp cyano groups are coordinated to a central metal atom. These complexes represent the first step towards the synthesis of two-component coordination polymers involving this ligand class. 2 1.2 Molecular-Based Materials In the past, electronic and magnetic materials have been atom based materials made up of metals or metal-oxides. Functionally, these atom based materials are extremely efficient, however, they are very expensive to synthesize, very heavy, and possess limited flexibility. These properties limit the applications of traditional atom based materials where expense, weight, and flexibility are issues. Molecule based materials contain individual molecules which are inexpensively synthesized and made from predominantly light weight carbon, hydrogen, nitrogen, and oxygen. Also the individual components of these materials can be chemically varied in order to give desired physical, chemical, electronic, and magnetic properties using standard procedures. The important properties of molecular materials are conductivity and magnetism. In the past, magnetic materials have been atom-based and involving d and f molecular orbitals. Recently, the focus has shifted to molecular-based magnetic materials which involve organic, organometallic and metal coordination chemistry. There are several different approaches that are commonly used to synthesize molecular-based magnetic materials which include metal-metal, pure organic, and metalorganic radicals.6 The metal-metal approach uses metalates, such as hexacyanometalates [M(CN)6]3– and the trisoxalatometalates [M(C2O4)3]3–, due to their ability to form bonds in three directions which could potentially lead to a three-dimensional magnetic network.7 In 1991, Kinoshita and co-workers discovered the first pure organic ferromagnet of p-nitrophenyl nitronyl, which also formed an extended magnetic network.8 These types of organic radicals have also been combined with paramagnetic transition metals to form one-dimensional ferromagnetic chains, such as Co(hfac)2(NITPhOMe) (where NITPhOMe is 4'-methoxyphenyl-4,4,5,5-tetramethylimidazoline-1oxyl-3-oxide).9 Single-molecule magnets (SMM) are compounds in which each molecule behaves like an individual magnet, unlike magnetic network compounds where the molecules behave collectively as a magnet. In 1999, 3 one of the first SMM, (PPh4)[Mn12O12(O2CPh)16(H2O)4]•8(CH2Cl2), was reported, in which each molecule acts as a superparamagnet due to the molecule's high-spin ground state and the large zero-field splitting.10 Given the vast possible applications, and the different synthetic techniques, molecular-based magnets have become of great interest over the last several decades. Electrical conduction occurs through the flow of electrons, and is directly proportional to the number of electrons per unit volume. Chemical bonds give rise to three different types of electron bands. The core electrons that are not involved in bonding form the core band, the electrons that are involved in bonding form the valence band, and the outer orbitals form the conduction Figure 1.2.1: Schematic illustration of band gaps for conductors, semiconductors , and insulators. band. Electrical conduction only occurs through the flow of electrons in the conduction band. Therefore, materials that have a very small or no energy difference between the valence band and the conduction band are conductors, materials that have a small energy difference are semiconductors, and materials that have a large energy difference are insulators11(Figure 1.2.1).12 4 Conductive polymers combine the desirable properties of molecular-based materials with those of conducting materials. Traditionally, conductive polymers have been comprised of organic materials which contain a continuous conjugated network of overlapping molecular orbitals that produce valence and conduction bands. As with the traditional inorganic materials, conducting an organic conductive polymer becomes highly conductive when an electron is removed from the valence band or added to the conduction band. In the unoxidized form, almost all conductive polymers exhibit low electron mobility and therefore are semiconductors. However, partial oxidation or reduction of these polymers creates unfilled bands, which significantly increases electron mobility and conductivity which can reach the ‘metallic’ conduction range (Figure 1.2.2)1 This conductivity can be further tuned by chemical manipulation of the polymer backbone, by Figure 1.2.2: Conductivity of some metals and conjugated polymers. the nature and the degree of oxidizing and reducing agents, and by blending with other polymers. There has been explosive growth in conducting polymer research due to the fact that these materials are lightweight, processible, flexible, and can be used for a wide variety of commercial applications such as rechargeable batteries, light emitting diodes, photovoltaics, membranes, electronic noses and sensors, chemical separation, and heterogeneous catalysis.14 5 Recent interest has increased in doping conducting coordination polymers with transition metals in order to increase their conductivity. In 2001 Zhong and co-workers, synthesized a 1-D silver(I) coordination polymer of 2,5-bis(4’,5’-bis(methylthio)-1’,3’-dithiol-2’-ylidene)-1,3,4,6- tetrathiapentalene (TTM-TTP), which increased the conductivity of the free ligand from σ(25°C) < 10-12 S cm-1 to 7.1 x 10-6 and 0.85 S cm-1 with further iodine doping.13 A few years later in an effort to assemble an electrochromic device with chirooptical properties, two different Fe(II) coordination polymers - TPT[FeIITPT]n(PF6)2n (TPT=terpyridine-phenyl-terpyridine) and CTPCT- [FeIICTPCT]n(PF6)2n (CTPCT=chiral terpyridine-phenyl-chiral terpyridine) - and one Cu(I) polymer - PDP[CuIPDP]n(BF4)n (PDP=phenanthroline-dodecane-phenanthroline) - were synthesized in order to understand the effect of the bridging ligand and the metal center on the optical properties.14 In the last year, coordination polymers have been used to develop photoelectrical chemical cells, lighttransmitting electrical-conductors, and solid electrolytic capacitors15,16,17 which shows how versatile the electronic properties can be made by changing the backbone of polymer, changing the metal doping agent, and changing the coordination environment. Because of the useful properties of these materials and the fact that they can be used for a wide variety of applications, conductive coordination polymers have been and will continue to be a valuable topic of research. 6 1.3 Supramolecular Complexes Supramolecular chemistry is a relative young field of study that encompasses the chemistry of molecular assemblies and the forces that govern them.18 It can be described as “the chemistry beyond the molecule,” which entails the association of two or more chemical species held together by intermolecular interactions. These interactions include hydrogen bonding, hydrophobic interactions, coordination, electrostatic interactions, dispersion interactions, and solvophobic effects (the tendency of solute particles to cluster as the attractive interaction between solvent particles increases). An important feature of these interactions is that their properties are different (often better) than the sum of the individual components. There are three main categories that supramolecular chemistry can be classified into: 1) molecular recognition in which one molecule associates with a partner molecule; 2) chemical control and design of specific shapes of supramolecular complexes; 3) the chemistry of assembling a supramolecular complex of various sizes from numerous molecules.18 In 1967 C.J. Pedersen reported that a crown ether showed molecular recognition which was the first artificial molecule to do so.18 In the next several years, Donald J. Cram developed the host-guest chemistry for metal cations which pioneered the field of molecular recognition.19 Jean-Marie Lehn’s work in the late 1970’s focusing on molecular assemblies and intermolecular interactions20 was the birth of what is now the field of supramolecular chemistry, and in 1987, the Nobel Prize in Chemistry was awarded to Pedersen, Cram, and Lehn for their early pioneering work in the supramolecular field. Since then, a tremendous amount of research has been done using non-covalent interactions to synthesize a vast amount of intricate structures with useful properties. The recent drastic increase in nanochemistry research and development is based on the understanding of the non-covalent intermolecular interactions that were first explored by supramolecular chemists.20 7 One of the most common synthetic approaches in producing predictable supramolecular networks is to combine organic ligands (spacers), with transition metal ions (nodes). These coordination polymers, or metal-organic frameworks (MOF’s) have become an increasingly popular and important area of study, with such potential uses as conductive and magnetic materials, catalytic surfaces, and gas adsorbant materials.21 In 2006, Manno and co-workers reported a 3D layered supramolecular structure of Figure 1.3.1.Packing view down c axis of [Co(dpyo)(tp)(H2O)2]n[Co(H2O)6]2+ (dotted lines indicate H-bonds, uncoordinated tp dianions colored in black). [Co(dpyo)(tp)(H2O)2]n, [Co(H2O)6]2+ , [dpyo = 4,4’-dipyridylN,N’-dioxide], [tp = terephthalate dianion] which showed very Figure 1.3.2. The supramolecular structure of showing the Fe[(p-HC2C6H4)B(3-Mepz)3]2, alternating sheets of molecules containing the two Fe(II), connected via CH-π interactions (dotted lines). 8 interesting intermolecular hydrogen bonding interactions. The 1D polymer is formed by hexacoordinated Co(II) ion nodes bridged by a µ-4,4-dpyo oxygen and a tp carboxylate group. The tp dianions, water molecules, and cationic [Co(H2O)6]2+ octahedra are H-bonded to the chain of [Co(dpyo)(tp)(H2O)2]n, forming a tightly connected 3D architecture.22 (Figure 1.3.1) Polypyrazolylborates have also been used as organic spacers for supramolecular molecules. Grandjean and co-workers report a structure of Fe[(p-HC2C6H4)B(3-Mepz)3]2, which contains a set of CH-π interactions involving a pyrazolyl ring hydrogen and the π-electron cloud of the alkynyl group. The overall structure contains stacked layers of two independent Fe(II) sites held together by the CH-π interactions which provide the 3D supramolecular structure.23 (figure 1.3.2) Another structure containing polypyrazolylborates as spacers utilizes π•••Cl•••π interactions to form a supramolecular architecture. bis[hydrotris(pyrazolyl)borato] The complex magnesium(II) chloroform disolvate, reported by Garcia-Baez, (figure 1.3.3) contains π•••Cl•••π interactions between each Cl of the chloroform solvent and two pyrazole rings in the same neighboring molecule. Figure 1.3.3: The three-dimensional network structure of [hydrotris (pyrazolyl) borato] magnesium(II) built up through π•••Cl•••π interactions. These interactions are continued throughout the lattice forming a 3D network.24 Recently, supramolecular complexes are being used as functional materials showing molecular recognition, host-guest chemistry, ion exchange, catalysis, electrical conductivity, magnetism, optics, 9 and forming the basis for nanochemistry.25 Due to the enormous possible functionality and application, supramolecular chemistry will continue to be a rapidly growing field of research. 1.4 Polypyrazolylborates Polypyrazolylborates, or scorpionates, have been a very popular class of inorganic ligands for the past four decades, since their discovery by Trofimenko in the 1960’s.3a The ease with which these ligands can be synthesized with various substituents, allows for a wide variety of steric and electronic properties.3 There are three types of polypyrazolylborates, which differ in the number of pyrazoles bound to the boron through one of the nitrogens of the pyrazole ring (Figure 1.4.1). R3 R4 R5 R5 R5 R5 R5 H2 B R4 N R4 N N N R4 N R3 R4 N Bp R5 R3 R5 R5 R4 N R3 Tp N R4 N N R3 B N N R3 R5 N H B N R4 N N R3 R3 Figure 1.4.1. The three general types of polypyrazolylborates. R4 N N pzTp R3 Dihydrobispyrazolylborate (Bp), hydrotrispyrazolylborate (Tp), and tetrakispyrazolylborate (pzTp) are all monoanionic multi-dentate ligands. They are relatively easy to synthesize with a variety of substituents in the 3, 4, and 5-positions of the pyrazole ring leading to different electronic and steric properities. An abbreviation convention was developed to represent different substituted polypyrazolylborates.3b TpR is used to represent a Tp ligand containing the R group in the 3-position of the pyrazole ring. If there is the same R group in the 3 and 5-positions of the pyrazole ring, then TpR2 is used. When all three substituents are different, then the R groups are numbered with the 1,4R2,5R3 corresponding pyrazole positions and separated by commas, Tp3R . The same rules apply to dihydrobispyrazolylborate (Bp) and tetrakispyrazolylborate (pzTp) and this convention will be used throughout this thesis. 10 Previous work with Tp metal complexes has shown metal complexes with either a 2:1 or a 1:1 ligand:metal ratio, giving rise to “sandwich” and “half-sandwich” complexes, respectively (figure 1.4.2). R5 R5 R5 R4 H B N N R4 Early work with unsubstituted Tp R4 N N N R5 R4 R3 R3 N N N R3 X Z Y N R5 R5 R3 M R4 Half-sandwich sandwich as well as half- sandwich metal complexes for a N N R4 R4 N N R3 N N B H N R4 R3 H B N R3 M R3 (1st generation) ligands revealed R5 N R3 R4 R5 large number of transition metals.3a-c,26 The ease with which substituents are added to the R5 Sandwich pyrazole Figure 1.4.2: The “Sandwich" and “Half-Sandwich" complexes. ring has lead to numerous 2nd generation Bp and Tp metal complexes showing a wide variety of steric and electronic properties. In 1987, Trofimenko first used bulky phenyl and tert-butyl groups in the 3-position of the pyrazole ring of the Tp ligand.27 Due to the increased steric effects, the metal-nitrogen bond lengths increased, the cone angle or “pocket” of the Tp ligand widened, and only the half sandwich metal complexes were isolated. These ligands were shown to prevent dimerization and bis-chelate formation. As a result, it was possible to synthesize half-sandwich complexes for many transition metals using coordinating ligands to complete the coordination sphere, e.g., (Tpt- 11 Figure 1.4.3. Structure of Mn(tppb), tppb = TpPh showing bis-chelation and a non-isomerized metal Tp complex. Bu )Co(NCS).27 In 1990, Eichhorn, et al., showed that, in the absence of a strong coordinating ligand, Fe(II) and Mn(II) sandwich complexes with a phenyl substituent in the 3-position of all three pyrazoles in both Tp ligands (Figure 1.4.3) could be isolated, indicating that the phenyl group alone does not always provide enough steric bulk to hinder bis-chelate formation.28 However, the bulkier Tpt-Bu ligand does seem to prevent the sandwich complex formation even in the absence of a strong coordinating ligand, since none of these complexes have been reported. Two R N N N later the Trofimenko's group N R 2 M synthesized Co(HB(3-isopropylpyrazol-l-yl)2 (5- N N N N R years H B H B R 2 M R isopropylpyrazol-l-yl))2 that underwent a 1,2- R R N N N N 2 B H N N N borotropic shift (figure 1.4.4) in order to relieve N 2 B H R Figure 1.4.4. Ligand isomerization through 1,2 borotropic shift. the steric hindrance and form a sandwich complex.29 This isomerization occurs through rotation of one of the pyrazole rings such that the bulky substituent moves to the 5-position. Even though scorpionates have been among the most widely used ligands, those containing strong electron withdrawing substituents have not been the focus of many studies. Early work by Dias showed the effects of CF3 substituents at the 3- and 5-position of the Tp ligand in the copper complex Tp(CF3)2Cu(CO). As a result of the six CF3 groups withdrawing electron density from the copper, the π-back-bonding is decreased and therefore the C-O IR stretching frequency is almost as high as in free CO.30 Dias also reported that the increased degree of fluorination causes the Cu-C bond to elongate and the differences in the structural and spectroscopic parameters of fluorinated and nonfluorinated systems are primarily a result of ligand electronic effects.31 12 Over the last several years, our group has been investigating scorpionate ligands containing cont the CN substituent in the 4-position position of the pyrazole ring. The cyano group has a strong electron-withdrawing electron character, as well as the ability to coordinate to a metal. This allows the scorpionate to form various coordination polymers in which two ccyanoscorpionate yanoscorpionate complexes are bound to the metal ion through the cyano groups, as well as complexes in which the pyrazole is only coordinated to the metal through the pyrazole N atoms.3 Trofimenko and coworkers ers first synthesized Bp4CN in 2000. Homoleptic metal complexes were not synthesized due to the strong tendency to form coordination polymers in which the CN group was coordinated to the metal.32 In 2001, our group isolated homoleptic metal complexes of cyanosubstituted bispyrazolylborates with phenyl Figure 1.4.5: The structure of ((TpPh,4CN)2Mn sandwich complex. substituents in the 3-position position of the pyrazole ring.33 TpPh,4CN complexes were also synthesized with Fe, Mn, or Co producing sandwich complexes with the 1,2 borotropically shifted ligands - two Tp ligands complete mplete the octahedral coordination sphere of the metal ((F Figure 1.4.5). The electron withdrawing CN group apparently weakens the σ-donor donor ability of the pyrazole N atoms, making TpPh,4CN a weaker ligand and allowing for more facile dissociation of one pyrazole from the metal than in the non-cyano cyano analogues, which enables the ligand to undergo the borotropic shift and produce the less sterically congested product.5c 13 Figure 1.4.6: the extended structure of {CuTpPh,4CN}n. Using the scorpionate BpPh,4CN, it was possible to produce {(CF3COO)4Rh2(BpPh,4CN)2Cu}n, a coordination polymer in which Cu is coordinated in the pyrazole pocket and the Rh dimer is bound to the cyano group.5b Recently, one dimensional Cu(I) coordination polymers were synthesized with both TpPh,4CN and Tpt-Bu,4CN. These polymers were crystallographically characterized and showed identical structures, with the Cu coordinated to the three pyrazole N atoms of one Tp and the N atom of the cyano group from another Tp (figure 1.4.6). This was the first confirmation of the cyanoscorpionates’ ability to form coordination polymers.34 The research in this thesis focuses on the synthesis and characterization of new metal complexes using TpPh,4CN and Tpt-Bu,4CN in order to develop coordination polymers with useful magnetic, conductive, and/or structural properties. The sandwich and half-sandwich metal complexes have been well documented for various scorpionate ligands. Recently the cyanoscorpionates’ ability to form coordination polymers through the CN group has been realized. It is our goal to combine both of these aspects in order to form coordination polymers consisting of multinuclear metal species. 14 This in turn could lead to species displaying communication between the different metal ions through the fully conjugated pathway of the Tp-coordinated metals and the cyano-bridged metals (figure 1.4.7). This pathway would allow for electron mobility between the metals, leading to the development of molecular based magnetic as well as conductive materials. The ability of the CN group to coordinate to the metal that is already bound in the Tp pocket can lead to a wide variety of coordination and packing motifs, making cyanoscorpionates very useful in developing molecular hosts as well as 2- and 3-dimensional supramolecular networks. N N NC M2 CN M1L4 N R N NC R3 3 R3 R3 N N N R3 R H B NC M2 N N B H R Figure 1.4.7: A cyanoscorpionate structure showing the two different types of metal nuclei. 15 R3 N N CN N CN CHAPTER 2: CYAOSCORPIOATE METAL COMPLEXES 2.1 Introduction Trispyrazolylborate ligands containing the CN substituent in the 4-position of the pyrazole ring, have two advantageous properties. The cyano group has a strong electron-withdrawing character, as well as the ability to coordinate to the metal. This allows the scorpionate to form various coordination polymers in which two cyanoscorpionate complexes are bound to the metal ion through the cyano groups, as well as complexes in which the pyrazole is only coordinated to the metal through the pyrazole N atoms. In 1987, Trofimenko and co-workers reported the synthesis of TpPh and Tpt-Bu and their metal complexes with a 1:1 ligand-to-metal ratio. They suggested that these ligands were incapable of supporting the more common 2:1 sandwich complexes because of the steric bulk of the substituents in the 3-position of the pyrazole rings and therefore could only form the half sandwich complexes.27 Subsequently, TpPh2M complexes of FeII and MnII were reported in the absence of a suitably coordinating counterion.28 Recently, Zhao and Eichhorn reported sandwich complexes of TpPh,4CN with divalent Fe, Mn, and Co, in which the ligands have undergone isomerization to place one phenyl substituent in the 5-position.5c They have also attempted to synthesize Tpt-Bu,4CNCoX complexes which gave a product with a peak in the mass spectrum of m/z=972.5, indicating a complex with the formula [(Tpt-Bu,4CN)2Co], which is surprising because no sandwich complexes have ever been reported with the non-cyano analog, Tpt-Bu.5d Purification and crystal growth were unsuccessful for the Tpt-Bu,4CNCoX complexes. Zhao and Eichhorn also reacted the Tpt-Bu,4CN ligand with Mn(CF3SO3)2·2CH3CN and Fe(CF3SO3)2·2CH3CN in a 2:1 ratio in dry THF under inert atmosphere. Both the Mn and the Fe products showed IR stretches consistent with B-H and CN groups, however for the Fe complex, the B-H stretch disappeared after exposure to the air for a few days. 16 Crystallization was unsuccessful for the Mn complex as well as the Fe complex. Described below is the continuation of the effort to synthesize Tpt-Bu,4CN and TpPh,4CN metal complexes in order to understand the steric and electronic effects of the bulky and electron-withdrawing substituents, with the ultimate goal of constructing coordination polymers with useful properties. 17 2.2 KTpt-Bu,4C and KTpPh,4C Tris(4-cyano-3-tert-butylpyrazolyl)borate is a second generation scorpionate that provides a bulky substituent at the 3position, and an electron withdrawing substituent at the 4-position which has the the ability to coordinate to a metal. The synthesis was accomplished by a literature preparation reported by Zhao using a modification of the reported synthesis from Tupper and Bray.5c Figure 2.2.1: ORTEP drawing of the coordination sphere of KTpt-Bu,4CN shown at the 50% probability level. H atoms have been omitted for clarity. X-ray quality crystals of potassium hydrotris(4-cyano-3-tert-butylpyrazolyl)borate were grown by the slow evaporation of a methanol/toluene solution, and an ORTEP35 drawing of the full coordination sphere is shown in Figure 2.2.1 ; selected bond distances and angles are in Table 2.2.1. We recently reported the structure of TlTpt-Bu,4CN,5c in which the Tl is coordinated to the N atoms of all three pyrazoles of one Tp ligand and which crystallizes in the rhombohedral space group R3m. By contrast, the K atom in KTpt-Bu,4CN has bonding interactions with four symmetry-related Tpt-Bu,4CN ligands. The first ligand binds to the K via two pyrazole rings, involving a normal sigma interaction with N8 and a π-type interaction with N4 and N5. The second ligand binds through one pyrazole (N2) and the other two ligands bind through a single cyano N atom (N6 and N9, respectively). The overall geometry around K is thus square pyramidal, with N6 in the apical 18 position. Reported structures for K salts of Tp ligands display numerous binding motifs, including η5bound pyrazole rings and pyrazole N atoms bridging between two K atoms.36 Table 2.2.1: Bond Lengths (Å) and Angles (deg.) for K–N5 3.156(3) K–N8 K–N6’ 2.846(4) K–N9’ B–N1 1.527(5) B–N4 C3≡N3 1.150(5) C11≡N6 N5–K–N8 85.66(8) N5–K–N2’ N6’–K–N5 73.76(10) N6’–K–N8 N9’–K–N5 87.66(10) N9’–K–N8 N6’–K–N9’ 110.01(11) N1–B–N4 106.6(3) N1–B–N7 C2–C3≡N3 178.3(5) C10–C11≡N6 KTpt-Bu,4CN 2.921(3) 2.781(4) 1.542(5) 1.142(5) 167.49(9) 79.17(10) 166.63(11) K–N2’ K-N4 B–N7 C19≡N9 N8–K-N2’ N6’–K–N2’ N9’–K–N2’ 2.889(3) 3.315(4) 1.539(5) 1.139(5) 96.11(9) 118.75(10) 87.98(10) 111.0(3) 178.6(5) N4–B–N7 C18–C19≡N9 109.1(3) 179.2(4) The K-N bond lengths reported for KTp complexes involving sigma-type interactions span a range from 2.886 – 2.969 Å,37 consistent with the bonds to N2 and N8 in KTpt-Bu,4CN. The only reported structure with an η2 interaction has bond lengths of 2.907 and 3.208 Å, again consistent with those seen in KTpt-Bu,4CN.37b Potassium hydrotris(4-cyano-3-phenylpyrazolyl)borate is a second generation scorpionate that provides a different bulky substituent at the 3-position than KTpt-Bu,4CN, and still maintains an electron withdrawing substituent at the 4-position which has to the ability to coordinate to a metal. The synthesis was accomplished by a literature preparation reported by Zhao using a modification of a reported synthesis from Tupper and Bray.5c 19 X-ray quality crystals of potassium hydrotris(4cyano-3-phenylpyrazolyl)borate were grown by the slow evaporation of a methanol/toluene solution, and an ORTEP35 drawing of the full coordination sphere is shown in Figure 2.2.2 ; selected bond distances and angles are in Table 2.2.2. KTpPh,4CN crystallizes in the trigonal space Figure 2.2.2: ORTEP drawing of the coordination sphere of KTpPh,4CN shown at the 50% probability level. H atoms have been omitted for clarity. group P-3, with both the K and B atoms on a crystallographic 3-fold axis and is isostructural with the Tl analog.5c The K ion is coordinated by the three available pyrazole N atoms of the Tp ligand. In addition, there are three short contacts K···N (2.885 Å) between the K atom and N atoms from the CN substituents of three adjacent Tp ligands. There is also a short contact between the K atom and the B-H group of the Tp ligand directly beneath it (3.235 Å). Table 2.2.2: Bond Lengths (Å) and Angles (deg.) for K–N 2.885(3) K–N≡C B-N 1.540(4) C≡N N–K–N 72.12(10) N–B–N C2–C3≡N3 177.0(2) 20 KTpPh,4CN 2.896(3) 1.145(5) 111.7(2) 2.3 Tpt-Bu,4C Complexes of Co, Mn, and i In order to follow up on the surprising mass spectrometric result indicating the existence of (Tpt-Bu,4CN)2Co, Co(ClO4)2, KTpt-Bu,4CN Mn(ClO4)2, was and reacted with Ni(cyclam)(ClO4)2 (cyclam=1,4,8,11-tetraazacyclotetradecane) in a 1:2 ratio, producing new octahedral metal complexes. The isostructural complexes (Tpt-Bu,4CN)2Co(H2O)4 and (Tpt-Bu,4CN)2Mn(H2O)4 were crystallized directly by slow evaporation of the methanolic reaction solution, while (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2 (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2, Bu,4CN )2Ni(cyclam) and , (Tpt- were isolated by layering a solution of KTpt-Bu,4CN in methanol on top of a solution of the metal salt in 50% aqueous methanol. Unlike the previously synthesized sandwich complexes, the crystal structures of these complexes showed none of the pyrazole N atoms Figure 2.3.2: ORTEP drawings of: (Tpt-Bu,4CN)2 Co(MeOH)2(H2O)2 (top), (Tpt-Bu,4CN)2Co(H2O)4 (middle), and (Tpt-Bu,4CN)2Ni(cyclam) (bottom). The Mn structures possess the identical coordination motif as the Co complexes. Shown at the 50% probability level. H atoms have been omitted for clarity. Figure 2.3.1: The “Inverted-Sandwich” complex. 21 Table 2.3.1: Bond Lengths (Å) and Angles (deg). (Tpt-Bu,4C)2Co (H2O)4 (Tpt-Bu,4C)2Mn (H2O)4 (Tpt-Bu,4C)2Co(MeOH)2 (H2O)2 (Tpt-Bu,4C)2Mn(MeOH)2 (H2O)2 (Tpt-Bu,4C)2i(cyclam) 2.158(4) 2.256(2) 2.150(2) 2.263(3) 2.131(2) 2.049(3) 2.159(5) 2.122(2) 2.203(3) 1.528(8) B-NH-bomd C-C≡Ncoord M-Ncyano M-Ncyclam 2.068(2), 2.070(2) M-Owater M-OMeOH B-Nnon-H-bond C-C≡Nuncoord N-B-NH-bond N-B-Nnon-Hbond 2.0650(17) 2.145(2) 1.520(5) 2.0541(19) 1.529(4) 2.142(3) 1.533(5) 1.540(3) 1.548(6), 1.554(6) 1.551(4), 1.555(4) 1.545(4), 1.551(3) 1.542(5), 1.548(5) 1.547(4),1.552(4) 174.4(6) 175.5(4) 175.1(3) 176.2(4) 178.2(3) 178.3(5), 178.8(3) 179.1(3), 179.4(5) 177.7(7), 178.9(5) 178.7(3),179.5(3) 178.3(8),179.1(5) 105.8(4) 105.6(3) 106.3(2) 107.2(3) 106.7(2), 107.7(2) 111.3(4), 111.4(4) 111.2(3), 111.5(2) 110.4(2), 111.0(2) 110.1(3),110.7(3) 111.8(2) coordinated to the metal. Rather, each Tp ligand is coordinated to the metal only through one of the CN groups, with two Tp anions coordinated trans to each other around the metal center forming an “inverted-sandwich” complex (Figure 2.3.2). The four Co and Mn complexes are essentially isostructural except for the differences in coordinated solvent molecules. All four crystallize on an inversion center in the monoclinic space group P21/n and (Tpt-Bu,4CN)2Ni(cyclam) crystallizes on an inversion center in the triclinic space group P 1 along with a methanol molecule of solvation. Selected bond distances and angles are given in Table 2.3.1 and ORTEP drawings of (Tpt-Bu,4CN)2Co(H2O)4, (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2, and (Tpt- Bu,4CN )2Ni(cyclam) are shown in Figure 2.3.2. The five complexes each display a pseudooctahedral coordination geometry with the cyano N atoms of two Tpt-Bu,4CN ligands in the axial positions and with the equatorial plane comprised of either four methanol ligands, two methanol and two water ligands, or the four N atoms of the cyclam ligand. This coordination geometry is reminiscent of that reported by Gardinier and coworkers for Fe(dmso)4 (HB(mtdaMe)3)2.38 22 The four Co and Mn complexes all display an intricate intermolecular H-bonding network that results in chains of hydrogen bound molecules (Figure 2.3.3). There are intermolecular three different H-bonding interactions present. The free N Figure 2.3.3: H-bonding network of (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2. H-bonds shown as dashed lines. atom of one pyrazole interacts with the O atom of a coordinated methanol or water from a symmetry related molecule (1/2-x,-1/2+y,1/2-z) with N···O distances ranging from 2.774-2.857 Å. (N8···O1 in Figure 2.3.4). The cyano N atom from the same pyrazole interacts with the O atom of a symmetry related coordinated water (-1/2+x,1.5-y,1/2+z) with N···O distances ranging from 2.779-2.808 Å (N9···O2 in Figure 2.3.4). These two H-bond interactions form chains along the b-direction of the crystal lattice (Figure 2.3.3). The free N atom of the pyrazole whose cyano group is coordinated interacts with the O atom of a symmetry related coordinated 23 Figure 2.3.4: The H-bonding interaction scheme for an individual Tpt-Bu,4CN ligand for (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2,. Hbonds shown as dashed lines. H atoms have been removed for clarity. water molecule (1/2-x,-1/2+y,1/2-z) with N···O distances ranging from 2.888-2.946 Å (N2···O2 in Figure 2.3.4). This interaction, along with the M-N bond to the cyano N atom, forms chains along two coplanar body diagonals of the unit cell (Figure 2.3.3). The H-bonding network thus holds two of the pyrazole rings such that the free N atoms are directed toward the B-H vector and away from the normal tridentate binding pocket. Along with the steric hindrance of the bulky t-butyl groups, the H-bonding contributes towards favoring this coordination mode over formation of the sandwich complex. The hydrogen bonding manifests itself in a comparison of the bond lengths and angles involving B-N bonds to pyrazole rings of the same ligand. The four Co and Mn Tpt-Bu,4CN structures that display the extensive hydrogen bonding interaction network also show differences in bond angles and distances involving atoms of the same type. The shorter M-O bond in (Tpt-Bu,4CN)2Co(H2O)4 and (Tpt-Bu,4CN)2Mn(H2O)4 is to the water molecule that is involved in two different H-bonds, indicating an increase in electron density for the M-O bond with the increase of H-bonds. The shorter B-N bond in each ligand is to the pyrazole that is not involved in any H-bonding, while the other two B-N bonds are somewhat longer, suggesting that the H-bonds pull electron density out of the B-N bond. The N-B-N bond angles between the two pyrazoles that are involved in the hydrogen bonding interaction are smaller than the other two N-B-N bond angles (110.1-111.5 °). The C-C≡N bond angles for the cyano groups coordinated to the metal deviate significantly from linearity. 24 Figure 2.3.5: H-bonding interaction scheme for (Tpt-Bu,4CN)2Ni(cyclam). H-bonds shown as dashed lines. Hydrogen atoms have been removed for clarity. (Tpt-Bu,4CN)2Ni(cyclam) does not have as extensive a hydrogen bonding network. However the uncoordinated methanol molecule is involved in a H-bond (N···N 2.995-3.009 Å) with a cyclam N atom from one complex molecule and with a pyrazole N atom from a neighboring complex molecule (Figure 2.3.5). The crystal symmetry produces interactions between each cyclam and two neighboring molecules, resulting in a H-bound chain of molecules with two methanol-mediated Hbonds between each pair of molecules. The structures of these complexes demonstrate an important characteristic of the cyanoscorpionates. Whereas the non-cyano Tpt-Bu ligands are unable to form sandwich complexes, the alternative binding mode available to the cyanoscorpionates opens up a new structural motif for isolation of compounds with a 2:1 ligand-to-metal ratio. These complexes also represent a piece of the heterometallic coordination polymers envisioned in Figure 1.4.7, specifically demonstrating the ability to coordinate two cyanoscorpionate ligands to a central ML4 unit via the cyano N atoms. ESI-MS characterization of (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2 and (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2 reveals the ability of these complexes to oligomerize. In positive ion detection mode, the spectra show peaks at 971.2 m/z for the Co complex and 967.9 m/z for the Mn complex which correspond to the molecular ion peak without the coordinated water and methanol, ([Tpt-Bu,4CNMTpt-Bu,4CN]+). In addition, peaks at 1486.1 m/z and 1478.2 m/z correlate to oligomers 25 formed by addition of an MTp unit to the Co and Mn complexes, respectively [Tpt-Bu,4CNMTptBu,4CN MTpt-Bu,4CN]+. MS-MS analysis of the peaks at 1486.1 m/z and 1478.2 m/z gives fragmentation that does not contain the molecular ion peak, but does contain a peak corresponding to [TptBu,4CN MTpt-Bu,4CNMpzt-Bu,4CN]+. There are many ways that one could draw structures corresponding to the peaks at 1486 and 1478, two of which are shown in Figure 2.3.6. These and other combinations of pyrazole-bound and cyano-bound metal atoms cannot easily be distinguished on the basis of their mass spectra and fragmentation patterns. B N NC N N B N N N CN M NC N N B NC N N N N N B N N CN M NC N N N N N N N B N N CN M NC N N N N N CN N M N NC N N N B N N CN Figure 2.3.6. Two possible oligimerization patterns for (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2 and (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2. Tert-butyl groups have been omitted from the drawings. 26 CN 2.4 on-isomerized (TpPh, 4C)2Co As described in section 1.4, both sandwich and half-sandwich complexes of the TpPh ligand have been isolated, while similar complexes isolated with the TpPh,4CN ligand contained the 1,2borotropically shifted ligand. In the preparation of the Co complex of TpPh,4CN, the reaction of KTpPh,4CN with Co(ClO4)2 produced a purple powder which showed B-H and CN stretches similar to the ones previously reported by Zhao.5d Crystals were unable to be grown directly from this material; instead they were grown by layering a solution of KTpPh,4CN in methanol on top of a solution of the metal salt in solution of methanol/CH2Cl2, producing pink X-ray quality crystals of the complex containing the isomerized ligand and showing a B-H stretch that was shifted to the 2520 cm-1 region.5c It was believed that the purple solid is a complex of the non-isomerized ligand, and isomerization occurs upon crystal growth. Following preparation,5c the purple the literature solid was produced, giving B-H stretch of 2489cm-1 which is 31 cm-1 lower than the reported 1,2 borotropically shifted (TpPh,4CN*)2Co sandwich complex. Light purple crystals were grown by slow evaporation of a 80/20 mixture of methanol/toluene. The crystal structure confirms the presence of a nonisomerized ligand (Figure 2.4.1), but only Figure 2.4.1: ORTEP drawing of non-isomierized [Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)] sandwich complex. The dashed lines shows the Co-HB interaction. 27 one of the ligands adopts the normal tridentate coordination mode. The second ligand coordinates through only two pyrazole N atoms. The third pyrazole ring is rotated away from the pocket leaving a bi-dentate ligand and positioning the B-H group in the sixth coordination site with an agostic bonding interaction distance of 2.501Å. Formulated as Co(κ3-TpPh,4CN)(κ2-TpPh,4CN), this structure is very similar to that of [Co(κ3-TpPh)(κ2TpPh)] reported in 1997 by Kremer-Ach and co-workers.39 The molecule crystallizes on an inversion Table 2.4.1: Selected bond distances (Å) and angles (°) Co(κ3-TpPh,4C)(κ2-TpPh,4C) Co(κ3-TpPh)(κ2-TpPh) 2.097(7), 2.1227(6), 2.102(7) 2.103(2), 2.138(2), 2.199(2) 2.098(7) 2.225(7) 2.124(2), 2.201(2) Co-H 2.501(7) 2.17(2) B-N 1.531(12), 1.525(10), 1.539(12), 1.568(12), 1.473(11), 1.531(11) 1.546(4), 1.531(4) ,1.538(4) Nκ3-Co-Nκ3 91.5(2), 82.4(3), 92.6(2) 94.1(1), 89.0(1),83.7(1) Nκ2-Co-Nκ2 91.8(3) 96.0(1) 102.7(2), 103.2(2),162.3(2) 99.2(1), 102.5(1), 165.4(1), 91.8(3), 164.5, 94.6 90.4(1), 165.7(1), 86.9(1) Nκ3-B-Nκ3 109.8(7), 109.3(7), 107.7(7) 110.6(2), 109.4(2), 108.4(2) Nκ2-B-Nκ2 113.6(7), 109.6(8), 109.2(2) 110.6(2), 111.2(3), 113.0(3)_ Co-N Nκ2-Co-Nκ3 1.536(4), 1.528(4), 1.510(4) center in the triclinic space group P 1 along with 2.4 toluene molecules of solvation. The Co is in a pseudo-square pyramidal coordination geometry with the pyrazole nitrogens of the tridentate Tp ligand occupying the axial and two equatorial positions, while the nitrogens of the bidentate ligand occupy the other two equatorial postions. Selected bond distances and angles for Co(κ3-TpPh,4CN)(κ2TpPh,4CN) as well as the previously reported Co(κ3-TpPh)(κ2-TpPh) are listed in Table 2.4.1. The non-isomerized Co(κ3-TpPh,4CN)(κ2-TpPh,4CN) sandwich complex is an intermediate in the synthesis of the 1,2-borotropically shifted complex. It appears the crystal lattice is stabilized by the 28 multiple toluene molecules incorporated into the lattice, allowing for quality crystal growth. Referring to Figure 2.4.2, the top toluene molecule is disordered in a 70:30 ratio through a 180° rotation with respect to the centroid of the ring. The middle toluene has an occupancy of 0.4 with multiple disorder parts, making it unable to be modeled completely. The bottom toluene contains no disorder and is at full occupancy. Figure 2.4.2: Mercury drawings of Co(κ3-TpPh,4CN)(κ2-TpPh,4CN): a) showing the multiple toluene molecules incorporated into the lattice. b) Mercury space-filling plot showing how the toluene molecules pack to stabilized the lattice. 29 2.5 Inverted-sandwich Complex (TpPh,4C)2Mn Realizing that TpPh,4CN can form N sandwich complexes, and Tpt-Bu,4CN can form N inverted-sandwich N N N N complexes, attempts to synthesize B N N N N B N H both 3-phenyl-4-cyanopyrazole and 3-tert-butyl-4-cyanopyrazole N H a heteropyrazolylborate were made in which the Tp ligand contains N N N N N N Figure 2.5.1: The two possible heteropyrazolylborate containing 3-phenyl and 3-tert-butyl-4CN pyrazole. in either a 1:2 or 2:1 ratio, respectively (Figure 2.5.1). The synthesis of KTpPh,4CN is achieved by a dry melt of 4-cyano-3-phenylpyrazole with KBH4 in a 4:1 molar ratio at 230°C for 2 hours, and the synthesis of KTpt-Bu,4CN is achieved by a dry melt of 3-tert-butyl-4-cyanopyrazole with KBH4 in a 4:1 molar ratio at 210°C for 1 hours. Therefore, a dry melt of 4-cyano-3-phenylpyrazole, 3-tert-butyl4-cyanopyrazole, and KBH4 in a 2:2:1 molar ratio at 220°C for 1.5 hours was performed to attempt to synthesize the desired heteropyrazolylborate. After several washings with CH3CN and hot toluene, separation and purification was attempted by column chromatography. The fraction containing the compound showing a blue shifted B-H stretch (2464 cm-1) and a CN stretch (2231 cm-1) in the IR spectrum was dried leaving a light yellow waxy solid. The solid was unable to be further purified and was thought to be a mixture of potassium (4-cyano-3-phenylpyrazolyl)(bis(3-tert-butyl-4cyanopyrazolyl))borate and potassium bis(4-cyano-3-phenylpyrazolyl)(3-tert-butyl-4-cyano pyrazolyl)borate. 30 Layering a solution of this waxy solid in methanol on top of a solution of Mn(ClO4)2·6H2O in a test tube produced crystals, which colorless were surprisingly identified as the inverted sandwich complex (TpPh,4CN)2Mn(MeOH)2(H2O)2. Figure 2.5.2: ORTEP drawing of (TpPh,4CN)2Mn(MeOH)2 (H2O)2 . Hydrogen atoms have be excluded for clarity. (Figure 2.5.2). The molecule crystallizes on an inversion center in the triclinic space group P 1 along with a water molecule of solvation. As with the inverted sandwich complexes containing Tpt-Bu,4CN, this complex shows none of the pyrazole N atoms coordinated to the metal. Each Tp ligand is coordinated to the metal only through one of the CN groups, with two Tp anions coordinated trans to each other around the metal. The complex shows a pseudooctahedral coordination geometry with the cyano N atoms of two TpPh,4CN ligands in the axial positions and with the equatorial plane comprised of two methanol and two water ligands making it isostructural to the (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2. Since this complex was isolated from a ligand for which the composition was not well established, a rational synthesis was then performed by layering KTpPh,4CN on top of Mn(ClO4)2·6H2O which produced an almost identical structure except there were four coordinated methanol molecules around the Mn. Selected bond distances and angles for both complexes are given in Table 2.5.1. 31 (TpPh,4CN)2Mn(MeOH)2(H2O)2 Table 2.5.1: Bond Lengths (Å) and Angles (deg). (TPh,4C)2Mn(MeOH)2(H2O)2 (TpPh,4C)2Mn(MeOH)4 M-Ncyano 2.258(5) 2.241(4) M-Owater 2.118(6) M-OMeOH 2.157(6) 2.135(3), 2.182(3) B-Nnon-H-bond 1.539(11) 1.521(6) B-NH-bomd 1.530(11), 1.525(12) 1.551(6), 1.557(5) C-C≡Ncoord 176.7(8) 178.4(4) C-C≡Nuncoord 176.3(10), 177.5(17) H-bonding network between the nonbonded nitrogen of the pyrazole ring and the coordinated methanol and water molecules as well as the uncoordinated water molecule 177.8(8), 179.3(3) NH-bond-B-NH-bond 110.7(6) 110.2(4) NH-bond-B-Nnon-H-bond 109.3(7), 109.9(7), 109.5(3), 109.7(3) (Figure2.5.3). possesses an elaborate intermolecular There are a total of five different intermolecular H-bonding interactions involving three different TpPh,4CN ligands. One TpPh,4CN ligand contains a Hbonding interaction between the free N atom of one pyrazole and the O of a coordinated methanol from a symmetry related molecule (-1+x,y,z) with a N···O distance of 2.760 Å. (N2···O1 in Figure 2.5.3). The same TpPh,4CN ligand also contains an intermolecular H-bonding interaction between the free N atom of another pyrazole and the O of a coordinated water from a symmetry related molecule (- Figure 2.5.3: The H-bonding interaction scheme for Ph,4CN )2Mn(MeOH)2(H2O)2,. H(Tp bonds shown as dashed lines. 1+x,y,z) with a N···O distance of 2.785 Å. (N5···O2 in Figure 2.5.3). This water molecule is also involved in a H-bonding interaction with the uncoordinated water molecule with an O···O distance of 2.677 Å (O2···O101 in Figure 2.5.3). The uncoordinated water participates in two other H-bonding interactions with cyano N atoms from two 32 different Tp ligands (N6···O10, 2.924 Å; N9···O101, 3.028 Å in Figure 2.5.3). All five H-bonding interactions create a very elaborate network that expands in all three directions. (Figure 2.5.4). b-direction a-direction c-direction Figure 2.5.4: The H-bonding network for (TpPh,4CN)2Mn(MeOH)2(H2O)2, showing expansion in all three directions. H-bonds shown as dashed lines. H atoms have been removed for clarity. 33 (TpPh,4CN)2Mn(MeOH)4 has a less extensive H-bonding network than (TpPh,4CN)2Mn(MeOH)2(H2O)2, due to the lack of the water of crystallization. There are four different intermolecular hydrogen bonds, two between the free N atom of one pyrazole and the O of a coordinated methanol from a symmetry related molecule (-1+x,y,z) with a N···O distance range of 2.689-2.768 Å. The other two are also between the free N atom of one pyrazole and the O of a coordinated methanol from a symmetry related molecule (1+x,y,z) with a N···O distance range of 2.689-2.768 Å. These H-bonding interactions lead to expansion in only one direction (Figure 2.5.5) Figure 2.5.5: The H-bonding network for (TpPh,4CN)2Mn(MeOH)4, showing expansion in only one direction. H-bonds shown as dashed lines. H atoms have been removed for clarity. Unlike the (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2 analog, the hydrogen bonding of (TpPh,4CN)2Mn(MeOH)2(H2O)2 does not manifest itself in a comparison of the bond lengths and angles involving B-N bonds to pyrazole rings of the same ligand, nor show differences in bond angles and distances involving atoms of the same type. The three different H-bonding interactions involving the water of crystallization, seem to nullify the other H-bonding interaction effects that are very prevalent in (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2. For (TpPh,4CN)2Mn(MeOH)4 there is a shorter B-N bond in each ligand to the pyrazole that is not involved in any H-bonding, while the other two B-N bonds are somewhat longer, suggesting that the H-bonds pull electron density out of the B-N bond. 34 However, the other effects that were seen with (Tpt-Bu,4CN)2Mn(H2O)4, were not prevalent in the (TpPh,4CN)2Mn(MeOH)4 analog. When examining the synthetic differences between isolating the sandwich complex with isomerized ligands and the inverted sandwich complex for (TpPh,4CN)2Mn, the solvent appears to be the determining factor for dictating which complex is obtained. Using a dry, non-coordinating solvent, such as tetrahydrofuran, the sandwich complex is formed. This seems to be the result of the lack of H-bonding interactions and their geometric effects. Coordinating solvents such as methanol and water not only fill coordination sites around the metal, but also provide H-bonding interactions that contribute towards favoring the inverted sandwich complex over formation of the sandwich complex. 35 2.6 Conclusion The Tpt-Bu,4CN ligand allows for the isolation of metal complexes with Co2+, Mn2+, and Ni2+ that display a new coordination motif for the cyanoscorpionates – one in which the only coordinated N atom comes from the cyano group. These complexes show extended H-bonding networks which, along with the steric requirements of the tert-butyl substituent, explain the isolation of these complexes rather than the sandwich and half-sandwich complexes isolated with other scorpionate ligands. In our quest for rationally designed two- and three-dimensional coordination polymers based on the cyanoscorpionate ligands, these molecules represent one piece of the desired structure, demonstrating the ability of a metal ion to link two cyanoscorpionate ligands. The crystal structure of the non-isomerized Co(κ3-TpPh,4CN)(κ2-TpPh,4CN) sandwich complex was obtained showing one of the pyrazole rings from only one of the Tp ligands is rotated away from the pocket leaving a bi-dentate ligand and the boron hydrogen contained within the pocket providing an agostic bonding interaction. This structure is believed to be an intermediate for the 1,2- borotropically shifted sandwich complex of (TpPh,4CN)2Co. The incorporation of multiple toluene molecules seems to stabilize the lattice in order for X-ray quality crystals to grow. A new coordination motif was realized for the (TpPh,4CN)2Mn which showed the inverted sandwich structure. Even though the primary structure and coordination environment were identically to the analogous (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2, the H-bonding interactions produce an intricate 3- dimensional network not before seen, however, the interactions did not manifest themselves in a comparison of the bond lengths and angles involving B-N bonds to pyrazole rings of the same ligand, nor show differences in bond angles and distances involving atoms of the same type. Synthesis of 36 this inverted sandwich complex by rational means, produced an identical complex except for four MeOH molecules coordinated to the metal, instead of two MeOH and two H2O. This complex (TpPh,4CN)2Mn(MeOH)4 did show shortening of the B-N bond in each ligand to the pyrazole that is not involved in any H-bonding, while the other two B-N bonds are somewhat longer, however, the entire network showed expansion only in one direction. These new complexes are an exciting start to the possibility of combining the two types of cyanoscorpionates along with the different synthetic approaches in order to develop the desired coordination polymers with two different types of metal nuclei, as shown in Figure 1.4.7. In pursuit of this goal, the next step would be to attempt the coordination of metal ions in the pyrazolylborate pockets of the inverted sandwich compounds, which will be discussed in the next chapter. 37 2.7 Experimental 2.7.1 General Unless otherwise stated, all solvents and reagents were used as received from Aldrich, Acros, and Fisher Scientific without further purification. Tert-butylcyanoacetate was obtained from TCI. When specified, dry solvents were distilled from sodium/benzophenone (tetrahydrofuran and toluene) or calcium hydride ( methylene chloride and acetonitrile). Air-sensitive compounds were manipulated in a Vacuum Atmospheres Inc. Nexus One drybox, equipped with a variable temperature freezer, or on a double manifold Schlenk line using standard Schlenk techniques. IR spectra were recorded on a Nicolet Avatar 360 FTIR. Electrospray mass spectra were obtained on a Finnigan LCQ DECA spectrometer. NMR spectra were obtained using either a Varian Mercury 300MHz NMR or Varian Inova 400MHz NMR. Elemental analyses were obtained from M-H-W Laboratories, Phoenix, AZ. For the X-ray structures, crystals were selected under a polarizing microscope, affixed to a nylon cryoloop using oil (Paratone-n, Exxon), and mounted in the cold stream of a Bruker Kappa-Apex-II area-detector diffractometer. The temperature at the crystal was maintained at 150 K using a Cryostream 700EX low-temperature apparatus (Oxford Cryosystems). The unit cells were determined from the setting angles of the reflections collected in 36 frames of data. Data were measured using graphite mono-chromated molybdenum Kα radiation (λ= 0.71073 Å) collimated to a 0.6 mm diameter and a CCD detector at a distance of 50 mm from the crystal with a combination of phi and omega scans. A scan width of 0.5 degrees and scan time of 10 seconds were employed. Data collection, reduction, structure solution, and refinement were performed using the Bruker Apex2 suite (v2.0-2).40 All available reflections to 2θmax = 52° were harvested and corrected for Lorentz and polarization factors with Bruker SAINT (v6.45).41 Reflections were then corrected for absorption, interframe scaling, and other systematic errors with SADABS 2004/1.42 The structures were solved (direct methods) and refined (full-matrix least-squares against F2) with the Bruker 38 SHELXTL package (v6.14-1).43 All non-hydrogen atoms were refined using anisotropic thermal parameters. Hydrogen atoms were included at idealized positions and were not refined. 2.7.2 Potassium hydrotris(3-tert-butyl-4-cyanopyrazolyl)borate, KTpt-Bu,4C. Potassium borohydride (1.17 g, 0.021 mol) and 3-tert-butyl-4-cyanopyrazole (12.64 g, 0.091 mol) were combined in a round-bottom flask fitted with a reflux condenser and slowly heated to 210 oC for one hour. At 150 oC the 3-tert-butyl-4-cyanopyrazole began to melt and bubbles began to form. The reaction mixture was allowed to cool, and the resulting powder was washed with boiling toluene to yield KTpt-Bu,4CN as a white solid (9.97g, 0.0201 mol, 95.2%). IR (KBr, cm-1): 2461(νBH, m) 2231(νCN, s). ESI-MS (MeOH, negative detection): m/z = 148.3 [pzt-Bu,4CN]-, 456.4 [Tpt-Bu,4CN]- (major peaks); 603.5 [pzt-Bu,4CNTpt-Bu,4CN]- (minor peak). X-ray quality crystals were grown from slow evaporation of a 80/20 methanol/toluene solution. X-ray data collection and structure solution parameters are listed in Table A1. 2.7.3 Potassium hydrotris(4-cyano-3-phenylpyrazolyl)borate, KTpPh,4C. Potassium borohydride (1.24 g, 0.023 mol) and 4-cyano-3-phenylpyrazole (15.43 g, 0.085 mol) were combined in a round-bottom flask fitted with a reflux condenser and slowly heated to 230 oC for two hours. At 150 oC the 4-cyano-3-phenylpyrazole began to melt and bubbles began to form. The reaction mixture was allowed to cool, and the resulting powder was dissolved in acetonitrile, filtered, and the solvent was removed under reduced pressure. The product was washed with boiling toluene to yield KTpPh,4CN as a pale yellow solid (10.25g, 0.0199 mol, 86.5%). IR (KBr, cm-1): 2446(νBH, m) 2228(νCN, s). X-ray quality crystals were grown from slow evaporation of a 80/20 methanol/toulene solution. X-ray data collection and structure solution parameters are listed in Table A1. 39 2.7.4 Tetraaquabis(hydrotris(3-tert-butyl-4-cyanopyrazolyl)borato)cobalt(II), [(Tpt-Bu,4C)2Co (H2O)4]. To a solution of Co(ClO4)2·6H2O (0.370g, 1.01 mmol) in 100 mL of methanol was added dropwise a solution of KTpt-Bu,4CN (1.00 g, 2.02 mmol) in methanol. The pink solution immediately turned to a cloudy light orange mixture, which was allowed to stir for 18 hours. The mixture was filtered to remove a white precipitate, and the solvent was removed under reduced pressure to give 0.975 g of light pink solid. The solid was washed with deionized water and dried under reduced pressure to give a light pink solid (0.641 g, 0.598 mmol, 59.2%). IR (cm-1, KBr pellet): 2494(νBH, w), 2232(νCN, s), Elemental Analysis, Found (Calc’d for C48H70N18B2O4Co·4H2O): C, 51.18 (51.67); H, 6.30 (7.05); N, 22.12 (22.60). X-ray quality crystals were grown from slow evaporation of a methanol solution. X-ray data collection and structure solution parameters are listed in Table A1. 2.7.5 Tetraaquabis(hydrotris(3-tert-butyl-4-cyanopyrazolyl)borato)manganese(II), [(Tpt-Bu,4C)2Mn(H2O)4]. To a solution of Mn(ClO4)2·6H2O (0.362g, 1.01 mmol) in 100 mL of methanol was added dropwise a solution of KTpt-Bu,4CN (1.00 g, 2.02 mmol) in methanol. The colorless solution immediately turned cloudy and was allowed to stir for 18 hours. The mixture was filtered to remove the white precipitate, and the solvent was removed under reduced pressure to give 0.814 g of white solid. The solid was washed with deionized water and dried under reduced pressure yielding 0.722 g of [(Tpt)2Mn(H2O)4] (0.676 mmol, 66.9%). IR (cm-1, KBr pellet): 2490(νBH, w), 2240(νCN, s). X-ray Bu,4CN quality crystals were grown by slow evaporation of a methanol solution. X-ray data collection and structure solution parameters are listed in Table A1. 40 2.7.6 Diaquabis(hydrotris(3-tert-butyl-4-cyanopyrazolyl)borato)bis(methanol)cobalt(II), [(Tpt-Bu,4C)2Co(MeOH)2(H2O)2]. In a test tube, a solution of KTpt-Bu,4CN (0.2 g, 0.404 mmol) in 15 mL of methanol was layered on top of a solution of Co(ClO4)2·6H2O (0.074 g, 0.202 mmol) in 15 mL of 50/50 MeOH/H2O. After allowing the solutions to diffuse together for one week, the cover was removed and the solvent allowed to slowly evaporate for 72 hours, producing light pink X-ray quality crystals of (Tpt)2Co(MeOH)2(H2O)2 (0.0749 g, 0.070 mmol, 34.6%). IR (cm-1, KBr pellet): 2480(νBH, w), Bu,4CN 2233(νCN, s), ESI-MS (MeOH, positive and negative detection): m/z = 148.3[pzt-Bu,4CN]-, 366.1[BptCo]+, 456.4[Tpt-Bu,4CN]-, 515.2 [Tpt-Bu,4CNCo]+, 1177.2[Tpt-Bu,4CNCoTpt-Bu,4CNCopzt-Bu,4CN]+, Bu,4CN 1486.1[Tpt-Bu,4CNCoTpt-Bu,4CNCoTpt-Bu,4CN]+,(major peaks); 603.3[Tpt-Bu,4CNpzt-Bu,4CN]-, 662.7[Tpt- Bu,4CN Copzt-Bu,4CN]+, 971.2[Tpt-Bu,4CNCoTpt-Bu,4CN]+ (minor peaks) Elemental Analysis, Found (Calc’d for C50H74N18B2O4Co): C 55.52, (56.03); H 6.79, (6.96); N 23.45 (23.52) X-ray data collection and structure solution parameters are listed in Table A1. 2.7.7 Diaquabis(hydrotris(3-tert-butyl-4-cyanopyrazolyl)borato)bis(methanol) manganese(II), [(Tpt-Bu,4C)2 Mn(MeOH)2(H2O)2] . In a test tube, a solution of KTpt-Bu,4CN (0.2 g, 0.404 mmol) in 15 mL of methanol was layered on top of a solution of Mn(ClO4)2·6H2O (0.073 g, 0.202 mmol) in 15 mL of 50/50 MeOH/H2O. After allowing the solutions to diffuse together for a week, the cover was removed and the solvent allowed to slowly evaporate for 72 hours, producing colorless X-ray quality crystals of (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2 (0.129 g, 0.121 mmol, 59.9%). IR (cm-1, KBr pellet): 2521(νBH, w), 2238(νCN, s). ESI-MS (MeOH, positive and negative detection): m/z = 306.9 [Bpt-Bu,4CN]-, 362.0[Bpt-Bu,4CNMn]+, 456.2[Tpt-Bu,4CN]-, 511.2[Tpt-Bu,4CNMn]+, 1478.2[TptMnTpt-Bu,4CNMnTpt-Bu,4CN]+ (major peaks); 603.3[Tpt-Bu,4CNpzt-Bu,4CN]-, 660.0[Tpt-Bu,4CNMnpzt- Bu,4CN Bu,4CN + ] , 967.9[Tpt-Bu,4CNMnTpt-Bu,4CN]+, 1116.9[[Tpt-Bu,4CNMnTpt-Bu,4CNMnpzt-Bu,4CN]+ (minor peaks). 41 Elemental Analysis, Found (Calc’d for C48H70N18B2O4Mn·3H2O): C 53.48, (53.53); H 6.69 (7.19); N 22.20 (22.47). X-ray data collection and structure solution parameters are listed in Table A1. 2.7.8 Bis(hydrotris(3-tert-butyl-4-cyanopyrazolyl)borato)(1,4,8,11-Tetraazacyclotetra- decane)nickel(II), [(Tpt-Bu,4C)2i(cyclam)]·MeOH. In a test tube, a solution of KTpt-Bu,4CN (0.2 g, 0.404 mmol) in 15 mL of methanol was layered on top of a solution of Ni(cyclam)(ClO4)2 (0.081 g, 0.202 mmol) in 15 mL of 50/50 MeOH/H2O. After allowing the solutions to diffuse together for a week, the cover was removed and the solvent allowed to slowly evaporate for 72 hours, producing light green X-ray quality crystals of [(Tpt-Bu,4CN)2Ni(cyclam)] (0.107 g, 0.121 mmol, 47.5%). IR (cm-1, KBr pellet): 2501 (νBH, w), 2223 (νCN,s) ESI-MS (MeOH negative detection): m/z 306.4 [BptBu,4CN - ] , 456.2[Tpt-Bu,4CN]-, 603.3[Tpt-Bu,4CNpzt-Bu,4CN]-. Elemental Analysis, Found (Calc’d for C58H86N22B2Ni·2H2O·CH3OH): C 57.01, (57.16); H 7.11 (7.64); N 24.89 (24.89). X-ray data collection and structure solution parameters are listed in Table A1. 2.7.9 Bis(hydrotris(4-cyano-3-phenylpyrazolyl)borato)cobalt(II), Co(κ3-TpPh,4C)(κ2-TpPh,4C). To a solution of Co(ClO4)2·6H2O (0.659g, 1.80 mmol) in 100 mL of methanol was added dropwise a solution of KTpPh,4CN (2.00 g, 3.60 mmol) in methanol. The pink solution turned immediately to a cloudy purple mixture, and was allowed to stir for 18 hours. The solution was filtered and the solvent was removed under reduced pressure to yield a dark purple solid. The solid was re-dissolved in methanol, filtered, and the solvent was removed under reduced pressure to yield Co(κ3-TpPh,4CN)(κ2TpPh,4CN) (1.24g, 1.12 mol, 62.3%). IR (KBr, cm-1): 2489(νBH, m) 2235(νCN, s). X-ray quality crystals were grown from slow evaporation of a 80/20 methanol/toluene solution. X-ray data collection and structure solution parameters are listed in Table A1. 42 2.7.10 Diaquabis(hydrotris(4-cyano-3-phenylpyrazolyl)borato)bis(methanol) manganese(II), [(TpPh,4C)2 Mn(MeOH)2(H2O)2]. Potassium borohydride (1.08 g, 0.020 mol), 4cyano-3-phenylpyrazole (6.76 g, 0.040 mol) , and 3-tert-butyl-4-cyanopyrazole (5.96 g, 0.040 mol) were combined in a round-bottom flask fitted with a reflux condenser and slowly heated to 220 oC for 1.5 hours. At 150 oC the pyrazoles began to melt and bubbles began to form. The reaction mixture was allowed to cool, and the resulting powder was dissolved in acetonitrile, filtered, and the solvent was removed under reduced pressure. The product was washed with boiling toluene, dried, and chromatographed using a silica gel column (100-200 mesh) with starting mobile phase of 80/20 hexanes/ethyl acetate. The mobile phase ratio of hexanes/ethyl acetate was slowly decreased to 20/80. The desired product was the last fraction (12th) to elute from the column. The solvent was removed under reduced pressure to yield a very pale yellow solid (5.25g). IR (KBr, cm-1): 2446(νBH, m) 2228(νCN, s). In a test tube, a solution of this pale yellow product (0.2 g) in 15 mL of methanol was layered on top of a solution of Mn(ClO4)2·6H2O (0.073 g, 0.202 mmol) in 15 mL of 50/50 MeOH/H2O. After allowing the solutions to diffuse together for a week, the cover was removed and the solvent allowed to slowly evaporate for 72 hours, producing colorless X-ray quality crystals of (TpPh,4CN)2Mn(MeOH)2(H2O)2 IR (cm-1, KBr pellet): 2513 (νBH, w), 2230 (νCN,s) X-ray data collection and structure solution parameters are listed in Table A1. 2.7.11 Bis(hydrotris(4-cyano-3-phenylpyrazolyl)borato)tetrakis(methanol)manganese(II), [(TpPh,4C)2Mn(MeOH)4]. In a test tube, a solution of KTpPh,4CN (0.224 g, 0.404 mmol) in 15 mL of methanol was layered on top of a solution of Mn(ClO4)2·6H2O (0.073 g, 0.202 mmol) in 15 mL of 50/50 MeOH/H2O. After allowing the solutions to diffuse together for a week, the cover was removed and the solvent allowed to slowly evaporate for 72 hours, producing very small colorless crystals that did not diffract. The product was removed from the test tube, dissolved in methanol in a small vial, placed inside a larger vial containing diethyl ether, and tightly capped. After 72 hours x43 ray quality crystals of (TpPh,4CN)2Mn(MeOH)4 were produced. IR (cm-1, KBr pellet): 2512(νBH, w), 2235(νCN, s). X-ray data collection and structure solution parameters are listed in Table A1. 44 CHAPTER 3: METAL COORDIATIO POLYMERS 3.1 Introduction Coordination polymers are a class of materials that possess 1-, 2-, and 3-dimensional networks that are composed of metal-organic backbones joined through coordination and hydrogen bonds, as well as other secondary interactions.25a These types of polymers are good candidates for molecule-based materials because they can be synthesized by less expensive, lower energy methods, and are comprised largely of light molecular weight elements which contain desirable physical, magnetic, and electronic properties. Over the last decade, coordination polymers have been studied for a wide variety of commercial applications such as rechargeable batteries, light emitting diodes, photovoltaics, membranes, electronic noses and sensors, chemical separation, and heterogeneous catalysis.14 Their properties are easily tunable by changing the backbone of the polymer, changing the metal doping agent, changing the coordination environment, and blending with other polymers.11 The recent explosive growth in supramolecular and nanochemistry is based on the understanding of the non-covalent intermolecular interactions. One of the most common synthetic approaches in producing predictable supramolecular networks is to combine organic ligands (spacers) with transition metal ions (nodes).18 Recently, supramolecular complexes are being used as functional materials showing molecular recognition, host–guest chemistry, ion exchange, catalysis, electrical conductivity, magnetism, and optics, as well as forming the basis for nanochemistry.23 The cyanoscorpionate ligands that are the subject of this research have the ability to form various coordination polymers in which two cyanoscorpionate complexes are bound to the metal ion through the cyano groups, as well as complexes in which the pyrazole is only coordinated to the metal 45 through the pyrazole N atoms.30 Recently, one dimensional Cu(I) coordination polymers were synthesized with both TpPh,4CN and Tpt-Bu,4CN.34 These polymers were crystallographically characterized and showed identical structures with the Cu coordinated to the three pyrazole N atoms of one Tp and the N atom of the cyano group from another Tp. The cyanoscorpionates’ ability to form coordination polymers can lead to a wide variety of coordination and packing motifs, making cyanoscorpionates very useful in developing useful molecule-based materials as well as 1-, 2- and 3dimensional supramolecular networks. 46 3.2 Cu(I) Coordination Polymers Previous work in our group showed the cyanoscorpionates’ ability to form coordination polymers through the cyano group by producing (TpPh,4CNCu)n and (Tpt-Bu,4CNCu)n (Figure 3.2.1). This polymer was crystallographically characterized and showed the Cu coordinated to the three pyrazole N atoms of one Tp and the N of the cyano group from another Tp. The polymers display a zigzag motif, with approximately 90o corners defined by the angle between the coordinated CN group and its symmetryrelated partner within the asymmetric unit. This was the first conformation of the cyanoscorpionates’ ability to form coordination polymers.34 Figure 3.2.1: Mercury drawing showing five units of the extended structures of {CuTpPh,4CN}n (left) and {CuTpt-Bu,4CN}n (right). Atom colors – Cu (orange), N (blue), B (pink), C (grey). Figure 3.2.2 shows views looking down the direction of the chains, revealing the well-defined channel formed by two adjacent chains. The phenyl substituents dissect this channel (Figure 3.2.2a), but the channel in the t-butyl derivative (Figure 3.2.2b) is much more open, with a closest distance of 4.211 Ǻ between methyl carbon atoms across the channel. Because (a) (a) (b) (b) Figure 3.2.2: Mercury drawings directed down the channels of (a) {TpPh,4CNCu}n and (b) {TptBu,4CN Cu}n Atom colors – Cu (orange), N (blue), B (pink), C (grey). 47 of this open space, during an attempt to synthesize a mixed-metal block coordination polymer involving Tpt-Bu,4CN, we isolated crystals of {[Tpt-Bu,4CNCu}][MeCN]}n in which acetonitrile molecules have been trapped in the channels (Figure 3.2.3). Figure 3.2.3: Mercury drawing (left) of the top view of {[Tpt-Bu,4CNCu][MeCN]}n showing the acetonitrile molecules and the protruding methyl groups in space-filling format (dark grey and dark blue), and Mercury drawing (right) of the {Tpt-Bu,4CNCu}n with the arrow showing the channel containing the acetonitrile. A similar structure has also been characterized with encapsulated methanol molecules. {[TptBu,4CN Cu][MeCN]}n crystallizes on a inversion center in the monoclinic space group C2/c. Selected bond angles and distances are in Table 3.2.1. The pseudotetrahedral coordination environment of the Cu(I) ion includes the three pyrazole N atoms of a Tpt-Bu,4CN ligand and is completed by a cyano N atom of another Tpt-Bu,4CN ligand. The bond between Cu and the cyano N for {[TptBu,4CN Cu][MeCN]}n is shorter than those to the pyrazole N atoms as was seen for the {Tpt-Bu,4CNCu}n. With the isolation of the inverted sandwich complexes described in Chapter 2, attempts were made to insert metal ions into the pyrazole pockets of these complexes in order to produce the desired heterometallic coordination polymers. Multiple attempts were made with all three inverted sandwich complexes and a wide variety of Cu(I) species (Figure 3.2.4). All attempts produced the same two 48 previously synthesized polymers, {[Tpt-Bu,4CNCu][MeCN]}n and {[Tpt-Bu,4CNCu][MeOH]}n, depending on the reaction and crystallization solvents. Table 3.2.1: Bond Lengths (Å) and Angles (deg.) {[Tpt-Bu,4CNCu][MeCN]}n {Tpt-Bu,4CNCu}n Cu–Npyrazole 2.053(2), 2.135(2), 2.148(19) 2.043(2), 2.151(3), 2.155(3) Cu-Ncyano 1.888(2) 1.882(3) B-N 1.533(3), 1.536(3), 1.540(3) 1.531(4), 1.532(5), .529(5) C≡N 1.142(4), 1.143(3), 1.146(3) 1.149(4), 1.143(5), 1.149(4) N-Cu-N 90.26(8), 92.23(7), 130.91(8), 94.01(8), 120.85(9), 119.27(8) 90.34(10), 92.27(10),131.39(11), 94.06(10), 120.51(11), 118.97(11) N-B-N 110.9(2), 109.8(2), 107.75(19) 111.3(3), 110.2(3), 107.8(3) C-C≡N 176.2(3), 175.5(3), 173.9(3) 176.0(4), 177.1(6), 174.1(3) Figure 3.2.4: The reaction scheme for the various attempts to produce the desired heterometallic coordination polymer, which all resulted in previously synthesized Cu(I) polymers. The {[Tpt-Bu,4CNCu][MeCN]}n crystals are essentially isostructural with the unsolvated polymer, indicating this compound maintains its structure even after the guest molecule has been removed - an attractive feature which is less common among reported structures.44 This feature suggests the possibility that two- or three-dimensional polymeric species involving the cyanoscorpionate ligands of Tpt-Bu,4CN might be useful small molecule carriers as well as hosts in catalytic systems. 49 3.3 Ag(I) Coordination Polymers {Tpt-Bu,4CAg}n (Ag-1) Since all attempts to insert Cu(I) into the pyrazole pockets of the inverted sandwich complexes produced the {Tpt-Bu,4CNCu}n with the same 1-D polymer motif, we chose to try the same type of heterometallic coordination polymer synthesis with a different metal. Ag(I) seemed to be a logically choice, sense the Ag+ will be in charge balance with the [Tpt-Bu,4CN]- in a 1:1 ratio, Ag will tolerate a tetrahedral geometry, and Ag is a good size to fit in the pocket of the Tpt-Bu,4CN ligand. The first attempt was made by trying to coordinate Ag+ in the pocket of the inverted sandwich complex (TptBu,4CN )2Co(MeOH)2(H2O)2, using AgNO3 as the silver source, and methanol/water as the reaction solvent. The resulting product was isostructural to the Cu(I) polymer without the encapsulated solvent molecule. {Tpt-Bu,4CNAg}n (Ag-1) crystallizes on a inversion center in the monoclinic space group C2/c (Figure 3.3.1) The pseudotetrahedral coordination environment of the Ag(I) ion includes the three pyrazole N atoms of a Tpt-Bu,4CN ligand and is completed by a cyano N atom of another TpR,4CN ligand. The bond between the Ag and the cyano N for {Tpt-Bu,4CNAg}n is shorter than those (a) (b) Figure 3.3.1: a) Mercury drawing of the monomer for Ag-1 . b) Mercury drawing showing five units of the extended structure of {Tpt-Bu,4CNAg}n for Ag-1. Atom colors – Ag (bright pink), N (blue), B (light pink), C (grey). 50 to the pyrazole N atoms, as was seen for {Tpt-Bu,4CNCu}n. However, all of the Ag-N bonds are approximately 0.2 Å longer than the analogous Cu-N bond, which makes sense due to the larger Ag size. Selected bond angles and distances are in Table 3.3.1. Table 3.3.1: Bond Lengths (Å) and Angles (deg.) for Ag-1 (Ag-1) {Tpt-Bu,4CNCu}n M–Npyrazole 2.301(12), 2.390(12), 2.392(12) 2.043(2), 2.151(3), 2.155(3) M-Ncyano 2.157(15) 1.882(3) B-N 1.513(19), 1.533(2), 1.545(2) 1.531(4), 1.532(5), 1.529(5) C≡N 1.138(19), 1.135(2),1.137(2) 1.149(4), 1.143(5), 1.149(4) 84.1(4),85.7(4),138.5(5), 90.34(10), 92.27(10),131.39(11), 87.76(4), 123.3(5), 121.74(5) 94.06(10), 120.51(11), 118.97(11) N-B-N 113.5(12), 112.6(12), 107.0 (11) 111.3(3), 110.2(3), 107.8(3) C-C≡N 177.8(2), 176.2(19), 167.3(13) 176.0(4), 177.1(6), 174.1(3) N-M-N 51 3.4 Ag(I) Coordination Polymers (Ag-2) In order to attempt the synthesis of the silver polymer by rational means, AgNO3 was reacted with KTpt-Bu,4CN, the which produced {Tpt- Bu,4CN Ag}n with the same monomeric unit as before, but with a different chain elongation motif and tertiary structure (Ag-2). The compound crystallizes on a general position in the orthorhombic space group Cmc21, with Figure 3.4.1: A Mercury drawing of the monomeric unit of Ag-2. The silver pyrazolate is on the far left. Atom colors – Ag (bright pink), N (blue), B (light pink), C (grey). selected bond lengths and angles in Table 3.4.1. The structure (Figure 3.4.1) features a (TtBu,4CN Ag)3 trimeric unit in which the central Tp ligand coordinates through two of its cyano N atoms to the Ag atoms of the two outer Tpt-Bu,4CNAg moieties. An additional Ag ion, binds to one cyano N atom of the outer Tpt-Bu,4CNAg moieties of two neighboring trimeric units, creating a 1-dimensional chain of the formula {(Tpt-Bu,4CNAg)3Ag}n extending in the a-direction of the crystal. The bridging Ag atom, in turn, is coordinated by a pyrazole N atom of a disordered pyrazolate ion. The cyano N Tabel 3.4.1Bond Lengths (Å) and Angles (deg.) for Ag-2 atom of this pyrazolate binds to the Ag atom of the central Tpt-Bu,4CNAg Ag–Npyrazole 2.301(12), 2.390(12), 2.392(12) Ag-Ncyano 2.157(15) B-N 1.513(19), 1.533(2), 1.545(2) chain in the b-direction of the C≡N 1.138(19), 1.135(2),1.137(2) crystal (Figure 3.4.2), resulting in a N-Ag-N 84.1(4),85.7(4),138.5(5), 87.76(4), 123.3(5), 121.74(5) 2-dimensional polymeric sheet. N-B-N 113.5(12), 112.6(12), 107.0 (11) C-C≡N 177.8(2), 176.2(19), 167.3(13) of a trimeric unit in the neighboring 52 a-direction b-direction Figure 3.4.2: Mercury drawing of the 2-D network of Ag-2. Atom colors – Ag (bright pink), N (blue), B (light pink), C (grey). c-direction Figure 3.4.3: Mercury drawing of a) 2-dimensional polymeric network of Ag-2. b) The channels formed by the stacking of the 2D sheets, extending in the a-direction. Atom colors – Ag (bright pink), N (blue), B (light pink), C (grey). 53 3.5 Ag(I) Coordination Polymers (Ag-3) Reaction Table 3.5.1: Bond Lengths (Å) and Angles (deg) for Ag-3 Ag–Npyrazole 2.244(11), 2.327(9), 2.307(10), 2.346(10), 2.363(6), Ag-Ncyano 2.293(10), 2.167(14), 2.313(9) B-N 1.51(2), 1.55(2), 1.531(13), 1.533(12), 1.561(13), 1.520(13), 1.554(17) C≡N 1.149(13), 1.55(16), 1.136(12), 1.165(11), 1.16(2), 1.124(7), 1.142(16) N-Ag-N 89.0(4), 130.3(3), 114.5(4), 115.7(3), 124.1(3), 87.5(3), 126.0(6), 137.1(4), 84.5(4), 121.7(4), 86.1(4), 85.7(3) N-B-N 109.0(8), 111.2(8), 107.7(7), 107.3(7), 109.3(8), 112.3(8), 109.3(15), 109.8(10), 111.2(11) C-C≡N 176.7(13), 179.4(18), 178.0(2), 177.9(9), 177.2, 178.7(12), 178.5(8) of the (Tpt-Bu,4Cn)2Co(MeOH)2 (H2O)2 inverted sandwich complex with AgNO3, produced a different polymeric elongation motif. polymeric compound The (Ag-3) crystallizes on an inversion center in the triclinic space group P 1 containing two Tpt-Bu,4CN, two pztTpt-Bu,4CN, and 4 Ag+ ions in Bu,4CN the repeat unit (Figure 3.5.1). Selected bond lengths and angles are given in Table 3.5.1. pseudotetrahedral The coordination environment for Tpt-Bu,4CNAg is made up of the three pyrazole nitrogens and a cyano nigtrogen from a pzTpt-Bu,4CN ligand. The pseudotetrahedral coordination environment for pzTptBu,4CN Ag is made up of two pyrazole nitrogens from the bidentate pzTp Figure 3.5.1: Mercury drawing of the repeat unit of Ag-3. Atom colors – Ag (bright pink), N (blue), B (light pink), C (grey). ligand, a cyano N atom from the symmetry related pzTp ligand, and a cyano nigtrogen form a neighboring Tpt-Bu,4CN ligand. This latter 54 interaction, occuring from both of the symmetry related pzTpAg moieties, results in the formation of a one-dimensional chain in the b-direction of the crystal (Figure 3.5.2a). The packing of these chains in the a-direction results in channels with dimensions 7.2 Å x 22.5 Å (Figure 3.5.2b). b-direction a-direction (a) (b) Figure 3.5.2: Mercury drawing of a) the polymeric chain of Ag-3 with growth in the b-direction. b) A view down the b-axis showing the channels formed by the packing in the a-direction. 55 3.6 Ag(I) Coordination Polymers (Ag-4) Crystals of Ag-4 were produced from a reaction of (Tp )2Mn Table 3.6.1: Bond Lengths (Å) and angles (deg) for Ag-4. t-Bu,4CN Ag–Npyrazole 2.324(8), 2.341(8), 2.364(8) (MeOH)2(H2O)2 and AgSbF6. The Ag-Ncyano 2.158(9) compound crystallizes on a general B-N 1.524(14), 1.545(15), 1.547(14) position in the orthorhombic space C≡N 1.207(18), 1.212(18), 1.103(14) group P43212 with selected bond N-Ag-N 129.8(3), 130.9(4), 86.2(3), 124.1(4), 82.0(3), 88.2(3) N-B-N 111.5(8), 109.6(9), 110.0(8) C-C≡N 179.1(17), 174.9(16), 177.4(13), lengths and angles in Table 3.6.1 The pseudotetrahedral coordination environment of the Ag(I) ion includes the three pyrazole N atoms of a Tpt-bu,4CN ligand and is completed by a cyano N atom of another Tpt-bu,4CN ligand (Figure 3.7.1). This compound has only one Tpt-Bu,4CNAg in the asymmetric unit, as with Ag-1, , but possesses very high symmetry and forms a helical, rather than zig-zag, polymer chain. a b Figure 3.6.1 Mercury drawing of a) The monomeric unit for Ag-4. b) five monomers linked in a helical shape looking down the polymer chain. Atom colors – Ag (bright pink), N (blue), B (light pink), C (grey). 56 The helical chains stack together in an “out of phase wave” fashion providing a 2-D sheet with alternating large and small holes. Figure 3.6.2: Mercury drawing of A-4 showing the stacking of the helical polymer chains. 57 3.7 Experimental 3.7.1. General. See section 2.7.1. 3.7.2 Synthesis of {[Tpt-Bu,4CCu][MeC]}n and {[Tpt-Bu,4CCu][MeOH]}n In the glove box, 0.058 g of CuOPh (0.374mmol) was dissolved in dried and degassed methanol, and then 0.2g (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2 (0.187mmol) in dried and degassed methanol was slowly added. The solution immediately turned from a light orange to a cloudy green. A light green solid was filtered, half of the product was dissolved in acetonitrile and slow evaporation from this solution produced X-ray quality crystals of {[Tpt-Bu,4CNCu][MeCN]}n. IR (cm-1, KBr pellet): 2478(νBH, w), 2233(νCN, s). The other half of the solution was dissolved in methanol and slow evaporation from this solution produced X-ray quality crystals of {[Tpt-Bu,4CNCu][MeOH]}n. IR (cm-1, KBr pellet): 2486(νBH, w), 2234(νCN, s). X-ray data collection and structure solution parameters are listed in Table A1. 3.7.3 Synthesis of Ag-1 In a test tube, a solution of AgNO3 (0.063 g, 0.374 mmol) in 15 mL of methanol was layered on top of a solution of (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2 (0.2 g, 0.187 mmol) in 15 mL of 50/50 MeOH/H2O. After allowing the solutions to diffuse together for one week, the cover was removed and the solvent allowed to slowly evaporate for 72 hours, producing colorless X-ray quality crystals of Ag-1. IR (cm-1, KBr pellet): 2468(νBH, w), 2229(νCN, s). X-ray data collection and structure solution parameters are listed in Table A1. 58 3.7.4 Synthesis of Ag-2 In a test tube, a solution of KTpt-Bu,4CN (0.2 g, 0.404 mmol) in 15 mL of methanol was layered on top of a solution of AgNO3 ( 0.137 g, 0.808 mmol) in 15 mL of 50/50 MeOH/H2O. After allowing the solutions to diffuse together for one week, the cover was removed and the solvent allowed to slowly evaporate for 72 hours, producing colorless X-ray quality crystals of Ag-2. (IR (cm-1, KBr pellet): 2496(νBH, w), 2230(νCN, s), X-ray data collection and structure solution parameters are listed in Table A1. 3.7.5 Synthesis of Ag-3 To a solution of AgNO3 (0.137 g, 0.808 mmol) in methanol, a solution of KTpt-Bu,4CN (0.2 g, 0.404 mmol) in methanol was slowly added. The light pink solution turned immediately a cloudy brown and was stirred for 18 hrs. After filtration, half of the light brown solid was dissolved in THF, and after 24 hrs of slow evaporation X-ray quality crystals of Ag-3 were produced. IR (cm-1, KBr pellet): 2479(νBH, w), 2227(νCN, s ). X-ray data collection and structure solution parameters are listed in Table A1. 3.7.6 Synthesis of Ag-4 In a test tube, a solution of AgSbF6 (0.129 g, 0.374 mmol) in 15 mL of methanol was layered on top of a solution of (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2 (0.2 g, 0.187 mmol) in 15 mL of 50/50 MeOH/H2O. After allowing the solutions to diffuse together for one week, the cover was removed and the solvent allowed to slowly evaporate for 72 hours, producing colorless X-ray quality crystals of Ag-4. X-ray data collection and structure solution parameters are listed in Table A1. 59 3.8 Conclusion. The {[Tpt-Bu,4CNCu]}n compounds were isolated with CH3CN and CH3OH encapsulated in the lattice. The unsolvated polymer was previously synthesized, indicating this compound can maintain its structure even after the guest molecule has been removed which is an attractive feature that suggests the possibility that two- or three-dimensional polymeric species involving the cyanoscorpionate ligands of {Tpt-Bu,4CNCu}n might be useful as small molecule carriers as well as hosts in catalytic systems. Multiple attempts were made to try to incorporate a Cu+ species in the Tp pocket of the inverted sandwich complexes. Each attempt resulted in decomposition of the inverted sandwich complex and the formation of the {Tpt-Bu,4CNCu}n with the same 1-D polymeric network. The same type of heterometallic coordination polymer synthesis was attempted using Ag+. Multiple attempts with Ag+ also caused the decomposition of the inverted sandwich complexes, however, 1- and 2-D polymers were formed with various polymeric networks. Changing the reaction conditions slightly produced very different secondary and tertiary structures as well as holes and channels within these networks. From a supramolecular standpoint, these new polymers produce exciting insight into possible guest host molecules as well as other supramolecular networks. 60 CHAPTER 4: METAL PYRAZOLE COMPLEXES. 4.1. Introduction The scorpionate ligands have been widely used for the last four decades3 due to the ease with which these ligands can be synthesized with various ring substituents. Although there have been numerous reports of the synthesis from pure scorpionate ligands of metal complexes containing coordinated pyrazole molecules (sometimes mixed scorpionate/pyrazole complexes)5, there has not been a great deal of study on the degradation of scorpionates. In 2002, Graziani and coworkers reported the degradation (deboronation) of Tl[pzTpt-Bu] to give trans-FeCl2(Hpzt-Bu)4 when reacted with FeCl2.45 They also discovered that increased steric crowding around the boron atom reduces the stability of the scorpionate with respect to B-N cleavage. Bieller et al. followed up this work with a study of the degradation reactions of scorpionates in the presence of transition metal halide salts (MX2) to give pyrazole derivatives, and suggested that another reason for the deboronation of scorpionates may be due to the difference in Lewis acidity of the metal center and the boron center in the pyrazolyl borate.46 Earlier work in our group showed possible scorpionate degradation reactions of TlTpt-Bu,4CN with Rh2(CF3COO)4 and reacting TlTpPh,4CN with Ni(cyclam)(ClO4)2. In the current studies, we have also seen the degradation of scorpionates, with a variety of metal salts and scorpionate metal complexes. Chapter 3 presented attempts to introduce Cu(I) or Ag(I) in the Tp pocket of the inverted sandwich complexes, resulting in isolation of the various Cu and Ag polymers containing Tp ligands. In this chapter are described related reactions of transition metals with KTpt-Bu,4CN and the inverted sandwich scorpionate complexes {(Tpt-Bu,4CN)2M(L)4} which showed deboronation to form various metal pyrazole complexes and polymers. 61 4.2. Reaction of (Tpt-Bu,4C)2Co(MeOH)2(H2O)2 with CuSPh In an attempt to introduce a Cu(I) in the Tp pocket of the inverted sandwich complex (TptBu,4CN )2Co(MeOH)2(H2O)2, scorpionate deboronation occurred resulting in formation of the polymer {(Hpz)4Cu(ClO4)}n. The anion is presumed to be from the Co salt that was used in the synthesis of the inverted sandwich complex. The compound {(Hpz)4Cu(ClO4)}n crystallizes on an inversion center in the monoclinic space group C2/c, with selected bond lengths and angles given in Table 4.2.1. Table 4.2.1: Bond Lengths (Å) angles (deg) for {(Hpz)4Cu(ClO4)}n Cu–N 2.324(8), 2.341(8), 2.364(8) Cu-O 2.158(9) O-Cu-O 164.3(3) C≡N 1.207(18), 1.212(18), 1.103(14) N-Cu-N C-C≡N octahedral coordination of the Cu(I) includes four N atoms from the 129.8(3), 130.9(4), 86.2(3), 124.1(4), 82.0(3), 88.2(3) 179.1(17), 174.9(16), 177.4(13), The neutral pyrazoles in the equatorial positions, and two O atons from the bridging perchlorate ions in the axial positions (Figure 4.2.1). The coordinated pyrazole N atoms are those which were bound to B in the Tp reagent (i.e., the N furthest from the t-butyl substituent). The O···Cu···O angle is 164.3° which is a significant deviattion from a true octahedral geometry. One of the tert-butyl groups (lower right in Figure 4.2.1) is disordered through multiple parts; therefore it was unable to be modeled correctly because of the multiple q-peaks for one atom at various positions. These 4 carbon atoms were, therefore, refined 62 Figure 4.2.1: ORTEP drawing of the monomer {(Hpz)4Cu(ClO4)}n coordination environment. H atoms have been left out for clarity. with isotropic thermal parameters. Each (Hpz)4Cu is bridged by a perchlorate anion forming a 1D polymeric chain. (Figure 4.2.2a). There are three intermolecular hydrogen bonding interactions between two O atoms of the perchlorate and the N of three different pyrazoles: O2···N2 is 2.818 Å; O2···N11 is 2.771 Å; O4···N5 is 2.778Å. These interactions cause each pyrazole involved to rotate towards the O atom about the Cu-N bond, and cause the two neighboring monomers to form a staggered conformation which is continued through the entire polymer (Figure 4.2.2b). Overall, this Tp degradation product, {(Hpz)4Cu(ClO4)}n, exhibits interesting supramolecular properties through the bridging perchlorate anion that is also involved in H-bonding interactions, and the staggered conformation forced by the steric bulk of the tertbutyl groups. c-direction a b Figure 4.2.2: a) Mercury drawing of three monomer units of{(Hpz)4Cu(ClO4)}n extending in the c-direction. b) Mercury drawing looking down the Cu-Cu vector showing the staggered conformation of two monomer units and the H-bonding interactions (as dashed lines). 63 4.3. Reaction of [(Tpt-Bu,4C)2i(cyclam)]·MeOH with [Cu(CH3C)4]PF6 and aSPh Another attempt to introduce a Cu(I) in the Tp pocket of an inverted sandwich complex, this time [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH, resulted in scorpionate deboronation and formation of the polymer {(Hpz)4Cu(PF6)}n. The Table 4.3.1: Bond Lengths (Å) angles (deg) for {(Hpz)4Cu(PF6)}n compound crystallizes on a four-fold rotation axis in the tetragonal space group P4/n with selected bond Figure 4.3.1: ORTEP drawing of the monomer {(Hpz)4Cu(PF6)}n coordination evnironment. H atoms have been left out for clarity. Cu–N Cu-F C≡N N-Cu-N C-C≡N 2.015 2.256(4), 2.314(4) 1.142(4) 177.06(14), 89.962(4) 177.7(3) Figure 4.3.2: Mercury drawing of three monomer units of {(Hpz)4Cu(PF6)}n extending in the c-direction. H atoms have been left out. Atom colors – Cu (dark orange), N (blue), B (light pink), C (grey), P (light organe), F (yellow) lengths and angles in Table 4.3.1 The octahedral coordination of the Cu(I) includes four N atoms from the pyrazoles in the equatorial positions, and two F atoms from the bridging PF6 ions in the axial poisitons (Figure 4.3.1). Each (Hpz)4Cu is bridged by a PF6 anion forming a 1-D polymeric chain. Unlike the {(Hpz)4Cu(ClO4)}n, there are no H-bonding interactions, therefore the pyrazoles are not rotated with respect to the Cu-N, and two neighboring monomers line up in the eclipsed conformation. This is consistent with the crystallographically imposed 4fold symmetry.(Figure 4.3.3) 64 Figure 4.3.3: Mercury drawing looking down the c-axis showing the eclipsed conformation. H-atoms have been removed for clarity. 65 4.4. Reaction of KTpt-Bu,4C with Mn(CF3COO)2 After realizing the importance of a non-coordinating anion, as well as dry solvents, Mn(CF3COO)2 was reacted with KTpt-Bu,4CN in dry methanol to yield {(Hpzt- Bu,4CN )2Mn(CF3COO)2}n. Table 4.4.1: Bond Lengths (Å) angles (deg) for {(HpztBu,4CN )2Mn(CF3COO)2}n. Mn–Npyrazole Mn–Ncyano Mn-O C≡N N-Mn-N C-C≡N 2.243(3) 2.232(4) 2.118(3) 1.147(6) 180.00(1), 91.91(12), 88.04(12) 178.2(5) Figure 4.4.1: ORTEP drawing of the monomer {(Hpz)2Mn(CF3COO)2}n coordination environment. H atoms have been left out for clarity. The octahedral coordination environment of the Mn(II) includes N atoms from two pyrazoles, N atoms compound crystallizes This on an inversion center in the monoclinic space group P21/c with selected bond distances and angles in Table 4.4.1. Figure 4.4.2: Mercury drawing of five monomer units of {(Hpz)2Mn (CF3COO)2}n creating a 2-D network. . Atom colors – Mn (bright pink), N (blue), B (light pink), C (grey), O (red), F (yellow) from the cyano groups of two other pyrazoles, and O atoms from two triflate (CF3COO-) anions (Figure 4.4.1). The infared spectrum of this compound shows two bands for the CN stretch, at 66 2234 and 2261 cm-1. This is unexpected, as all CN groups are identical in this complex. Chain elongation occurs through the pyrazole N as well as the cyano N creating a 2-D conjugated polymer (Figure 4.4.2). There are also two intramolecular H-bonding interactions between O of the (CF3COO)- and the unbound pyrazole N with a N···O distance of 2.686 Å (Figure 4.4.3) Figure 4.4.3: Mercury drawing showing the intramolecular H-bonding interactions of {(Hpz)2Mn(CF3COO)2}n. 67 4.5. Reaction of [(Tpt-Bu,4C)2i(cyclam)]·MeOH with CuCl2 In an attempt keep from producing the {[Tpt-Bu,4CNCu]}n, CuCl2 was reacted with the inverted sandwich complex[(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH. As was seen by Graziani and Bieller,45,46 using a metal halide salt caused Tp degradation through deboronation and produces [(HpztBu,4CN )2CuCl(η-Cl)]2 dimer. The molecule is a Cu(II) dimer, which crystallizes on an inversion center in the monoclinic space group P21/n - selected bond distances and angles are in Table 4.5.1 The Cu(II) coordination environment is square pyramidal, which includes two pyrazole N’s, one bridging Cl, and one Table 4.5.1: Bond Lengths (Å) angles (deg) for [(Hpz)4Cu2]Cl4 Cu–N Cu–Cl C≡N N-Cu-N Cl-Cu-Cl C-C≡N 2.0061(17), 2.0116(18) 2.2786 (5), 2.2966(6), 2.6779(6) 1.142(3) 167.58(7) 173.21(3) 179.2(3) non-bridging Cl in the equatorial positions, and the other bridging Cl in the axial position (Figure 4.5.1), with the long axial Cu-Cl bond distance of 2.678 Å. Zhao and Eichhorn previously reported a similar pseudodimer,47 in which both Cl atoms are terminal and the Cu atoms are bridged by the N from the cyano groups with an axial Cu-Ncyano distance of 2.812 Å. The N-CuN linear distortion (167.5°) is due to the steric interaction between the CN group of one pyrazole from one Figure 4.5.1: ORTEP drawing of the monomer’s [(Hpz)4Cu2]Cl4 dimer coordination environment. H atoms have been left out for clarity. Cu(II) monomer and the tert-butyl group of the pyrazole from the other. 68 4.6. Reaction of (Tpt-Bu,4C)2Co(MeOH)2(H2O)2 with AgBF4 In an attempt to incorporate a Ag(I) species in the Tp pocket of (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2, degradation of the Tp occurred resulting in a silver pyrazolate polymer, {[(pztBu,4CN )3Ag3]}n·CH3CN. The compound crystallizes on an inversion center in a triclinic space group P1 triangular monomer unit (Figure 4.6.1a) is made up of three pyrazolates bridged by three Ag(I) ions in a linear geometry through each of the pyrazole nitrogens. Two monomer units are bridged by coordination of a cyano N atom (N9) from one monomer to a Ag atom (Ag2) from a symmetry related monomer (Fig. 4.6.1b) to create a dimeric Ag6 unit. These dimeric units are further associated by Ag-Ag interactions (Ag1-Ag2’, 3.15 Å) to produce a 1-D chain (Fig. 4.6.2). (a) (b) Figure 4.6.1: a) ORTEP drawing of the monomer of {[(pzt-bu,4CN)3Ag3]}n. b) Mercury drawing of two units showing the different Ag coordination environments. 69 Table 4.6.1: Bond Lengths (Å) angles (deg). {[(pzt-Bu,4CN)3Ag3]}n·CH3CN Ag–Ag 3.1496(8) Ag-Npyrazole 2.093(5), 2.125(4), 2.107(5), 2.124(5), 2.101(5), 2.112(5) Ag-Ncyano 2.667 C≡Nunbound 1.129(8), 1.153(9) C≡Nmetal bound 1.142(8) N-Ag-N 170.23(19), 171.24(19), 175.09(19) Ag-Ag-Ncyano C-C≡N 145.6 179.5(8), 179.1(8), 178.2(7) Figure 4.6.2: Mercury drawing of chain elongation for {[(pzt-Bu,4CN)6Ag6]}n·CH3CN 70 4.7. Experimental 4.7.1. General. See section 2.7.1. 4.7.2. Synthesis of {(Hpzt-Bu,4C)4Cu(ClO4)}n CuSPh (0.032g, 0.187mmol) was placed in 15 mL CHCl3 in a round bottom flask, and (TptBu,4CN )2Co(MeOH)2(H2O)2 (0.1g, 0.093mmol) in 15mL of methanol was slowly added. The yellow solution turned a pale green after 1 hour of stirring, and cloudy after 18 hours stirring. After filtration, the green solution was allowed to slowly evaporate producing light green X-ray quality crystals of {(Hpzt-Bu,4CN)4Cu(ClO4)}n IR (cm-1, KBr pellet): 2227(νCN, s). X-ray data collection and structure solution parameters are listed in Table A1. 4.7.3. Synthesis of {(Hpzt-Bu,4C)4Cu(PF6)}n Under Ar atmosphere, NaSPh (0.004g, 0.027 mmol) and [Cu(CH3CN)4]PF6 (0.010g, 0.027 mmol) were combined in dry and degassed 80/20 methanol/acetonitrile in a round bottom flask. [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH (0.065g, 0.055mmol) was slowly added to the flask. Immediately, the solution turned a cloudy yellow, and after 24 hrs stirring, the solution was a cloudy organge. After filtration the light yellow solution was allowed to slowly evaporate, producing X-ray quality crystals of {( Hpzt-Bu,4CN)4Cu(PF6)}n. IR (cm-1, KBr pellet): 2227(νCN, s). X-ray data collection and structure solution parameters are listed in Table A1. 4.7.4. Synthesis of {(Hpzt-Bu,4C)2Mn(CF3COO)2}n Under inert atmosphere, a solution of KTptBu,4CN (0.2 g, 0.404 mmol) in dry and degassed methanol was slowly added to a solution of 71 Mn(CF3COO)2·2CH3CN (0.29g, 0.808 mmol) in dry and degassed methanol. The colorless solution turned immediately a cloudy light brown and was stirred for 18 hrs. After filtration, the colorless solution was allowed to slowly evporate for 36 hrs producing X-ray quality crystals of {(Hpzt-Bu,4CN)2Mn(CF3COO)2}n. IR (cm-1, KBr pellet): 2234, 2261 (νCN, s). X-ray data collection and structure solution parameters are listed in Table A1. 4.7.5. Synthesis of the [(Hpzt-Bu,4C)2CuCl(η-Cl)]2 dimer. In a test tube, CuCl2 (0.044g, 0.328mmol) in 15 mL of methanol was layered on top of a solution of (Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2 (0.2g, 0.164mmol) in 15 mL of 50/50 MeOH/H2O. After allowing the solutions to diffuse together for one week, the cover was removed and the solvent allowed to slowly evaporate for 72 hours, producing light turquoise colored X-ray quality IR (cm-1, KBr pellet): 2227 (νCN, s). X-ray data crystals of [(Hpzt-Bu,4CN)2CuCl(η-Cl)]2 dimer. collection and structure solution parameters are listed in Table A1. 4.7.6. Synthesis of {[(pzt-Bu,4C)3Ag3]}n·CH3C A solution of (Tpt-Bu,4CN)2Co(MeOH)2(H2O)2 (0.2, 0.187 mmol) in methanol was slowly added to a solution of AgBF4 (0.073g, 0.374 mmol) in methanol. The solution immediately turned a cloudy brown and after 18 hrs of stirring, a dark red solid was filtered off. The solid was dissolved in CH3CN and after 24 hrs of slow evaporation, red X-ray quality crystals of {[(pzt)6Ag6]}n·CH3CN were produced. IR (cm-1, KBr pellet): 2229 (νCN, s). X-ray data collection Bu,4CN and structure solution parameters are listed in Table A1. 72 4.8. Conclusion Graziani and Bieller were among the first to study the degradation of scorpionates. They reported deboronation reactions of scorpionates when reacted with metal halide salts. Another possible reason for scorpionate degradation is the difference in Lewis acidity of the metal center and the boron center in the pyrazolyl borate.46 In attempting to form heterometallic metal complexes by incorporating a metal in the newly recognized inverted sandwich complexes, multiple Tp degradation products were synthesized. By changing the bridging anion from ClO4to PF6- in the {[(Hpzt-Bu,4CN)4Cu]X}n polymers, the conformation goes from staggered for {(HpztBu,4CN )4Cu(ClO4)}n with three different intermolecular H-bonding interactions to eclipsed for {(Hpzt-Bu,4CN)4Cu(PF6)}n not showing any H-bonding interactions. The {(Hpzt- Bu,4CN )2Mn(CF3COO)2}n polymer exhibits chain elongation occurring through the pyrazole N’s as well as the cyano N’s creating a 2-D conjugated polymer with the potential of interesting metal spin coupling. There was also a Tp degradation polymer that possesses three different Ag coordination environments within the same monomer producing two different monomer linkages within the same 1-D polymeric chain. These products not only give more information on the Tp degradation process, but they also possess very interesting primary and secondary structures that can be used in building supramolecular frameworks. 73 Chapter 5 Conclusion Continuation of the work on developing molecular based materials using scorpionate ligands, has provided a new coordination motif for Co2+, Mn2+, and Ni2+ metal complexes using Tpt-Bu,4CN. These new complexes showed the inverted sandwich coordination in which the ligand is coordinated to the metal only through one of the CN groups. This is an important step in forming the desired heterometallic coordination polymer in which there is a metal bound in the pocket of the Tp, as either a half-sandwich or sandwich complex, and another metal bridging two Tp ligands together in an inverted-sandwich motif. This type of coordination polymer not only has the potential to possess the desired physical properties of a molecular based material, but also the electronic and magnetic properties which could be used in a wide variety of commercial applications. Another exciting discovery was made when the inverted sandwich complex was synthesized for (TpPh,4CN)2Mn. After examining the different synthetic conditions, it was realized that the coordination motif is solvent dependant. When using non-coordinating dry solvents that are unable to participate in hydrogen bonding, the sandwich complex is formed. However, using solvents such as methanol and water, you have solvent coordination to the metal which leads to H-bonding interactions that help force the complex into the inverted sandwich motif. In attempting Cu+ insertion into the Tp pocket of each type of inverted sandwich complexes, the M-Ncyano was broken and the previously synthesized {[Tpt-Bu,4CNCu]}n polymer was formed. However, these polymers were isolated with CH3CN and CH3OH encapsulated in the lattice, making them possible candidates for small molecule carriers as well as hosts in catalytic systems. 74 Attempting the same type of metal insertion using Ag+, produced not only an isostructural compound to the copper polymer, but also produced various 1-D and 2-D {Tpt-Bu,4CNAg}n polymeric networks containing different types of holes and channels. From a supramolecular standpoint, these new polymers have the potential to be used as guest-host molecules as well as other supramolecular frameworks. We have seen the (TpPh,4CN)2Mn form both types of complexes, and by using our new knowledge of the solvent dependant coordination motifs, the H-bonding interaction effects, and the cyano group's coordination ability, I believe it is only a matter of time before the right reaction conditions are discovered and our desired heterometallic polymers are synthesized. Because of this potential, cyanoscorpionates have a promising future in developing useful molecular-based and supramolecular materials. 75 REFERECES 76 LIST OF REFERECES 1 Skotheim, T.A. Handbook of Conducting Polmers, 2nd edn, CRC, 1986 a) Tanaka, D.; Kitagawa, S. MRS Bull. 2007, 32, 540-543. (b) Mueller, U.; Schubert, M.M.; Yaghi, O.M.; Handbook of Heterogeneous Catalysis (2nd Edition) Ertl, G. (ed.), 2008, 247-262. (c) Rowsell, J.L. C.; Yaghi, O.M. Angew. Chem., Int. Ed. 2005, 44, 4670-4679. 2 a) Trofimenko, S. J. Am. Chem. Soc. 1966, 88, 1842. b) Trofimenko, S. Chem. Rev. 1993, 93, 943. c) Trofimenko, S., Scorpionates: The Coordination Chemistry of Polypyrazolylborates Ligands. Imperial College Press: London, 1999. 3 a) Dias, H. V. R.; Wang, Z. Inorg. Chem. 2000, 39, 3724. b) Dias, H. V. R.; Jin, W. Inorg. Chem. 2000, 39, 815. 4 a) Siemer, C.J.; Goswami, N.; Kahol, P.K.; VanStipdonk, M.J.; Eichhorn, D. M. Inorg. Chem. 2001, 40, 4081. b) Siemer, C.J.; VanStipdonk, M.J.; Kahol, P.K.; Eichhorn, D.M. Polyhedron 2004, 23, 235. c) Zhao, N.; Vanstipdonk, M.J.; Bauer, C.; Eichhorn, D.M. Inorg. Chem. 2007, 46, 8662. d) Zhao, N. Ph.D Dissertation. Wichita State University, 2005 5 Gatteschi, D.; Sessoli, R.; Villain, J., Molecular 3anomagnets, Oxford University Press: Oxford 2006. 6 a) Akhriff, Y.; Server-Carrio, J.; Sancho, A.; Garcýa-Lozano, J.;Escriva, E.; Folgado, J. V.; Soto, L.; Inorg. Chem. 1999, 38,1174; b) Coronado, E.; Curreli, S.; Gimenez-Saiz, C.; GómezGarcia, C. J.; Synth. Met. 2005, 154, 245. c). Amabilino, D. B.; Vaciana, J. Magnetism: Molecules toMaterials II: Molecule-Based Materials., Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim; 2002, ch. 1. 7 Tamura, M.; Nakazawa, Y.; Shiomi, D.; Nozawa, K.; Hosokoshi, Y.; Ishikawa, M.; Takahashi, M.; Kinoshita, M., Chemical Physics Letters , 1991, 186(4-5), 401-4. 8 Caneschi, A.; Gatteschi, D.; Lalioti, N.; Sangregorio, C.; Sessoli, R.; J. Chem. Soc., Dalton Trans. 2000, 21, 3907. 9 Sheila M. J.; Aubin, Z. S.; Pardi, P.; Krzystek, J.; Folting, K.; Brunel, L.; Rheingold, A .L.; Christou, G.; Hendrickson, D. N. Inorg. Chem. 1999, 38, 5329-5340. 10 Mitchel, B. S. An Introduction to Materials Engineering and Science for Chemical and Materials Engineers, John Wiley and Sons, 2004, ch. 6. 11 12 www.hsc.csu.edu.au/engineering_studies/telecommunications/2517/Semiconductors.html Zhong, J. C.; Misaki, Y.; Munakata, M.; Kurado-Sowa, T.; Maekawa M.; Suenaga, Y.; and Konaka, H. Inorg. Chem. 2001, 40, 7098-7098. 13 14 Bernhard, S.; Goldsmith, J. I.; Takada, K.; and Adruna, H.D. Inorg. Chem., 2003, 42,4389-4393. 77 15 Okamoto, S. PCT Int. Appl. 2009, WO2009013942 A1 20090129 Nomura, K.; Inagaki, Y.; Sasaki, H.; and Kuriki, T. Jpn. Kokai Tokkyo Koho 2008, JP2008288067 a 20081127 16 17 Sawano, T. Jpn. Kokai Tokkyo Koho 2008, JP 2008288310 A 20081127 Ariga, K.; Kunitake, T. Supra molecular Chemistry-Fundamentals and Applications, Springer Berlin Heidelberg, New York, 2006, Ch 1. 18 19 Cram, D.J.; and Cram, J.M. Science, 1974, 183, 803. Seed, J. W.; Turner, D.R.; and Wallace, K.J. Core Concepts in Supramolecular Chemistry and 3anochemistry. John Wiley & Sons, Ltd, 2007, Ch 1. 20 a) Tanaka, D.; Kitagawa, S.; MRS Bull. 2007, 32, 540-543. (b) Mueller, U.; Schubert, M.M.; Yaghi, O.M.; Handbook of Heterogeneous Catalysis (2nd Edition) Ertl, G. (ed.) 2008, 247-262. (c) Rowsell, J.L. C.; Yaghi, O.M.; Angew. Chem., Int. Ed. 2005, 44, 4670-4679. 21 Manna, S.C.; Zangrando, E.; Ribas, J.; and Chaudhur, N.R. Dalton Transactions, 2007, 13831391. 22 Grandjean, F.; Reger, D.L.; Gardinier, J.R.; Germmill, W.R.; Smith, M.D.; Shahin, A.M.; Long G.J.; and Rebbouh, L. J. Am. Chem. Soc, 2006, 127, 2303-2316. 23 Garcia-Baez, E.V.; Ballinas-Lopez, M. G.; Padilla-Martinez, P.; Martinez-Martinez, F.J.; and Hopfl, H.Acta Cryst, 2006, C62,m132-m135. 24 (a) Eddaoudi, M.; Moler, D. B. ; Li, H.; Chen, B.; Reineke, T. M.; O’Keeffe M.; Yaghi, O. M. Acc. Chem. Res., 2001, 34, 319; (b) Lin, W. B.; Ma, L.; Evans, O. R. Chem. Commun., 2000, 2263; (c) Evans, O. R.; Xiong, R.-G.; Wang, Z.; Wong, G. K.; Lin, W. Angew. Chem., Int. Ed., 1999, 38, 536; (d) Noro, S.; Kitagawa, S.; Kondo, M.; Seki, K. Angew. Chem., Int. Ed., 2000, 39, 2081; (e) Eddaoudi, M. ; Li, H. L.; Yaghi, O. M. J. Am. Chem. Soc., 2000, 122, 1391; (f) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. 3ature, 2000,404, 982; (g) Kahn, O. Acc. Chem. Res., 2000, 33, 647 25 a) Trofimenko, S. J. Am. Chem. Soc., 1969, 91, 588. b) Trofimenko, S., Scorpionates: The Coordination Chemistry of Polypyrazolylborates Ligands. 1999, Imperial College Press: London. 26 27 28 Trofimenko, S.; Calabrese, J.C.; and Thompson, J.S. Inorg. Chem., 1987, 26, 1507-1514. Eichhorn, D. M. and Armstrong, W.H. Inorg. Chem., 1990, 29, 3607-3612. Trofimenko, S.; Calabrese, J.C.; Domaille, P.J.; and Thompson, J.S. Inorg. Chem. 1989, 28, 10911101 29 30 Dias, H.; Lu, H.; Ratcliff, R.; Simon, G., Inorg. Chem. 1995, 34, 5380-5382. 78 Dias, H. V. R.; Kim, H.-J.; Lu, H.-L.; Rajeshwar, K.; Tacconi, N. R.; Derecskei-Kovacs, A.; Marynick, D. S. Organometallics 1996, 15, 2994-3003 31 32 Rheingold, A. R.; Incarvito, C. D.; Trofimenko, S. Inorg. Chem. 2000, 39, 5569. Siemer, C.J.; Goswami, N.; Van Stipdonk, M. J.; Eichhorn, D. M. Inorg. Chem., 2001 40, 40814084. 33 Zhao, N.; Bullinger J.C.; Van Stipdonk, M.J.; Stern, C.L.; Eichhorn, D.M. Inorg. Chem 2008, 47, 5945 34 35 Farrugia, L. J. (1997) ORTEP-3 for Windows, J. Appl. Cryst. 30, 565. a) Bieller, S.; Bolte, M.; Lerner, H.W.; Wagner, M.; Z. Anorg. Allg. Chem. 2006, 632, 319. (b) Chisolm, M.H.; Gallucci, J.C.; Yaman, G. Chem. Commun. 2006, 1872. 36 a) Joshi, H.K; Arvin, M.E.; Durivage, J.C.; Gruhn, N.E.; Carducci, M.D.; Westcott, B.L.; Lichtenberger, D.L.; Enemark, J.H. Polyhedron 2004, 24, 429. b) Batten, S.R.; Duriska, M.B.; Jensen, P.; Lu, J. Aust. J. Chem. 2007, 60, 72. 37 Silva, R.M.; Gwengo, C.; Lindeman, S.V.; Smith, M.D.; Long, G.J.; Grandjean, F. and Gardinier, J.R. Inorg. Chem 2008, 47, 7233 38 Kremer-Aach, A.; Kläui, W.; Bell, R.; Strerath, A.; Wunderlich, H.; and Mootz, D. Inorg. Chem 1997, 36, 1552-1563. 39 40 APEX2 User Manual, Bruker AXS, Madison (USA), 2005. 41 SAINT Software Reference Manual, Verson 4, Bruker AXS, Madison (USA), 1994-1996. 42 Sheldrick, G., SADABS (Version 2.03), University of Göttingen, Germany, 2002. 43 SHELXTL, Reference Manual, Version 5.1, Bruker AXS, Madison (USA), 1997. (a) Noro, S.; Kitagawa, S.; Kondo, M.; Seki, K. Angew. Chem., Int. Ed. 2000, 39, 2082-2084. (b) Li, H.; Eddaoudi,M.; O’Keeffe, M.; Yaghi, O. M. 3ature 1999, 402, 276-279. 44 45 Graziani, O.; Toupet, L.; Hamon, J. R.; and Tilset, M. Inorg. Chim. Acta 2002, 341, 127. 46 Bieller, S.; Haghiri, A.; Bolte, M.;Bats, J. W.; Wagner, M.; and Hans-Wolfram, L. Inorg. Chim. Acta 2006, 359, 1559-1572. 47 Zhao, N.; Van Stipdonk, M. J.; Eichhorn, D. M. Polyhedron, 2007, 26, 2449-2454 79 APPEDIX 80 Table A.1: Crystallographic Data. Compound KTpt-Bu,4C KTpPh,4C Molecular Formula C24H31N9BK C30H19N9BK Formula Weight 495.47 555.44 Diffractometer Bruker Kappa Apex II Bruker Kappa Apex II Radiation/λ, Ǻ Mo Kα/0.71073 Mo Kα/0.71073 Temperature, K 150 150 Color, Habit Colorless, Needle Light Yellow, Prism Crystal System Triclinic Triganol P-1 P-3 Crystal Size(mm ) 0.22 x 0.16 x 0.11 0.24 x 0.19 x 0.13 a, Ǻ 10.4150(7) 14.854(7) b, Ǻ 12.1648(9) 14.854(7) c, Ǻ 13.2585(10) 8.007(10) α, deg 65.342(4) 90.00 β, deg 67.456(4) 90.00 γ, deg 89.465(5) 120.00 1387.09(17) 120.00 2 3 Calcd Density( g cm ) 1.186 1.670 Octants Collected ±h,±k,±l ±h,±k,±l Max. h, k, l 12, 15, 16 18, 18, 9 θ range (°) 1.86-25.99 3.00-25.97 0.220 1.423 Rflns/Unique (Rint) 24897/5402 14788/2002 Obs,[>2σ]/Params 2727/325 1349/124 Robs, Rall 0.0575/0.1508 0.0709/0.2064 GOF 1.005 1.055 0.9768/0.9537 0.8422/0.7282 0.408, -0.400 0.515, -0.344 Space Group 3 3 V, Ǻ Z -1 µ, mm -1 Tmax/Tmin -3 ρmax/ρmin, e Ǻ 81 Table A.1: Crystallographic Data (cont.). [(Tpt-Bu,4C)2Co(MeOH)2(H2O)2] Compound ·0.15MeOH Molecular Formula C51.5H74.6N18O4.15B2Co 1076.62 Formula Weight [(Tpt-Bu,4C)2 Mn(MeOH)2(H2O)2] C50H74N18O4B2Mn 1067.83 Diffractometer Bruker KappaApex II Bruker Kappa Apex II Radiation/λ, Ǻ Mo Kα/0.71073 Mo Kα/0.71073 Temperature, K 150 150 Color, Habit Pink, Block Colorless, Block Crystal System Monoclinic Monoclinic Space Group P21/n Crystal Size(mm ) 0.25 x 0.15 x 0.14 P21/n 0.17 x 0.16 x 0.16 a, Ǻ 14.3036(7) 14.2025(5) b, Ǻ 12.2765(7) 12.4260(5) c, Ǻ 18.9815(10) 18.9481(8) α, deg 90.00 90.00 β, deg 110.584(3) 109.661(2) γ, deg 90.00 90.00 3120.3(3) 3149.0(2) 2 2 Calcd Density( g cm ) 1.141 1.126 Octants Collected ±h,±k,±l ±h,±k,±l Max. h, k, l 17,15,23 17,15,23 θ range (°) 3.23-26.00 3.13-25.99 0.329 0.263 Rflns/Unique (Rint) 90375/6118 27344/6138 Obs,[>2σ]/Params 3898/378 3345/359 Robs, Rall 0.0487/0.0988 0.0627/0.1387 GOF 1.013 1.006 0.9554/0.9215 0.9594/0.9574 0.296/-0.324 0.825/-0.358 3 3 V, Ǻ Z -1 µ, mm -1 Tmax/Tmin -3 ρmax/ρmin, e Ǻ 82 Table A.1: Crystallographic Data (cont.). Compound [(Tpt-Bu,4C)2Co (H2O)4] [(Tpt-Bu,4C)2Mn(H2O)4] Molecular Formula C48H70N18O4B2Co C48H70N18O4B2Mn Formula Weight 1043.77 1039.78 Diffractometer Bruker Kappa Apex II Bruker Kappa Apex II Radiation/λ, Ǻ MoKα/0.71073 MoKα/0.71073 Temperature, K 150 150 Color, Habit Pink, block Colorless, Block Crystal System monoclinic Monoclinic P21/n Crystal Size(mm ) P21/n 0.23 x 0.21 x 0.15 0.25 x 0.22 x 0.16 a, Ǻ 13.8292 (5) 13.6542(4) b, Ǻ 12.2439(4) 12.3496(3) c, Ǻ 18.8499(7) 18.8416(5) α, deg 90.00 90.00 β, deg 108.740(2) 107.680(2) γ, deg 90.00 90.00 3022.52(19) 3027.08(14) 2 2 1.141 Octants Collected 1.147 ±h,±k,±l Max. h, k, l 17,15,23 16,15,23 θ range (°) 3.33-25.99 3.26-26.00 0.338 0.272 Rflns/Unique (Rint) 61658/5916 52779/5938 Obs,[>2σ]/Params 3260/348 3739/350 Robs, Rall 0.0715/0.1450 0.0530/0.0997 GOF 1.012 1.040 0.9514/0.9249 0.9586/0.9340 0.494/-1.189 0.516/-0.312 Space Group 3 3 V, Ǻ Z -1 Calcd Density( g cm ) µ, mm -1 Tmax/Tmin -3 ρmax/ρmin, e Ǻ ±h,±k,±l 83 Table A.1: Crystallographic Data (cont.). Compound [(Tpt-Bu,4C)2i(cyclam)]·MeOH Co(κ3-TpPh,4C)(κ2-TpPh,4C)·3C7H8 Molecular Formula C59H90N22OB2Ni C81H62N18B2Co Formula Weight 1215.87 1367.49 Diffractometer Bruker Kappa Apex II Bruker Kappa Apex II Radiation/λ, Ǻ Mo Kα/0.71073 MoKα/0.71073 Temperature, K 150 150 Color, Habit Light Green, Prism Purple, Prism Crystal System Triclinic Triclinic P-1 P-1 Crystal Size(mm ) 0.30 x 0.25 x 0.12 0.13 x 0.19 x 0.33 a, Ǻ 10.7200(7) 13.405(4) b, Ǻ 13.4670(8) 13.434(3) c, Ǻ 14.0360(9) 21.062(5) α, deg 106.740(3) 71.98(5) β, deg 106.833(4) 86.84(2) γ, deg 107.703(3) 78.99(6) 1683.18(18) 3540.4(14) 1 2 Calcd Density( g cm ) 1.180 1.196 Octants Collected ±h,±k,±l ±h,±k,±l Max. h, k, l 13,16,17 16,15,25 θ range (°) 3.25-25.99 2.04-26.00 0.343 0.83 Rflns/Unique (Rint) 25883/6604 27906/13718 Obs,[>2σ]/Params 4688/408 4828/809 Robs, Rall 0.0502/0.0838 0.1086/0.2838 GOF 1.031 1.141 0.9613/0.9055 0.97693/0.94337 1.437/-0.740 Space Group 3 3 V, Ǻ Z -1 µ, mm -1 Tmax/Tmin -3 ρmax/ρmin, e Ǻ 0.650/-0.392 84 Table A.1: Crystallographic Data (cont.). Compound [(TpPh,4C)2 Mn(MeOH)2(H2O)2]·H2O [(TpPh,4C)2 Mn(MeOH)4] Molecular Formula C62H52N18O5 B2Mn C64H54N18O4B2Mn Formula Weight 1205.39 1215.41 Diffractometer Bruker Kappa Apex II Bruker Kappa Apex II Radiation/λ, Ǻ Mo Kα/0.71073 MoKα/0.71073 Temperature, K 150 150 Color, Habit Colorless, Prism Colorless, Prism Crystal System Triclinic Triclinic P-1 P-1 Crystal Size(mm ) 0.19 x 0.23 x 0.24 0.40 x 0.17 x 0.13 a, Ǻ 10.020(10) 10.295(4) b, Ǻ 13.029(14) 12.951(3) c, Ǻ 14.574(16) 13.709 (5) α, deg 115.202(7) 112.69(5) β, deg 90.893(7) 93.63(2) γ, deg 95.844(7) 93.88(6) 3 1709.0(3) 1674.5(14) 1 1 Calcd Density( g cm ) 1.213 1.148 Octants Collected ±h,±k,±l ±h,±k,±l Max. h, k, l 12,16,17 12,15,16 θ range (°) 2.78-26.00 2.44-26.00 0.25 0.83 Rflns/Unique (Rint) 22360/6625 21226/6518 Obs,[>2σ]/Params 2645/408 4409/413 Robs, Rall 0.1152/0.2234 0.0762/0.1120 GOF 1.171 1.071 0.95697/0.96977 0.97693/0.94337 0.835/-0.486 1.486/-0.293 Space Group 3 V, Ǻ Z -1 µ, mm -1 Tmax/Tmin -3 ρmax/ρmin, e Ǻ 85 Table A.1: Crystallographic Data (cont.). Compound {[Tpt-Bu,4CCu][MeC]}n Ag-1 Molecular Formula C24H31N9BCu·CH3CN C24H31N9BAg Formula Weight 560.98 Bruker Kappa Apex II Mo Kα/0.71073 150 Yellow, Prism Monoclinic C2/c 0.37 x0.14 x 0.12 27.0860(13) 14.6756(8) 17.0389(9) 90 117.585(2) 90 6003.1(5) 8 564.24 Diffractometer Radiation/λ, Ǻ Temperature, K Color, Habit Crystal System Space Group Crystal Size(mm3) a, Ǻ b, Ǻ c, Ǻ α, deg β, deg γ, deg 3 V, Ǻ Z -1 Bruker Kappa Apex II MoKα/0.71073 150 Colorless, block Monoclinic C2/c 0.123 x 0.171 x 0.241 26.3115(11) 15.5057(7) 17.4284(7) 112.69(5) 90 115.705(3) 6406.8(5) 8 Calcd Density( g cm ) 1.241 1.571 Octants Collected ±h,±k,±l ±h,±k,±l Max. h, k, l 33,18,21 12,15,16 θ range (°) 2.90-26.00 3.05 -26.00 0.760 1.144 Rflns/Unique (Rint) 40245/5872 31693/2820 Obs,[>2σ]/Params 4471/353 2250/361 Robs, Rall 0.0395/0.0844 0.0602/0.0771 GOF 1.038 1.140 0.9143/0.7652 0.9877/0.9588 0.389/-0.357 1.120/-0.923 µ, mm -1 Tmax/Tmin -3 ρmax/ρmin, e Ǻ 86 Table A.1: Crystallographic Data (cont.). Compound Ag-2 Ag-3 Molecular Formula C80H103N30B3Ag4 C112H142N42B4Ag4 Formula Weight 1948.78 2551.32 Diffractometer Bruker Kappa Apex II Bruker Kappa Apex II Radiation/λ, Ǻ Mo Kα/0.71073 MoKα/0.71073 Temperature, K 150 150 Color, Habit Colorless,Block Colorless, Block Crystal System Orthorhombic Triclinic P-1 0.15 x 0.28 x 0.24 a, Ǻ Cmc2(1) 0.31 x 0.21 x 0.16 30.3366(15) b, Ǻ 16.5643(9) 15.4032(7) c, Ǻ 19.3729(10) 23.5189(11) α, deg 90 76.404(3) β, deg 90 77.257(3) γ, deg 90 77.257 V, Ǻ 9735.0(9) 4565.3(4) Z 8 1 Calcd Density( g cm ) 4.428 3.210 Octants Collected ±h,±k,±l ±h,±k,±l Max. h, k, l 37,20,23 16,18,28 θ range (°) 3.24-26.00 1.68 -26.00 7.146 7.746 Rflns/Unique (Rint) 75031/9733 57214/17894 Obs,[>2σ]/Params 5517/561 9021/748 Robs, Rall 0.0802/0.1526 0.1119/0.2013 GOF 1.195 1.825 0.3943/0.2177 0.6478/0.5477 1.572/-1.008 2.319 /-1.625 Space Group 3 Crystal Size(mm ) 3 -1 µ, mm -1 Tmax/Tmin -3 ρmax/ρmin, e Ǻ 13.4568(7) 87 Table A.1: Crystallographic Data (cont.). Compound Ag-4 Molecular Formula C24H31N9BAg Formula Weight 564.24 Diffractometer Bruker Kappa Apex II Radiation/λ, Ǻ Mo Kα/0.71073 Temperature, K 150 Color, Habit Colorless,Block Crystal System Orthorhombic Space Group {(Hpz)4Cu(ClO4)}n C32H44N12OClCu 711.77 Bruker Kappa Apex II MoKα/0.71073 150 Green, Prism Monoclinic C2/c a, Ǻ P4(3)2(1)2 0.08 x 0.19 x 0.14 19.2153(8) b, Ǻ 19.2153(8) 12.8150(15) c, Ǻ 25.006(2) 13.2000(16) α, deg 90 90 β, deg 90 98.897(8) γ, deg 90 90 V, Ǻ 9232.8(10) 7739.8(15) Z 8 8 Calcd Density( g cm ) 4.603 1.210 Octants Collected ±h,±k,±l ±h,±k,±l Max. h, k, l 23,19,30 56,15,16 θ range (°) 1.71-26.00 3.30 -26.00 3.577 0.68 Rflns/Unique (Rint) 68075/9075 69083/7600 Obs,[>2σ]/Params 5627/332 3060/463 Robs, Rall 0.1048/0.1674 0.0787/0.2275 GOF 1.735 1.002 0.8245/0.77789 0.90425/0.96763 1.620/-0.806 0.627 /-0.642 3 Crystal Size(mm ) 3 -1 µ, mm -1 Tmax/Tmin -3 ρmax/ρmin, e Ǻ 0.39 x 0.25 x 0.17 46.312(5) 88 Table A.1: Crystallographic Data (cont.). {(Hpzt-Bu,4C)4Cu(PF6)}n Compound Molecular Formula C32H44N12F6PCu Formula Weight 805.28 Diffractometer Bruker Kappa Apex II Radiation/λ, Ǻ Mo Kα/0.71073 Temperature, K 150 Color, Habit Green,Block Crystal System Tetragonal Space Group {(HpztBu,4C)2Mn(CF3COO)2}n·C7H8 C27H30N6O4F6Mn 671.49 Bruker Kappa Apex II MoKα/0.71073 150 Colorless, Prism Monoclinic P2(1)/c a, Ǻ P4/n 0.20 x 0.14 x 0.12 15.0753(3) b, Ǻ 15.0753(3) 13.485(3) c, Ǻ 7.9226(4) 13.2000(3) α, deg 90 90 β, deg 90 116.46(1) γ, deg 90 90 V, Ǻ 180.53(10) 1752.8 Z 2 2 Calcd Density( g cm ) 1.332 1.114 Octants Collected ±h,±k,±l ±h,±k,±l Max. h, k, l 18,17,9 15,16,14 θ range (°) 3.20-25.99 3.02 -26.00 0.44 0.63 Rflns/Unique (Rint) 30093/1764 36336/3445 Obs,[>2σ]/Params 1399/124 2906/208 Robs, Rall 0.0379/0.0537 0.0668/0.0780 GOF 1.036 1.031 0.96679/0.92360 0.92581/0.88012 0.598/-0.707 0.760 /-0.722 3 Crystal Size(mm ) 3 -1 µ, mm -1 Tmax/Tmin -3 ρmax/ρmin, e Ǻ 0.17 x 0.25 x 0.40 12.177(3) 89 Table A.1: Crystallographic Data (cont.). [(Hpzt-Bu,4C)2CuCl(η-Cl)]2 C32H44N12Cl4Cu 802.13 Bruker Kappa Apex II Mo Kα/0.71073 150 Green, Prism Monoclinic Compound Molecular Formula Formula Weight Diffractometer Radiation/λ, Ǻ Temperature, K Color, Habit Crystal System Space Group {[(pzt-Bu,4C)3Ag3]}n·CH3C C26H30N10Ag3 806.19 Bruker Kappa Apex II MoKα/0.71073 150 Colorless, block Triclinic P-1 0.21 x 0.18 x 0.09 a, Ǻ P2(1)/n 0.21 x 0.17 x 0.13 6.7432(2) b, Ǻ 25.1173(9) 11.308(2) c, Ǻ 12.4387(5) 14.545(3) α, deg 90 85.900(3) β, deg 104.995(2) 71.634(3) γ, deg 90 79.695(3) V, Ǻ 2035.02 1522.3(5) Z 2 2 Calcd Density( g cm ) 1.223 1.147 Octants Collected ±h,±k,±l ±h,±k,±l Max. h, k, l 8,30,15 12,13,17 θ range (°) 2.97-26.00 2.37 -26.00 0.33 0.90 Rflns/Unique (Rint) 50924/4000 13518/5911 Obs,[>2σ]/Params 3266/232 4300/362 Robs, Rall 0.0282/0.0405 0.0353/0.0642 GOF 1.002 1.047 0.91807/0.83543 0.88321/0.75589 0.479/-0.349 0.985 /-0.613 3 Crystal Size(mm ) 3 -1 µ, mm -1 Tmax/Tmin -3 ρmax/ρmin, e Ǻ 9.9139(18) 90 Table A.2: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for KTpt-Bu,4CN. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ B(1) 8827(5) 864(4) 6302(4) 32(1) C(1) 7569(4) 187(4) 8620(4) 39(1) C(2) 6601(4) -805(4) 9614(4) 41(1) C(3) 6023(5) -955(4) 10827(4) 48(1) C(4) 6251(4) -1561(4) 9149(4) 40(1) C(5) 5228(4) -2736(4) 9810(4) 40(1) C(6) 5310(5) -3306(4) 8972(4) 50(1) C(7) 3728(5) -2471(5) 10301(4) 61(1) C(8) 5513(5) -3654(4) 10888(4) 59(1) C(9) 8609(4) 2946(4) 6399(3) 36(1) C(10) 9410(4) 3731(4) 6535(3) 36(1) C(11) 8960(4) -5210(4) 6700(4) 40(1) C(12) 10664(4) 3255(4) 6478(3) 36(1) C(13) 11879(5) 3668(4) 6667(4) 46(1) C(14) 13102(5) 3003(5) 6333(6) 74(2) C(15) 11329(6) 3369(5) 8022(5) 79(2) C(16) 12404(5) 5046(4) 5896(5) 67(2) C(17) 6750(4) 1144(3) 5613(4) 35(1) C(18) 6689(4) 1563(3) 4496(3) 32(1) C(19) 4574(4) -1653(4) 5701(4) 40(1) C(20) 8107(4) 1843(3) 3627(3) 32(1) C(21) 8664(4) 2278(4) 2266(3) 38(1) C(22) 8180(5) 1233(5) 2049(4) 60(1) C(23) 8085(5) 3428(4) 1687(4) 51(1) C(24) 10279(4) 2591(5) 1666(4) 59(1) K(1) 8123(1) -1902(1) 6095(1) 37(1) N(1) 7783(3) 51(3) 7619(3) 35(1) 91 N(2) 6986(3) -1037(3) 7932(3) 39(1) N(3) 5522(4) -1068(4) 11811(4) 69(1) N(4) 9347(3) 2068(3) 6267(3) 31(1) N(5) 10624(3) 2255(3) 6305(3) 37(1) N(6) 8580(4) -4373(3) 6826(3) 50(1) N(7) 8105(3) 1162(3) 5424(3) 30(1) N(8) 8957(3) 1595(3) 4195(3) 32(1) N(9) 5589(4) -1719(4) 5843(3) 52(1) ________________________________________________________________________________ Table A.3: Anisotropic displacement parameters (Å2x 103)for KTpt-Bu,4CN. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ B(1) 34(2) 41(3) 28(3) -18(2) -17(2) 11(2) C(1) 42(3) 53(3) 35(3) -27(2) -20(2) 14(2) C(2) 39(2) 60(3) 32(3) -25(2) -20(2) 16(2) C(3) 51(3) 62(3) 29(3) -20(2) -15(2) 20(2) C(4) 37(2) 50(3) 31(2) -15(2) -17(2) 13(2) C(5) 42(3) 44(3) 31(2) -13(2) -17(2) 9(2) C(6) 52(3) 48(3) 41(3) -12(2) -20(2) 1(2) C(7) 46(3) 74(4) 45(3) -18(3) -12(2) 0(2) C(8) 70(3) 60(3) 40(3) -12(2) -29(3) 10(3) C(9) 37(2) 41(2) 34(2) -17(2) -18(2) 12(2) C(10) 39(2) 37(2) 32(2) -17(2) -14(2) 6(2) C(11) 42(3) 42(3) 33(2) -16(2) -15(2) 5(2) C(12) 43(2) 42(3) 33(2) -20(2) -23(2) 10(2) C(13) 52(3) 50(3) 54(3) -27(2) -36(2) 12(2) C(14) 59(3) 80(4) 125(5) -60(4) -64(4) 29(3) C(15) 101(4) 98(4) 59(4) -34(3) -55(3) 2(3) C(16) 63(3) 63(3) 88(4) -30(3) -51(3) 7(3) C(17) 33(2) 43(2) 34(2) -23(2) -13(2) 8(2) C(18) 28(2) 44(2) 38(2) -24(2) -20(2) 13(2) C(19) 35(2) 58(3) 31(2) -25(2) -13(2) 12(2) 92 C(20) 31(2) 40(2) 34(2) -20(2) -19(2) 12(2) C(21) 39(2) 55(3) 31(2) -24(2) -21(2) 16(2) C(22) 75(4) 78(4) 45(3) -39(3) -30(3) 19(3) C(23) 47(3) 63(3) 39(3) -16(2) -21(2) 16(2) C(24) 38(3) 102(4) 28(2) -22(3) -14(2) 16(3) K(1) 31(1) 48(1) 41(1) -25(1) -19(1) 13(1) N(1) 36(2) 44(2) 31(2) -21(2) -16(2) 10(2) N(2) 38(2) 49(2) 35(2) -22(2) -17(2) 12(2) N(3) 73(3) 94(3) 43(3) -34(2) -26(2) 33(2) N(4) 32(2) 40(2) 31(2) -18(2) -20(2) 11(2) N(5) 41(2) 45(2) 35(2) -21(2) -23(2) 13(2) N(6) 51(2) 46(2) 54(3) -28(2) -18(2) 14(2) N(7) 28(2) 43(2) 25(2) -20(2) -12(2) 7(1) N(8) 30(2) 43(2) 29(2) -19(2) -15(2) 8(1) N(9) 31(2) 85(3) 51(2) -34(2) -23(2) 16(2) ______________________________________________________________________________ Table A.4: Bond lengths [Å] for KTpt-Bu,4CN. _________________________________________________________________________________ B(1)-N(1) 1.527(5) C(6)-H(6C) 0.9800 B(1)-N(7) 1.539(5) C(7)-H(7A) 0.9800 B(1)-N(4) 1.542(5) C(7)-H(7B) 0.9800 B(1)-K(1)#1 3.282(5) C(7)-H(7C) 0.9800 B(1)-H(1A) 1.0000 C(8)-H(8A) 0.9800 C(1)-N(1) 1.339(5) C(8)-H(8B) 0.9800 C(1)-C(2) 1.373(6) C(8)-H(8C) 0.9800 C(1)-H(1) 0.9500 C(9)-N(4) 1.342(5) C(2)-C(3) 1.413(6) C(9)-C(10) 1.383(5) C(2)-C(4) 1.419(5) C(9)-H(9) 0.9500 C(3)-N(3) 1.150(5) C(10)-C(12) 1.412(5) C(4)-N(2) 1.341(5) C(10)-C(11)#2 1.440(6) C(4)-C(5) 1.487(6) C(11)-N(6) 1.142(5) C(5)-C(6) 1.515(5) C(11)-C(10)#3 1.440(6) C(5)-C(7) 1.534(6) C(12)-N(5) 1.333(5) 93 C(5)-C(8) 1.538(5) C(12)-C(13) 1.509(5) C(6)-H(6A) 0.9800 C(13)-C(16) 1.521(6) C(6)-H(6B) 0.9800 C(13)-C(14) 1.523(6) C(13)-C(15) 1.535(6) C(22)-H(22B) 0.9800 C(14)-H(14A) 0.9800 C(22)-H(22C) 0.9800 C(14)-H(14B) 0.9800 C(23)-H(23A) 0.9800 C(14)-H(14C) 0.9800 C(23)-H(23B) 0.9800 C(15)-H(15A) 0.9800 C(23)-H(23C) 0.9800 C(15)-H(15B) 0.9800 C(24)-H(24A) 0.9800 C(15)-H(15C) 0.9800 C(24)-H(24B) 0.9800 C(16)-H(16A) 0.9800 C(24)-H(24C) 0.9800 C(16)-H(16B) 0.9800 K(1)-N(9) 2.781(4) C(16)-H(16C) 0.9800 K(1)-N(6) 2.845(4) C(17)-N(7) 1.334(4) K(1)-N(2) 2.889(3) C(17)-C(18) 1.378(5) K(1)-N(8)#1 2.921(3) C(17)-H(17) 0.9500 K(1)-N(5)#1 3.157(3) C(18)-C(20) 1.414(5) K(1)-B(1)#1 3.282(5) C(18)-C(19)#4 1.430(5) K(1)-N(4)#1 3.314(3) C(19)-N(9) 1.140(5) K(1)-N(7) 3.454(3) C(19)-C(18)#4 1.430(5) N(1)-N(2) 1.382(4) C(20)-N(8) 1.327(4) N(4)-N(5) 1.375(4) C(20)-C(21) 1.510(5) N(4)-K(1)#1 3.314(3) C(21)-C(24) 1.530(6) N(5)-K(1)#1 3.157(3) C(21)-C(23) 1.534(5) N(7)-N(8) 1.380(4) C(21)-C(22) 1.543(6) N(8)-K(1)#1 2.921(3) C(22)-H(22A) 0.9800 _____________________________________________________________________________________________ 94 Table A.5: Bond lengths angles [°] for KTpt-Bu,4CN. _________________________________________________________________________________ N(1)-B(1)-N(7) 111.0(3) C(5)-C(7)-H(7A) 109.5 N(1)-B(1)-N(4) 106.5(3) C(5)-C(7)-H(7B) 109.5 N(7)-B(1)-N(4) 109.1(3) H(7A)-C(7)-H(7B) 109.5 N(1)-B(1)-K(1)#1 157.0(3) C(5)-C(7)-H(7C) 109.5 N(7)-B(1)-K(1)#1 88.0(2) H(7A)-C(7)-H(7C) 109.5 N(4)-B(1)-K(1)#1 77.7(2) H(7B)-C(7)-H(7C) 109.5 N(1)-B(1)-H(1A) 110.0 C(5)-C(8)-H(8A) 109.5 N(7)-B(1)-H(1A) 110.0 C(5)-C(8)-H(8B) 109.5 N(4)-B(1)-H(1A) 110.0 H(8A)-C(8)-H(8B) 109.5 C(5)-C(8)-H(8C) 109.5 K(1)#1-B(1)-H(1A) 49.0 N(1)-C(1)-C(2) 108.2(4) H(8A)-C(8)-H(8C) 109.5 N(1)-C(1)-H(1) 125.9 H(8B)-C(8)-H(8C) 109.5 C(2)-C(1)-H(1) 125.9 N(4)-C(9)-C(10) 107.7(3) C(1)-C(2)-C(3) 125.3(4) N(4)-C(9)-H(9) 126.2 C(1)-C(2)-C(4) 105.9(4) C(10)-C(9)-H(9) 126.2 C(3)-C(2)-C(4) 128.7(4) C(9)-C(10)-C(12) 105.6(3) N(3)-C(3)-C(2) 178.3(4) C(9)-C(10)-C(11)#2 123.8(4) N(2)-C(4)-C(2) 109.0(4) C(12)-C(10)-C(11)#2 130.7(4) N(2)-C(4)-C(5) 121.7(4) N(6)-C(11)-C(10)#3 178.6(5) C(2)-C(4)-C(5) 129.3(4) N(5)-C(12)-C(10) 109.6(3) C(4)-C(5)-C(6) 111.4(3) N(5)-C(12)-C(13) 120.7(3) C(4)-C(5)-C(7) 108.7(3) C(10)-C(12)-C(13) 129.6(4) C(6)-C(5)-C(7) 108.1(3) C(12)-C(13)-C(16) 110.9(3) C(4)-C(5)-C(8) 110.3(3) C(12)-C(13)-C(14) 111.0(4) C(6)-C(5)-C(8) 109.3(3) C(16)-C(13)-C(14) 108.8(4) C(7)-C(5)-C(8) 109.0(4) C(12)-C(13)-C(15) 107.3(4) C(5)-C(6)-H(6A) 109.5 C(16)-C(13)-C(15) 108.9(4) C(5)-C(6)-H(6B) 109.5 C(14)-C(13)-C(15) 109.9(4) H(6A)-C(6)-H(6B) 109.5 C(13)-C(14)-H(14A) 109.5 C(5)-C(6)-H(6C) 109.5 C(13)-C(14)-H(14B) 109.5 95 H(6A)-C(6)-H(6C) 109.5 H(14A)-C(14)-H(14B) 109.5 H(6B)-C(6)-H(6C) 109.5 C(13)-C(14)-H(14C) 109.5 H(14A)-C(14)-H(14C) 109.5 H(22B)-C(22)-H(22C) 109.5 H(14B)-C(14)-H(14C) 109.5 C(21)-C(23)-H(23A) 109.5 C(13)-C(15)-H(15A) 109.5 C(21)-C(23)-H(23B) 109.5 C(13)-C(15)-H(15B) 109.5 H(23A)-C(23)-H(23B) 109.5 H(15A)-C(15)-H(15B) 109.5 C(21)-C(23)-H(23C) 109.5 C(13)-C(15)-H(15C) 109.5 H(23A)-C(23)-H(23C) 109.5 H(15A)-C(15)-H(15C) 109.5 H(23B)-C(23)-H(23C) 109.5 H(15B)-C(15)-H(15C) 109.5 C(21)-C(24)-H(24A) 109.5 C(13)-C(16)-H(16A) 109.5 C(21)-C(24)-H(24B) 109.5 C(13)-C(16)-H(16B) 109.5 H(24A)-C(24)-H(24B) 109.5 H(16A)-C(16)-H(16B) 109.5 C(21)-C(24)-H(24C) 109.5 C(13)-C(16)-H(16C) 109.5 H(24A)-C(24)-H(24C) 109.5 H(16A)-C(16)-H(16C) 109.5 H(24B)-C(24)-H(24C) 109.5 H(16B)-C(16)-H(16C) 109.5 N(9)-K(1)-N(6) 110.00(11) N(7)-C(17)-C(18) 107.8(3) N(9)-K(1)-N(2) 87.98(10) N(7)-C(17)-H(17) 126.1 N(6)-K(1)-N(2) 118.75(10) C(18)-C(17)-H(17) 126.1 N(9)-K(1)-N(8)#1 166.64(10) C(17)-C(18)-C(20) 105.7(3) N(6)-K(1)-N(8)#1 79.18(10) C(17)-C(18)-C(19)#4 125.6(4) N(2)-K(1)-N(8)#1 96.11(9) C(20)-C(18)-C(19)#4 128.7(3) N(9)-K(1)-N(5)#1 87.67(9) N(9)-C(19)-C(18)#4 179.2(4) N(6)-K(1)-N(5)#1 73.75(10) N(8)-C(20)-C(18) 109.4(3) N(2)-K(1)-N(5)#1 167.49(9) N(8)-C(20)-C(21) 121.8(3) N(8)#1-K(1)-N(5)#1 85.67(8) C(18)-C(20)-C(21) 128.7(3) N(9)-K(1)-B(1)#1 121.17(11) C(20)-C(21)-C(24) 110.8(3) N(6)-K(1)-B(1)#1 92.15(11) C(20)-C(21)-C(23) 110.3(3) N(2)-K(1)-B(1)#1 128.19(11) C(24)-C(21)-C(23) 108.6(4) N(8)#1-K(1)-B(1)#1 47.10(9) C(20)-C(21)-C(22) 108.1(3) N(5)#1-K(1)-B(1)#1 46.35(10) C(24)-C(21)-C(22) 109.3(4) N(9)-K(1)-N(4)#1 111.46(9) C(23)-C(21)-C(22) 109.7(3) N(6)-K(1)-N(4)#1 71.41(9) C(21)-C(22)-H(22A) 109.5 N(2)-K(1)-N(4)#1 154.37(9) C(21)-C(22)-H(22B) 109.5 N(8)#1-K(1)-N(4)#1 61.29(8) H(22A)-C(22)-H(22B) 109.5 N(5)#1-K(1)-N(4)#1 24.38(7) 96 C(21)-C(22)-H(22C) 109.5 B(1)#1-K(1)-N(4)#1 27.04(9) H(22A)-C(22)-H(22C) 109.5 N(9)-K(1)-N(7) 81.69(10) N(6)-K(1)-N(7) 167.78(9) N(5)-N(4)-K(1)#1 71.37(18) N(2)-K(1)-N(7) 56.42(8) B(1)-N(4)-K(1)#1 75.3(2) N(8)#1-K(1)-N(7) 89.96(8) C(12)-N(5)-N(4) 106.6(3) N(5)#1-K(1)-N(7) 111.30(8) C(12)-N(5)-K(1)#1 131.3(2) B(1)#1-K(1)-N(7) 84.37(9) N(4)-N(5)-K(1)#1 84.25(18) N(4)#1-K(1)-N(7) 108.31(7) C(11)-N(6)-K(1) 156.7(3) C(1)-N(1)-N(2) 110.3(3) C(17)-N(7)-N(8) 110.4(3) C(1)-N(1)-B(1) 128.3(3) C(17)-N(7)-B(1) 131.7(3) N(2)-N(1)-B(1) 121.2(3) N(8)-N(7)-B(1) 117.8(3) C(4)-N(2)-N(1) 106.6(3) C(17)-N(7)-K(1) 96.8(2) C(4)-N(2)-K(1) 135.8(3) N(8)-N(7)-K(1) 94.89(18) N(1)-N(2)-K(1) 112.3(2) B(1)-N(7)-K(1) 82.5(2) C(9)-N(4)-N(5) 110.5(3) C(20)-N(8)-N(7) 106.6(3) C(9)-N(4)-B(1) 127.9(3) C(20)-N(8)-K(1)#1 145.6(2) N(5)-N(4)-B(1) 120.7(3) N(7)-N(8)-K(1)#1 106.93(19) C(9)-N(4)-K(1)#1 133.7(2) C(19)-N(9)-K(1) 177.3(3) _________________________________________________________________________________ Table A.6: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for KTpPh,4CN. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ B(1) 6667 3333 2315(9) 41(2) C(1) 5995(3) 1393(3) 1967(5) 45(1) C(2) 5968(3) 588(3) 2886(4) 40(1) C(3) 5455(3) -470(3) 2358(4) 42(1) C(4) 6460(3) 1045(3) 4410(4) 38(1) C(5) 6689(3) 577(3) 5855(5) 48(1) C(6) 6306(4) -481(4) 5989(6) 71(1) C(7) 6527(5) -887(4) 7383(7) 91(2) C(8) 7074(5) -263(4) 8697(7) 89(2) 97 C(9) 7418(4) 765(4) 8615(6) 75(1) C(10) 7222(4) 1172(4) 7217(6) 62(1) K(1) 6667 3333 7048(2) 42(1) N(1) 6458(2) 2254(2) 2884(3) 38(1) N(2) 6750(2) 2056(2) 4405(4) 41(1) N(3) 5007(3) -1315(3) 1919(4) 51(1) ________________________________________________________________________________ Table A.7: Anisotropic displacement parameters (Å2x 103)for KTpPh,4CN. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ B(1) 47(2) 47(2) 28(3) 0 0 23(1) C(1) 47(2) 46(2) 38(2) -3(2) -5(2) 22(2) C(2) 42(2) 41(2) 37(2) -2(2) -2(2) 20(2) C(3) 44(2) 47(2) 35(2) -1(2) -5(2) 23(2) C(4) 38(2) 41(2) 35(2) -2(1) 1(1) 20(2) C(5) 54(2) 47(2) 41(2) 0(2) -6(2) 25(2) C(6) 91(4) 55(3) 55(3) -1(2) -21(2) 29(3) C(7) 120(5) 53(3) 80(4) 6(3) -40(3) 27(3) C(8) 105(4) 71(4) 76(4) 8(3) -36(3) 34(3) C(9) 77(3) 80(4) 59(3) -10(2) -26(2) 33(3) C(10) 70(3) 59(3) 59(3) -9(2) -22(2) 33(2) K(1) 47(1) 47(1) 32(1) 0 0 24(1) N(1) 41(2) 44(2) 30(2) -3(1) -1(1) 22(1) N(2) 45(2) 45(2) 33(2) 0(1) -1(1) 22(1) N(3) 61(2) 45(2) 44(2) -5(2) -12(2) 24(2) ______________________________________________________________________________ 98 Table A.8: Bond lengths [Å] for KTpPh,4CN. _________________________________________________________________________________ B(1)-N(1) 1.542(4) C(7)-C(8) 1.369(7) B(1)-N(1)#1 1.542(4) C(7)-H(7) 0.9500 B(1)-N(1)#2 1.542(4) C(8)-C(9) 1.348(8) B(1)-H(1A) 1.0000 C(8)-H(8) 0.9500 C(1)-N(1) 1.329(5) C(9)-C(10) 1.372(6) C(1)-C(2) 1.388(5) C(9)-H(9) 0.9500 C(1)-H(1) 0.9500 C(10)-H(10) 0.9500 C(2)-C(4) 1.410(5) K(1)-N(2) 2.886(3) C(2)-C(3) 1.426(5) K(1)-N(2)#1 2.886(3) C(3)-N(3) 1.143(5) K(1)-N(2)#2 2.886(3) C(4)-N(2) 1.340(5) K(1)-N(3)#3 2.898(3) C(4)-C(5) 1.474(5) K(1)-N(3)#4 2.898(3) C(5)-C(10) 1.377(6) K(1)-N(3)#5 2.898(3) C(5)-C(6) 1.383(6) N(1)-N(2) 1.373(4) C(6)-C(7) 1.383(7) N(3)-K(1)#4 2.898(3) C(6)-H(6) 0.9500 _________________________________________________________________________________ Table A.9: Angles [°] for KTpPh,4CN. _________________________________________________________________________________ N(1)-B(1)-N(1)#1 111.7(2) C(8)-C(9)-H(9) 120.2 N(1)-B(1)-N(1)#2 111.7(2) C(10)-C(9)-H(9) 120.2 N(1)#1-B(1)-N(1)#2 111.7(2) C(9)-C(10)-C(5) 122.9(5) N(1)-B(1)-H(1A) 107.2 C(9)-C(10)-H(10) 118.5 N(1)#1-B(1)-H(1A) 107.2 C(5)-C(10)-H(10) 118.5 N(1)#2-B(1)-H(1A) 107.2 N(2)-K(1)-N(2)#1 72.14(10) N(1)-C(1)-C(2) 108.3(3) N(2)-K(1)-N(2)#2 72.14(10) N(1)-C(1)-H(1) 125.9 N(2)#1-K(1)-N(2)#2 72.14(10) C(2)-C(1)-H(1) 125.9 N(2)-K(1)-N(3)#3 86.85(9) C(1)-C(2)-C(4) 105.1(3) N(2)#1-K(1)-N(3)#3 79.95(9) C(1)-C(2)-C(3) 124.2(3) N(2)#2-K(1)-N(3)#3 149.00(10) C(4)-C(2)-C(3) 130.5(3) N(2)-K(1)-N(3)#4 79.95(9) 99 N(3)-C(3)-C(2) 177.0(4) N(2)#1-K(1)-N(3)#4 149.00(10) N(2)-C(4)-C(2) 109.6(3) N(2)#2-K(1)-N(3)#4 86.85(9) N(2)-C(4)-C(5) 120.7(3) N(3)#3-K(1)-N(3)#4 112.20(6) C(2)-C(4)-C(5) 129.7(3) N(2)-K(1)-N(3)#5 149.00(10) C(10)-C(5)-C(6) 116.5(4) N(2)#1-K(1)-N(3)#5 86.85(9) C(10)-C(5)-C(4) 120.8(4) C(6)-C(5)-C(4) 122.4(4) C(5)-C(6)-C(7) 120.4(4) N(3)#3-K(1)-N(3)#5 112.20(6) C(5)-C(6)-H(6) 119.8 N(3)#4-K(1)-N(3)#5 112.20(6) C(7)-C(6)-H(6) 119.8 C(1)-N(1)-N(2) 110.6(3) C(8)-C(7)-C(6) 121.0(5) C(1)-N(1)-B(1) 125.1(3) C(8)-C(7)-H(7) 119.5 N(2)-N(1)-B(1) 124.3(3) C(6)-C(7)-H(7) 119.5 C(4)-N(2)-N(1) 106.5(3) C(9)-C(8)-C(7) 119.4(5) C(4)-N(2)-K(1) 129.8(2) C(9)-C(8)-H(8) 120.3 N(1)-N(2)-K(1) 112.9(2) C(7)-C(8)-H(8) 120.3 C(3)-N(3)-K(1)#4 140.8(3) C(8)-C(9)-C(10) 119.7(5) _______________________________________________________________________________ Table A.10: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103)for [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2]·0.15MeOH. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ B(1) 2454(2) 2283(2) 3986(1) 23(1) C(1) 1863(2) 3226(2) 2664(1) 25(1) C(2) 2246(2) 3304(2) 2091(1) 22(1) C(3) 1727(2) 3825(2) 1392(1) 23(1) C(4) 3156(2) 2706(2) 2343(1) 23(1) C(5) 3875(2) 2483(2) 1942(1) 28(1) C(6) 4891(2) 2130(3) 2502(2) 45(1) C(7) 4009(2) 3495(3) 1524(2) 48(1) C(8) 3443(2) 1564(3) 1380(2) 49(1) C(9) 951(2) 1404(2) 4185(2) 39(1) 100 C(10) 6(2) 1720(3) 4130(2) 44(1) C(11) -663(5) 1114(6) 4386(5) 57(2) C(12) -94(2) 2806(2) 3875(1) 32(1) C(13) -990(2) 3554(2) 3719(2) 39(1) C(14) -813(2) 4604(3) 3364(2) 67(1) C(15) -1933(2) 2994(3) 3192(2) 57(1) C(16) -1138(2) 3797(3) 4464(2) 64(1) C(17) 3137(2) 4221(2) 4448(1) 29(1) C(18) 3670(2) 4686(2) 5131(1) 29(1) C(19) 3921(2) 5808(3) 5254(2) 41(1) C(20) 3903(2) 3816(2) 5655(1) 24(1) C(21) 4458(2) 3854(2) 6494(1) 27(1) C(22) 3908(2) 4626(2) 6850(2) 42(1) C(23) 4485(2) 2722(2) 6829(1) 37(1) C(24) 5521(2) 4264(2) 6650(1) 38(1) C(25) -1640(2) 4818(2) 703(2) 42(1) C(101) 1639(17) 1750(20) 6375(15) 76(5) C(11A) -730(20) 860(30) 4070(17) 57(2) 0 20(1) Co(1) 0 N(1) 2482(1) 2614(2) 3208(1) 22(1) N(2) 3285(1) 2294(2) 3019(1) 23(1) N(3) 1248(1) 4227(2) 838(1) 26(1) N(4) 1381(1) 2248(2) 3976(1) 25(1) N(5) 742(2) 3126(2) 3789(1) 28(1) N(6) -1208(4) 601(6) 4570(6) 91(3) N(7) 3067(1) 3157(2) 4551(1) 23(1) N(8) 3539(1) 2895(2) 5296(1) 22(1) N(9) 4116(2) 6717(2) 5342(1) 60(1) 4130(20) 91(3) N(6A) -1284(18) 5000 240(20) O(1) -868(1) 4279(2) 534(1) 26(1) O(2) 151(2) 6323(2) 693(1) 27(1) 1414(11) 2661(15) 5955(10) O(101) 101 76(5)________________ Table A.11: Anisotropic displacement parameters (Å2x 103) for [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2] ·0.15MeOH. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ B(1) 26(2) 19(2) 21(1) 2(1) 3(1) -2(1) C(1) 22(1) 24(2) 23(1) 1(1) 2(1) 3(1) C(2) 23(1) 23(2) 18(1) 2(1) 2(1) 1(1) C(3) 23(1) 23(2) 23(1) -2(1) 7(1) 0(1) C(4) 23(1) 22(2) 19(1) -2(1) 2(1) -2(1) C(5) 28(1) 32(2) 22(1) 0(1) 7(1) 2(1) C(6) 32(2) 68(2) 34(2) 3(2) 11(1) 13(2) C(7) 45(2) 52(2) 55(2) 14(2) 27(2) 4(2) C(8) 48(2) 59(2) 40(2) -19(2) 16(1) 0(2) C(9) 35(2) 30(2) 48(2) 11(1) 12(1) -5(1) C(10) 33(2) 46(2) 55(2) 13(2) 18(1) -7(2) C(11) 41(2) 60(4) 73(5) 16(3) 22(3) -6(2) C(12) 29(2) 38(2) 30(1) -2(1) 11(1) -3(1) C(13) 31(2) 47(2) 43(2) -4(1) 18(1) 2(1) C(14) 48(2) 54(2) 106(3) 28(2) 37(2) 21(2) C(15) 33(2) 75(3) 60(2) -10(2) 12(2) 4(2) C(16) 56(2) 84(3) 58(2) -19(2) 27(2) 5(2) C(17) 31(2) 23(2) 27(1) 8(1) 3(1) 0(1) C(18) 31(1) 20(2) 28(1) 0(1) 1(1) -2(1) C(19) 39(2) 34(2) 33(2) 5(1) -7(1) -3(1) C(20) 21(1) 24(2) 24(1) -1(1) 6(1) 3(1) C(21) 28(1) 28(2) 21(1) -4(1) 3(1) 3(1) C(22) 45(2) 47(2) 31(2) -10(1) 11(1) 5(2) C(23) 45(2) 38(2) 20(1) 2(1) 2(1) 3(1) C(24) 33(2) 42(2) 30(1) -4(1) 0(1) -2(1) C(25) 38(2) 44(2) 53(2) -6(2) 25(1) 1(1) C(101) 53(8) 97(13) 80(11) -28(8) 25(8) 10(9) C(11A) 41(2) 60(4) 73(5) 16(3) 22(3) -6(2) 102 Co(1) 24(1) 17(1) 16(1) 1(1) 2(1) 0(1) N(1) 21(1) 24(1) 19(1) 2(1) 3(1) 2(1) N(2) 22(1) 24(1) 21(1) 0(1) 5(1) 2(1) N(3) 27(1) 27(1) 21(1) 0(1) 5(1) 1(1) N(4) 28(1) 23(1) 23(1) 2(1) 7(1) -2(1) N(5) 26(1) 30(1) 26(1) -1(1) 9(1) 1(1) N(6) 60(2) 97(5) 127(6) 43(4) 47(4) -10(3) N(7) 24(1) 22(1) 18(1) 4(1) 3(1) 0(1) N(8) 25(1) 22(1) 16(1) 3(1) 4(1) 4(1) N(9) 69(2) 31(2) 53(2) 2(1) -11(1) -13(1) N(6A) 60(2) 97(5) 127(6) 43(4) 47(4) -10(3) O(1) 30(1) 19(1) 28(1) -2(1) 11(1) -2(1) O(2) 25(1) 21(1) 26(1) -3(1) -2(1) 4(1) O(101) 53(8) 97(13) 80(11) -28(8) 25(8) 10(9) ______________________________________________________________________________ Table A.12: Bond lengths [Å] for [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2]·0.15MeOH. ______________________________________________________________________________ B(1)-N(4) 1.528(3) C(7)-H(7A) 0.9800 B(1)-N(1) 1.546(3) C(7)-H(7B) 0.9800 B(1)-N(7) 1.552(3) C(7)-H(7C) 0.9800 B(1)-H(1A) 1.0000 C(8)-H(8A) 0.9800 C(1)-N(1) 1.331(3) C(8)-H(8B) 0.9800 C(1)-C(2) 1.383(3) C(8)-H(8C) 0.9800 C(1)-H(1) 0.9500 C(9)-N(4) 1.335(3) C(2)-C(4) 1.421(3) C(9)-C(10) 1.376(4) C(2)-C(3) 1.425(3) C(9)-H(9) 0.9500 C(3)-N(3) 1.145(3) C(10)-C(12) 1.408(4) C(4)-N(2) 1.330(3) C(10)-C(11) 1.426(7) C(4)-C(5) 1.504(4) C(10)-C(11A) 1.47(3) C(5)-C(7) 1.523(4) C(11)-N(6) 1.148(7) C(5)-C(8) 1.526(4) C(12)-N(5) 1.322(3) C(5)-C(6) 1.531(3) C(12)-C(13) 1.519(4) C(6)-H(6A) 0.9800 C(13)-C(14) 1.516(4) C(6)-H(6B) 0.9800 C(13)-C(16) 1.531(4) 103 C(6)-H(6C) 0.9800 C(13)-C(15) 1.531(4) C(14)-H(14A) 0.9800 C(24)-H(24A) 0.9800 C(14)-H(14B) 0.9800 C(24)-H(24B) 0.9800 C(14)-H(14C) 0.9800 C(24)-H(24C) 0.9800 C(15)-H(15A) 0.9800 C(25)-O(1) 1.418(3) C(15)-H(15B) 0.9800 C(25)-H(25A) 0.9800 C(15)-H(15C) 0.9800 C(25)-H(25B) 0.9800 C(16)-H(16A) 0.9800 C(25)-H(25C) 0.9800 C(16)-H(16B) 0.9800 C(101)-O(101) 1.35(3) C(16)-H(16C) 0.9800 C(101)-H(10A) 0.9800 C(17)-N(7) 1.330(3) C(101)-H(10B) 0.9800 C(17)-C(18) 1.375(3) C(101)-H(10C) 0.9800 C(17)-H(17) 0.9500 C(11A)-N(6A) 1.13(3) C(18)-C(20) 1.417(3) Co(1)-O(2)#1 2.0534(18) C(18)-C(19) 1.423(4) Co(1)-O(2) 2.0534(18) C(19)-N(9) 1.147(3) Co(1)-O(1) 2.0588(18) C(20)-N(8) 1.328(3) Co(1)-O(1)#1 2.0588(18) C(20)-C(21) 1.511(3) Co(1)-N(3) 2.1495(19) C(21)-C(23) 1.524(4) Co(1)-N(3)#1 2.1495(19) C(21)-C(24) 1.528(4) N(1)-N(2) 1.376(3) C(21)-C(22) 1.533(4) N(4)-N(5) 1.376(3) C(22)-H(22A) 0.9800 N(7)-N(8) 1.374(2) C(22)-H(22B) 0.9800 O(1)-H(1C) 0.79(3) C(22)-H(22C) 0.9800 O(2)-H(11A) 0.77(3) C(23)-H(23A) 0.9800 O(2)-H(12A) 0.84(3) C(23)-H(23B) 0.9800 O(101)-H(101) 0.8400 C(23)-H(23C) 0.9800 _________________________________________________________________________________ Table A.13: Bond angles [°] for [(Tpt-Bu,4CN)2Co(MeOH)2(H2O)2]·0.15MeOH. ______________________________________________________________________________ N(4)-B(1)-N(1) 111.00(18) H(7B)-C(7)-H(7C) 109.5 N(4)-B(1)-N(7) 110.4(2) C(5)-C(8)-H(8A) 109.5 N(1)-B(1)-N(7) 106.2(2) H(7A)-C(7)-H(7C) 109.5 104 N(4)-B(1)-H(1A) 109.7 H(8A)-C(8)-H(8B) 109.5 N(1)-B(1)-H(1A) 109.7 C(5)-C(8)-H(8C) 109.5 N(7)-B(1)-H(1A) 109.7 H(8A)-C(8)-H(8C) 109.5 N(1)-C(1)-C(2) 108.0(2) H(8B)-C(8)-H(8C) 109.5 N(1)-C(1)-H(1) 126.0 C(5)-C(8)-H(8B) 109.5 C(2)-C(1)-H(1) 126.0 N(4)-C(9)-H(9) 126.2 C(1)-C(2)-C(4) 105.6(2) C(10)-C(9)-H(9) 126.2 C(1)-C(2)-C(3) 122.9(2) C(9)-C(10)-C(12) 105.7(2) C(4)-C(2)-C(3) 131.3(2) C(9)-C(10)-C(11) 125.9(4) N(3)-C(3)-C(2) 175.1(3) C(12)-C(10)-C(11) 127.7(4) N(2)-C(4)-C(2) 108.7(2) C(9)-C(10)-C(11A) 117.6(13) N(2)-C(4)-C(5) 122.0(2) C(12)-C(10)-C(11A) 132.2(13) C(2)-C(4)-C(5) 129.2(2) C(11)-C(10)-C(11A) 26.0(11) C(4)-C(5)-C(7) 110.4(2) N(6)-C(11)-C(10) 177.5(6) C(4)-C(5)-C(8) 107.9(2) N(5)-C(12)-C(10) 109.7(2) C(7)-C(5)-C(8) 109.4(2) N(5)-C(12)-C(13) 122.3(2) C(4)-C(5)-C(6) 110.6(2) C(10)-C(12)-C(13) 128.0(3) C(7)-C(5)-C(6) 109.2(2) C(14)-C(13)-C(12) 109.8(2) C(8)-C(5)-C(6) 109.2(2) C(14)-C(13)-C(16) 110.1(3) C(5)-C(6)-H(6A) 109.5 C(12)-C(13)-C(16) 108.6(2) C(5)-C(6)-H(6B) 109.5 C(14)-C(13)-C(15) 109.7(3) H(6A)-C(6)-H(6B) 109.5 C(12)-C(13)-C(15) 110.1(2) C(5)-C(6)-H(6C) 109.5 C(16)-C(13)-C(15) 108.4(2) H(6A)-C(6)-H(6C) 109.5 (13)-C(14)-H(14A) 109.5 H(6B)-C(6)-H(6C) 109.5 C(13)-C(14)-H(14B) 109.5 C(5)-C(7)-H(7A) 109.5 H(14A)-C(14)-H(14B) 109.5 C(5)-C(7)-H(7B) 109.5 C(13)-C(14)-H(14C) 109.5 H(7A)-C(7)-H(7B) 109.5 H(14A)-C(14)-H(14C) 109.5 C(5)-C(7)-H(7C) 109.5 H(14B)-C(14)-H(14C) 109.5 N(4)-C(9)-C(10) 107.6(3) C(13)-C(15)-H(15A) 109.5 C(13)-C(15)-H(15B) 109.5 H(23A)-C(23)-H(23B) 109.5 H(15A)-C(15)-H(15B) 109.5 C(21)-C(23)-H(23C) 109.5 C(13)-C(15)-H(15C) 109.5 H(23A)-C(23)-H(23C) 109.5 H(15A)-C(15)-H(15C) 109.5 H(23B)-C(23)-H(23C) 109.5 H(15B)-C(15)-H(15C) 109.5 C(21)-C(24)-H(24A) 109.5 105 C(13)-C(16)-H(16A) 109.5 C(21)-C(24)-H(24B) 109.5 C(13)-C(16)-H(16B) 109.5 H(24A)-C(24)-H(24B) 109.5 H(16A)-C(16)-H(16B) 109.5 C(21)-C(24)-H(24C) 109.5 C(13)-C(16)-H(16C) 109.5 H(24A)-C(24)-H(24C) 109.5 H(16A)-C(16)-H(16C) 109.5 H(24B)-C(24)-H(24C) 109.5 H(16B)-C(16)-H(16C) 109.5 O(101)-C(101)-H(10A) 109.5 N(7)-C(17)-C(18) 108.4(2) O(101)-C(101)-H(10B) 109.5 N(7)-C(17)-H(17) 125.8 H(10A)-C(101)-H(10B) 109.5 C(18)-C(17)-H(17) 125.8 O(101)-C(101)-H(10C) 109.5 C(17)-C(18)-C(20) 105.3(2) H(10A)-C(101)-H(10C) 109.5 C(17)-C(18)-C(19) 125.5(2) H(10B)-C(101)-H(10C) 109.5 C(20)-C(18)-C(19) 129.2(2) N(6A)-C(11A)-C(10) 170(3) N(9)-C(19)-C(18) 179.0(3) O(2)#1-Co(1)-O(2) 180.00(10) N(8)-C(20)-C(18) 109.2(2) O(2)#1-Co(1)-O(1) 91.67(8) N(8)-C(20)-C(21) 122.2(2) O(2)-Co(1)-O(1) 88.33(8) C(18)-C(20)-C(21) 128.6(2) O(2)#1-Co(1)-O(1)#1 88.33(8) C(20)-C(21)-C(23) 109.8(2) O(2)-Co(1)-O(1)#1 91.67(8) C(20)-C(21)-C(24) 109.4(2) O(1)-Co(1)-O(1)#1 180.00(12) C(23)-C(21)-C(24) 110.0(2) O(2)#1-Co(1)-N(3) 89.86(8) C(20)-C(21)-C(22) 108.9(2) O(2)-Co(1)-N(3) 90.14(8) C(23)-C(21)-C(22) 108.8(2) O(1)-Co(1)-N(3) 86.21(7) C(24)-C(21)-C(22) 109.9(2) O(1)#1-Co(1)-N(3) 93.79(7) C(21)-C(22)-H(22A) 109.5 O(2)#1-Co(1)-N(3)#1 90.14(8) C(21)-C(22)-H(22B) 109.5 O(2)-Co(1)-N(3)#1 89.86(8) H(22A)-C(22)-H(22B) 109.5 O(1)-Co(1)-N(3)#1 93.79(7) C(21)-C(22)-H(22C) 109.5 O(1)#1-Co(1)-N(3)#1 86.21(7) H(22A)-C(22)-H(22C) 109.5 N(3)-Co(1)-N(3)#1 180.0 H(22B)-C(22)-H(22C) 109.5 C(1)-N(1)-N(2) 110.34(19) C(21)-C(23)-H(23A) 109.5 C(1)-N(1)-B(1) 131.0(2) C(21)-C(23)-H(23B) 109.5 N(2)-N(1)-B(1) 118.61(18) C(4)-N(2)-N(1) 107.27(18) C(20)-N(8)-N(7) 106.90(18) C(3)-N(3)-Co(1) 160.4(2) C(25)-O(1)-Co(1) 124.29(17) C(9)-N(4)-N(5) 110.5(2) C(25)-O(1)-H(1C) 113(2) C(9)-N(4)-B(1) 125.6(2) Co(1)-O(1)-H(1C) 115(2) N(5)-N(4)-B(1) 123.7(2) Co(1)-O(2)-H(11A) 126(2) 106 C(12)-N(5)-N(4) 106.5(2) Co(1)-O(2)-H(12A) 122.3(17) C(17)-N(7)-N(8) 110.20(19) H(11A)-O(2)-H(12A) 110(3) C(17)-N(7)-B(1) 129.19(19) C(101)-O(101)-H(101) 109.5 N(8)-N(7)-B(1) 120.19(19) _________________________________________________________________________________ Table A.14: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for [(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ B(1) 2484(3) 2306(3) 4015(2) 27(1) C(1) 1906(3) 3228(3) 2704(2) 26(1) C(2) 2292(2) 3304(3) 2120(2) 25(1) C(3) 1789(3) 3826(3) 1430(2) 28(1) C(4) 3195(2) 2707(3) 2365(2) 25(1) C(5) 3910(3) 2462(3) 1952(2) 32(1) C(6) 4061(3) 3459(4) 1531(3) 55(1) C(7) 3458(3) 1555(4) 1404(2) 55(1) C(8) 4926(3) 2109(4) 2503(2) 48(1) C(9) 972(3) 1420(3) 4216(2) 43(1) C(10) 18(3) 1721(4) 4157(2) 48(1) C(11) -665(6) 1134(8) 4413(6) 66(3) C(12) -90(3) 2800(3) 3901(2) 35(1) C(13) -982(3) 3520(4) 3745(2) 44(1) C(14) -1145(4) 3772(4) 4482(3) 72(2) C(15) -1925(3) 2968(4) 3220(2) 60(1) C(16) -808(3) 4563(4) 3391(3) 67(1) C(17) 3125(3) 4230(3) 4471(2) 31(1) C(18) 3652(3) 4689(3) 5150(2) 31(1) C(19) 3888(3) 5801(4) 5270(2) 43(1) C(20) 3910(2) 3833(3) 5672(2) 26(1) C(21) 4476(3) 3876(3) 6504(2) 31(1) 107 C(22) 3924(3) 4622(3) 6873(2) 45(1) C(23) 5529(3) 4308(3) 6637(2) 46(1) C(24) 4519(3) 2760(3) 6839(2) 42(1) C(25) -1569(3) 4734(4) 847(3) 60(1) 4070(20) 66(3) 0 24(1) C(11A) -730(30) Mn(1) 0 850(40) 5000 N(1) 2518(2) 2629(2) 3238(2) 24(1) N(2) 3321(2) 2305(2) 3039(2) 26(1) N(3) 1332(2) 4241(2) 880(2) 34(1) N(4) 1400(2) 2252(2) 4004(2) 28(1) N(5) 748(2) 3113(2) 3816(2) 29(1) N(6) -1216(5) 636(7) 4610(6) 97(3) N(7) 3070(2) 3176(2) 4578(1) 23(1) N(8) 3555(2) 2919(2) 5318(2) 26(1) N(9) 4060(3) 6699(3) 5362(2) 63(1) 4160(20) 97(3) N(6A) -1230(20) 160(30) O(1) -890(2) 4237(2) 570(1) 33(1) O(2) 119(2) 6376(2) 707(1) 31(1) ________________________________________________________________________________ (Å2x 103) [(Tpt-Bu,4CN)2 Mn(MeOH)2(H2O)2.The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. Table A.15: Anisotropic displacement parameters for ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ B(1) 32(2) 25(2) 21(2) 6(2) 4(2) 2(2) C(1) 25(2) 25(2) 25(2) 3(2) 2(2) 4(2) C(2) 28(2) 24(2) 18(2) 1(2) 1(2) -1(2) C(3) 29(2) 28(2) 26(2) -5(2) 7(2) -1(2) C(4) 26(2) 26(2) 17(2) 0(2) 0(2) 1(2) C(5) 32(2) 36(2) 26(2) 0(2) 7(2) 5(2) C(6) 56(3) 62(3) 58(3) 19(3) 34(2) 7(2) C(7) 57(3) 69(3) 39(3) -21(2) 15(2) 2(2) 108 C(8) 35(2) 71(3) 38(2) 8(2) 13(2) 14(2) C(9) 41(3) 37(3) 46(3) 11(2) 9(2) -6(2) C(10) 37(3) 51(3) 56(3) 14(2) 16(2) -14(2) C(11) 46(3) 73(6) 78(7) 24(5) 18(5) -9(4) C(12) 31(2) 43(3) 31(2) 0(2) 11(2) -2(2) C(13) 35(2) 58(3) 41(2) -1(2) 18(2) -1(2) C(14) 60(3) 101(4) 62(3) -23(3) 30(3) -3(3) C(15) 40(3) 80(4) 56(3) -10(3) 11(2) 3(2) C(16) 53(3) 60(3) 95(4) 16(3) 34(3) 21(3) C(17) 33(2) 24(2) 29(2) 6(2) 2(2) -3(2) C(18) 36(2) 23(2) 26(2) 0(2) 0(2) -5(2) C(19) 47(3) 38(3) 30(2) 2(2) -7(2) -4(2) C(20) 24(2) 26(2) 24(2) -4(2) 5(2) 2(2) C(21) 35(2) 33(2) 20(2) -1(2) 3(2) 7(2) C(22) 53(3) 47(3) 33(2) -12(2) 10(2) 6(2) C(23) 35(2) 60(3) 34(2) -5(2) -1(2) -1(2) C(24) 54(3) 50(3) 17(2) -2(2) 4(2) 9(2) C(25) 54(3) 44(3) 92(4) -14(3) 40(3) -3(2) C(11A) 46(3) 73(6) 78(7) 24(5) 18(5) -9(4) Mn(1) 31(1) 19(1) 17(1) 1(1) 1(1) 0(1) N(1) 26(2) 22(2) 21(2) 3(1) 4(1) 3(1) N(2) 26(2) 25(2) 23(2) 1(1) 4(1) 3(1) N(3) 37(2) 36(2) 22(2) 4(2) 2(2) 2(2) N(4) 31(2) 26(2) 24(2) 2(1) 5(1) -3(1) N(5) 31(2) 29(2) 28(2) -1(1) 9(1) 2(2) N(6) 67(3) 96(6) 136(8) 39(6) 44(5) -16(4) N(7) 27(2) 23(2) 18(2) 2(1) 3(1) 0(1) N(8) 31(2) 28(2) 16(2) 5(1) 5(1) 5(1) N(9) 78(3) 32(2) 58(3) 1(2) -7(2) -11(2) N(6A) 67(3) 96(6) 136(8) 39(6) 44(5) -16(4) O(1) 46(2) 23(2) 29(2) -7(1) 12(1) -7(1) O(2) 29(2) 25(2) 28(2) -2(1) -4(1) 4(1) ______________________________________________________________________________ 109 Table A.16: Bond lengths [Å] and angles [°] for [(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2. ______________________________________________________________________________ B(1)-N(4) 1.534(5) C(7)-H(7B) 0.9800 B(1)-N(1) 1.543(5) C(7)-H(7C) 0.9800 B(1)-N(7) 1.549(5) C(8)-H(8A) 0.9800 B(1)-H(1A) 1.0000 C(8)-H(8B) 0.9800 C(1)-N(1) 1.320(4) C(8)-H(8C) 0.9800 C(1)-C(2) 1.393(4) C(9)-N(4) 1.328(4) C(1)-H(1) 0.9500 C(9)-C(10) 1.374(5) C(2)-C(4) 1.417(5) C(9)-H(9) 0.9500 C(2)-C(3) 1.419(5) C(10)-C(12) 1.417(5) C(3)-N(3) 1.149(4) C(12)-N(5) 1.313(4) C(4)-N(2) 1.326(4) C(12)-C(13) 1.497(5) C(4)-C(5) 1.506(5) C(13)-C(16) 1.518(6) C(5)-C(7) 1.521(5) C(13)-C(14) 1.523(5) C(5)-C(6) 1.527(5) C(13)-C(15) 1.535(6) C(5)-C(8) 1.533(5) C(14)-H(14A) 0.9800 C(6)-H(6A) 0.9800 C(14)-H(14B) 0.9800 C(6)-H(6B) 0.9800 C(14)-H(14C) 0.9800 C(6)-H(6C) 0.9800 C(15)-H(15A) 0.9800 C(7)-H(7A) 0.9800 C(15)-H(15B) 0.9800 C(15)-H(15C) 0.9800 C(24)-H(24A) 0.9800 C(16)-H(16A) 0.9800 C(24)-H(24B) 0.9800 C(16)-H(16B) 0.9800 C(24)-H(24C) 0.9800 C(16)-H(16C) 0.9800 C(25)-O(1) 1.389(5) C(17)-N(7) 1.333(4) C(25)-H(25A) 0.9800 C(17)-C(18) 1.375(5) C(25)-H(25B) 0.9800 C(17)-H(17) 0.9500 C(25)-H(25C) 0.9800 C(18)-C(20) 1.414(5) C(11A)-N(6A) 1.15(4) C(18)-C(19) 1.422(6) Mn(1)-O(1)#1 2.140(3) C(19)-N(9) 1.143(5) Mn(1)-O(1) 2.140(3) C(20)-N(8) 1.330(4) Mn(1)-O(2) 2.144(2) C(20)-C(21) 1.511(5) Mn(1)-O(2)#1 2.144(2) C(21)-C(24) 1.519(5) Mn(1)-N(3)#1 2.263(3) C(21)-C(22) 1.527(5) Mn(1)-N(3) 2.263(3) 110 C(21)-C(23) 1.527(5) N(1)-N(2) 1.376(4) C(22)-H(22A) 0.980 N(4)-N(5) 1.381(4)0 C(22)-H(22B) 0.9800 N(7)-N(8) 1.375(4) C(22)-H(22C) 0.9800 O(1)-H(25) 0.71(4) C(23)-H(23A) 0.9800 O(2)-H(2A) 0.86(4) C(23)-H(23B) 0.9800 O(2)-H(2) 0.8400 C(23)-H(23C) 0.9800 Table A.17: Bond l angles [°] for [(Tpt-Bu,4CN)2Mn(MeOH)2(H2O)2. ______________________________________________________________________________ N(4)-B(1)-N(1) 110.7(3) C(16)-C(13)-C(15) 109.3(4) N(4)-B(1)-N(7) 110.1(3) C(14)-C(13)-C(15) 108.5(3) N(1)-B(1)-N(7) 107.1(3) C(13)-C(14)-H(14A) 109.5 N(4)-B(1)-H(1A) 109.6 C(13)-C(14)-H(14B) 109.5 N(1)-B(1)-H(1A) 109.6 H(14A)-C(14)-H(14B) 109.5 N(7)-B(1)-H(1A) 109.6 C(13)-C(14)-H(14C) 109.5 N(1)-C(1)-C(2) 108.2(3) H(14A)-C(14)-H(14C) 109.5 N(1)-C(1)-H(1) 125.9 H(14B)-C(14)-H(14C) 109.5 C(2)-C(1)-H(1) 125.9 C(13)-C(15)-H(15A) 109.5 C(1)-C(2)-C(4) 105.0(3) C(13)-C(15)-H(15B) 109.5 C(1)-C(2)-C(3) 123.5(3) H(15A)-C(15)-H(15B) 109.5 C(4)-C(2)-C(3) 131.4(3) C(13)-C(15)-H(15C) 109.5 N(3)-C(3)-C(2) 176.1(4) H(15A)-C(15)-H(15C) 109.5 N(2)-C(4)-C(2) 109.0(3) H(15B)-C(15)-H(15C) 109.5 N(2)-C(4)-C(5) 121.8(3) C(13)-C(16)-H(16A) 109.5 C(2)-C(4)-C(5) 129.0(3) C(13)-C(16)-H(16B) 109.5 C(4)-C(5)-C(7) 107.5(3) H(16A)-C(16)-H(16B) 109.5 C(4)-C(5)-C(6) 110.2(3) C(13)-C(16)-H(16C) 109.5 C(7)-C(5)-C(6) 110.2(3) H(16A)-C(16)-H(16C) 109.5 C(4)-C(5)-C(8) 110.4(3) H(16B)-C(16)-H(16C) 109.5 C(7)-C(5)-C(8) 109.7(3) N(7)-C(17)-C(18) 107.9(3) C(6)-C(5)-C(8) 108.8(3) N(7)-C(17)-H(17) 126.1 N(4)-C(9)-C(10) 107.6(4) C(18)-C(17)-H(17) 126.1 N(4)-C(9)-H(9) 126.2 C(17)-C(18)-C(20) 105.9(3) 111 C(10)-C(9)-H(9) 126.2 C(17)-C(18)-C(19) 125.3(3) C(9)-C(10)-C(12) 106.0(3) C(20)-C(18)-C(19) 128.8(3) N(5)-C(12)-C(10) 108.9(3) N(9)-C(19)-C(18) 178.8(5) N(5)-C(12)-C(13) 122.8(3) N(8)-C(20)-C(18) 108.9(3) C(10)-C(12)-C(13) 128.3(3) N(8)-C(20)-C(21) 122.4(3) C(12)-C(13)-C(16) 110.1(3) C(18)-C(20)-C(21) 128.7(3) C(12)-C(13)-C(14) 108.8(3) C(20)-C(21)-C(24) 109.6(3) C(16)-C(13)-C(14) 109.1(4) C(20)-C(21)-C(22) 108.9(3) C(12)-C(13)-C(15) 110.9(4) C(24)-C(21)-C(22) 108.5(3) C(24)-C(21)-C(23) 110.7(3) O(1)-Mn(1)-O(2)#1 91.51(9) C(22)-C(21)-C(23) 109.8(3) O(2)-Mn(1)-O(2)#1 180.00(13) C(21)-C(22)-H(22A) 109.5 O(1)#1-Mn(1)-N(3)#1 86.16(10) C(21)-C(22)-H(22B) 109.5 O(1)-Mn(1)-N(3)#1 93.84(10) H(22A)-C(22)-H(22B) 109.5 O(2)-Mn(1)-N(3)#1 89.92(10) C(21)-C(22)-H(22C) 109.5 O(2)#1-Mn(1)-N(3)#1 90.08(10) H(22A)-C(22)-H(22C) 109.5 O(1)#1-Mn(1)-N(3) 93.84(10) H(22B)-C(22)-H(22C) 109.5 O(1)-Mn(1)-N(3) 86.16(10) C(21)-C(23)-H(23A) 109.5 O(2)-Mn(1)-N(3) 90.08(10) C(21)-C(23)-H(23B) 109.5 O(2)#1-Mn(1)-N(3) 89.92(10) H(23A)-C(23)-H(23B) 109.5 N(3)#1-Mn(1)-N(3) 180.0(2) C(21)-C(23)-H(23C) 109.5 C(1)-N(1)-N(2) 110.3(3) H(23A)-C(23)-H(23C) 109.5 C(1)-N(1)-B(1) 130.9(3) H(23B)-C(23)-H(23C) 109.5 N(2)-N(1)-B(1) 118.8(3) C(21)-C(24)-H(24A) 109.5 C(4)-N(2)-N(1) 107.3(3) C(21)-C(24)-H(24B) 109.5 C(3)-N(3)-Mn(1) 158.8(3) H(24A)-C(24)-H(24B) 109.5 C(9)-N(4)-N(5) 110.3(3) C(21)-C(24)-H(24C) 109.5 C(9)-N(4)-B(1) 126.1(3) H(24A)-C(24)-H(24C) 109.5 N(5)-N(4)-B(1) 123.5(3) H(24B)-C(24)-H(24C) 109.5 C(12)-N(5)-N(4) 107.2(3) O(1)-C(25)-H(25A) 109.5 C(17)-N(7)-N(8) 110.4(3) O(1)-C(25)-H(25B) 109.5 C(17)-N(7)-B(1) 128.8(3) H(25A)-C(25)-H(25B) 109.5 N(8)-N(7)-B(1) 120.6(3) O(1)-C(25)-H(25C) 109.5 C(20)-N(8)-N(7) 106.9(3) H(25A)-C(25)-H(25C) 109.5 C(25)-O(1)-Mn(1) 126.6(2) H(25B)-C(25)-H(25C) 109.5 C(25)-O(1)-H(25) 113(4) 112 O(1)#1-Mn(1)-O(1) 180.00(10) Mn(1)-O(1)-H(25) 116(4) O(1)#1-Mn(1)-O(2) 91.51(9) Mn(1)-O(2)-H(2A) 122(3) O(1)-Mn(1)-O(2) 88.49(9) Mn(1)-O(2)-H(2) 109.5 O(1)#1-Mn(1)-O(2)#1 88.49(9) H(2A)-O(2)-H(2) 126.1 _________________________________________________________________________________ Table A.18. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for [(Tpt-Bu,4CN)2Co(H2O)4] U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ B(1) 2355(5) 2744(4) 4008(2) 64(2) C(1) 1808(3) 1752(3) 2702(2) 53(1) Co(1) 0 0 0 82(1) N(1) 2419(3) 2391(3) 3233(2) 54(1) O(1) -1073(4) 564(3) 514(2) 113(2) C(2) 2218(3) 1673(3) 2124(2) 54(1) N(2) 3242(3) 2721(3) 3033(2) 56(1) O(2) 169(3) -1355(2) 665(2) 81(1) C(3) 1695(4) 1169(3) 1433(2) 62(1) N(3) 1199(3) 783(3) 881(2) 77(1) C(4) 3136(3) 2298(3) 2363(2) 53(1) N(4) 1248(3) 2779(3) 4004(2) 63(1) C(5) 3879(4) 2539(4) 1951(2) 64(1) N(5) 615(3) 1892(3) 3812(2) 60(1) C(6) 4909(4) 2904(5) 2497(3) 87(2) N(6) -1623(6) 4393(5) 4477(4) 142(3) C(7) 4039(5) 1536(5) 1527(3) 99(2) N(7) 2986(3) 1891(3) 4575(2) 59(1) C(8) 3435(4) 3473(5) 1399(3) 86(2) N(8) 3456(3) 2175(3) 5312(2) 59(1) C(9) 758(6) 3615(4) 4211(3) 83(2) 113 N(9) 4149(3) -1634(3) 5377(2) 70(1) C(10) -213(6) 3272(4) 4148(3) 82(2) C(11) -987(7) 3896(5) 4321(4) 114(3) C(12) -280(5) 2183(4) 3892(3) 66(1) C(13) -1159(4) 1405(4) 3720(3) 68(1) C(14) -1333(5) 1104(5) 4453(3) 97(2) C(15) -2125(4) 1963(4) 3194(3) 87(2) C(16) -921(4) 375(4) 3360(4) 87(2) C(17) 3098(3) 829(3) 4482(2) 55(1) C(18) 3654(3) 382(3) 5164(2) 48(1) C(19) 3929(3) -728(4) 5287(2) 55(1) C(20) 3855(3) 1271(3) 5671(2) 51(1) C(21) 4439(3) 1264(4) 6502(2) 53(1) C(22) 3929(4) 457(4) 6891(2) 69(1) C(23) 5538(4) 903(4) 6625(2) 66(1) C(24) 4407(4) 2400(4) 6823(2) 64(1) _________________________________________________________________________________ Table A.19: Anisotropic displacement parameters (Å2x 103) for [(Tpt-Bu,4CN)2Co(H2O)4]. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ] _________________________________________________________________________________ U11 U22 U33 U23 U13 U12 _________________________________________________________________________________ B(1) 103(5) 39(3) 25(2) 0(2) -12(3) -25(3) C(1) 68(3) 35(2) 31(2) -1(2) -19(2) -11(2) Co(1) 126(1) 35(1) 35(1) -15(1) -44(1) 32(1) N(1) 74(3) 40(2) 25(2) 2(1) -15(2) -20(2) O(1) 196(5) 59(2) 31(2) -16(2) -37(2) 77(3) C(2) 73(3) 34(2) 29(2) -1(2) -20(2) 4(2) N(2) 75(3) 43(2) 27(2) 5(2) -17(2) -14(2) O(2) 110(3) 34(2) 50(2) -9(1) -43(2) 18(2) C(3) 86(3) 37(2) 36(2) -5(2) -21(2) 15(2) N(3) 110(3) 43(2) 40(2) -11(2) -26(2) 23(2) C(4) 65(3) 39(2) 31(2) 9(2) -15(2) 0(2) 114 N(4) 94(3) 41(2) 36(2) -1(2) -4(2) -20(2) C(5) 68(3) 58(3) 46(3) 13(2) -10(2) 4(2) N(5) 89(3) 38(2) 39(2) 2(2) 2(2) -16(2) C(6) 69(4) 100(4) 70(3) 18(3) -9(3) 2(3) N(6) 218(8) 77(4) 135(5) -28(4) 63(5) 22(5) C(7) 111(5) 95(5) 87(4) -13(4) 26(4) 11(4) N(7) 87(3) 41(2) 25(2) 3(1) -15(2) -26(2) C(8) 82(4) 95(4) 61(3) 41(3) -3(3) 9(3) N(8) 83(3) 49(2) 24(2) 3(2) -12(2) -28(2) C(9) 137(6) 38(3) 53(3) -8(2) 4(3) -11(3) N(9) 71(3) 61(3) 57(2) 6(2) -8(2) 0(2) C(10) 124(5) 46(3) 65(3) -6(2) 18(3) 3(3) C(11) 175(8) 55(4) 108(5) -20(4) 41(5) 4(4) C(12) 95(4) 48(3) 49(3) 3(2) 17(3) 0(3) C(13) 87(4) 46(3) 74(3) 9(2) 28(3) -3(3) C(14) 112(5) 87(4) 103(5) 30(4) 49(4) 17(4) C(15) 97(4) 64(3) 91(4) 14(3) 19(3) 0(3) C(16) 85(4) 54(3) 127(5) -14(3) 42(4) -16(3) C(17) 67(3) 48(2) 33(2) 0(2) -9(2) -22(2) C(18) 51(3) 46(2) 35(2) 4(2) -3(2) -15(2) C(19) 51(3) 61(3) 37(2) 2(2) -6(2) -7(2) C(20) 58(3) 53(2) 28(2) 3(2) -6(2) -25(2) C(21) 60(3) 58(3) 29(2) 6(2) -2(2) -18(2) C(22) 77(3) 80(3) 38(2) 18(2) 3(2) -16(3) C(23) 66(3) 77(3) 37(2) -3(2) -6(2) -15(3) C(24) 79(3) 72(3) 27(2) 1(2) -4(2) -13(3) _________________________________________________________________________________ Table A.20: Bond lengths [Å] for [(Tpt-Bu,4CN)2Co(H2O)4]. _________________________________________________________________________________ B(1)-N(4) 1.529(7) Co(1)-N(3)#1 2.158(4) B(1)-N(7) 1.549(6) N(1)-N(2) 1.371(5) B(1)-N(1) 1.553(6) O(1)-H(1C) 0.97(4) B(1)-H(1A) 1.0000 O(1)-H(1B) 0.8400 115 C(1)-N(1) 1.334(4) C(2)-C(3) 1.414(5) C(1)-C(2) 1.384(6) C(2)-C(4) 1.426(6) C(1)-H(1) 0.9500 N(2)-C(4) 1.329(5) Co(1)-O(2) 2.047(3) O(2)-H(2) 0.8400 Co(1)-O(2)#1 2.047(3) O(2)-H(21A) 0.79(4) Co(1)-O(1) 2.131(5) C(3)-N(3) 1.147(5) Co(1)-O(1)#1 2.131(5) C(4)-C(5) 1.503(7) Co(1)-N(3) 2.158(4) N(4)-C(9) 1.352(7) N(4)-N(5) 1.369(5) C(14)-H(14A) 0.9800 C(5)-C(7) 1.520(7) C(14)-H(14B) 0.9800 C(5)-C(6) 1.531(7) C(14)-H(14C) 0.9800 C(5)-C(8) 1.534(6) C(15)-H(15A) 0.9800 N(5)-C(12) 1.342(6) C(15)-H(15B) 0.9800 C(6)-H(6A) 0.9800 C(15)-H(15C) 0.9800 C(6)-H(6B) 0.9800 C(16)-H(16A) 0.9800 C(6)-H(6C) 0.9800 C(16)-H(16B) 0.9800 N(6)-C(11) 1.182(9) C(16)-H(16C) 0.9800 C(7)-H(7A) 0.9800 C(17)-C(18) 1.381(5) C(7)-H(7B) 0.9800 C(17)-H(17) 0.9500 C(7)-H(7C) 0.9800 C(18)-C(19) 1.409(6) N(7)-C(17) 1.327(5) C(18)-C(20) 1.416(6) N(7)-N(8) 1.376(4) C(20)-C(21) 1.515(5) C(8)-H(8A) 0.9800 C(21)-C(24) 1.523(6) C(8)-H(8B) 0.9800 C(21)-C(23) 1.526(7) C(8)-H(8C) 0.9800 C(21)-C(22) 1.531(6) N(8)-C(20) 1.323(5) C(22)-H(22A) 0.9800 C(9)-C(10) 1.375(8) C(22)-H(22B) 0.9800 C(9)-H(9) 0.9500 C(22)-H(22C) 0.9800 N(9)-C(19) 1.148(6) C(23)-H(23A) 0.9800 C(10)-C(12) 1.410(7) C(23)-H(23B) 0.9800 C(10)-C(11) 1.436(10) C(23)-H(23C) 0.9800 C(12)-C(13) 1.495(7) C(24)-H(24A) 0.9800 C(13)-C(16) 1.518(7) C(24)-H(24B) 0.9800 C(13)-C(14) 1.522(7) C(24)-H(24C) 0.9800 C(13)-C(15) 1.545(7) 116 Table A.21: Bond angles [°] for [(Tpt-Bu,4CN)2Co (H2O)4]. _________________________________________________________________________________ N(4)-B(1)-N(7) 111.3(4) C(4)-N(2)-N(1) 107.4(3) N(4)-B(1)-N(1) 111.2(3) C(3)-C(2)-C(4) 131.7(5) N(7)-B(1)-N(1) 105.8(4) Co(1)-O(2)-H(21A) 126(3) N(4)-B(1)-H(1A) 109.5 H(2)-O(2)-H(21A) 122.9 N(7)-B(1)-H(1A) 109.5 N(3)-C(3)-C(2) 174.5(6) N(1)-B(1)-H(1A) 109.5 C(3)-N(3)-Co(1) 165.5(5) N(1)-C(1)-C(2) 108.1(4) N(2)-C(4)-C(2) 108.9(4) N(1)-C(1)-H(1) 125.9 N(2)-C(4)-C(5) 122.0(4) C(2)-C(1)-H(1) 125.9 C(2)-C(4)-C(5) 129.0(4) O(2)-Co(1)-O(2)#1 180.00(18) C(9)-N(4)-N(5) 109.8(5) O(2)-Co(1)-O(1) 86.75(16) C(9)-N(4)-B(1) 127.8(4) O(2)#1-Co(1)-O(1) 93.25(16) N(5)-N(4)-B(1) 122.3(4) O(2)-Co(1)-O(1)#1 93.25(16) C(4)-C(5)-C(7) 110.6(4) O(2)#1-Co(1)-O(1)#1 86.75(16) C(4)-C(5)-C(6) 110.6(4) C(7)-C(5)-C(6) 109.1(5) O(1)-Co(1)-O(1)#1 180.0(2) O(2)-Co(1)-N(3) 88.89(13) C(4)-C(5)-C(8) 107.7(4) O(2)#1-Co(1)-N(3) 91.11(13) C(7)-C(5)-C(8) 109.9(4) O(1)-Co(1)-N(3) 88.94(17) C(6)-C(5)-C(8) 108.7(4) O(1)#1-Co(1)-N(3) 91.06(17) C(12)-N(5)-N(4) 107.1(4) O(2)-Co(1)-N(3)#1 91.11(13) C(5)-C(6)-H(6A) 109.5 O(2)#1-Co(1)-N(3)#1 88.89(13) C(5)-C(6)-H(6B) 109.5 O(1)-Co(1)-N(3)#1 91.06(17) H(6A)-C(6)-H(6B) 109.5 O(1)#1-Co(1)-N(3)#1 88.94(17) C(5)-C(6)-H(6C) 109.5 N(3)-Co(1)-N(3)#1 180.0(3) H(6A)-C(6)-H(6C) 109.5 C(1)-N(1)-N(2) 110.4(4) H(6B)-C(6)-H(6C) 109.5 C(1)-N(1)-B(1) 130.9(4) C(5)-C(7)-H(7A) 109.5 N(2)-N(1)-B(1) 118.6(3) C(5)-C(7)-H(7B) 109.5 Co(1)-O(1)-H(1C) 121(3) H(7A)-C(7)-H(7B) 109.5 Co(1)-O(1)-H(1B) 109.5 C(5)-C(7)-H(7C) 109.5 H(1C)-O(1)-H(1B) 125.3 H(7A)-C(7)-H(7C) 109.5 C(1)-C(2)-C(3) 122.7(4) H(7B)-C(7)-H(7C) 109.5 C(1)-C(2)-C(4) 105.2(3) C(17)-N(7)-N(8) 110.1(3) Co(1)-O(2)-H(2) 109.5 C(17)-N(7)-B(1) 129.3(3) 117 N(8)-N(7)-B(1) 120.3(3) H(15B)-C(15)-H(15C) 109.5 C(5)-C(8)-H(8A) 109.5 C(13)-C(16)-H(16A) 109.5 C(5)-C(8)-H(8B) 109.5 C(13)-C(16)-H(16B) 109.5 H(8A)-C(8)-H(8B) 109.5 H(16A)-C(16)-H(16B) 109.5 C(5)-C(8)-H(8C) 109.5 C(13)-C(16)-H(16C) 109.5 H(8A)-C(8)-H(8C) 109.5 H(16A)-C(16)-H(16C) 109.5 H(8B)-C(8)-H(8C) 109.5 H(16B)-C(16)-H(16C) 109.5 C(20)-N(8)-N(7) 106.8(3) N(7)-C(17)-C(18) 108.6(3) N(4)-C(9)-C(10) 108.0(5) N(7)-C(17)-H(17) 125.7 N(4)-C(9)-H(9) 126.0 C(18)-C(17)-H(17) 125.7 C(10)-C(9)-H(9) 126.0 C(17)-C(18)-C(19) 125.1(4) C(9)-C(10)-C(12) 105.9(6) C(17)-C(18)-C(20) 104.6(4) C(9)-C(10)-C(11) 126.6(5) C(19)-C(18)-C(20) 130.2(4) C(12)-C(10)-C(11) 127.5(7) N(9)-C(19)-C(18) 179.1(5) N(6)-C(11)-C(10) 178.5(8) N(8)-C(20)-C(18) 109.9(3) N(5)-C(12)-C(10) 109.1(5) N(8)-C(20)-C(21) 122.0(4) N(5)-C(12)-C(13) 121.4(4) C(18)-C(20)-C(21) 128.1(4) C(12)-C(13)-C(16) 110.4(5) C(10)-C(12)-C(13) 129.5(6) C(12)-C(13)-C(14) 108.2(5) C(20)-C(21)-C(23) 109.5(4) C(16)-C(13)-C(14) 108.9(4) C(24)-C(21)-C(23) 111.0(4) C(12)-C(13)-C(15) 109.5(4) C(20)-C(21)-C(22) 108.9(3) C(16)-C(13)-C(15) 110.3(5) C(24)-C(21)-C(22) 108.8(4) C(14)-C(13)-C(15) 109.5(5) C(23)-C(21)-C(22) 109.2(4) C(13)-C(14)-H(14A) 109.5 C(21)-C(22)-H(22A) 109.5 C(13)-C(14)-H(14B) 109.5 C(21)-C(22)-H(22B) 109.5 H(14A)-C(14)-H(14B) 109.5 H(22A)-C(22)-H(22B) 109.5 C(13)-C(14)-H(14C) 109.5 C(21)-C(22)-H(22C) 109.5 H(14A)-C(14)-H(14C) 109.5 H(22A)-C(22)-H(22C) 109.5 H(14B)-C(14)-H(14C) 109.5 C(21)-C(23)-H(23A) 109.5 C(13)-C(15)-H(15A) 109.5 C(21)-C(23)-H(23B) 109.5 C(13)-C(15)-H(15B) 109.5 H(23A)-C(23)-H(23B) 109.5 H(15A)-C(15)-H(15B) 109.5 C(21)-C(23)-H(23C) 109.5 C(13)-C(15)-H(15C) 109.5 H(23A)-C(23)-H(23C) 109.5 H(15A)-C(15)-H(15C) 109.5 H(23B)-C(23)-H(23C) 109.5 C(20)-C(21)-C(24) 109.4(3) C(21)-C(24)-H(24A) 109.5 118 C(21)-C(24)-H(24B) 109.5 H(24A)-C(24)-H(24C) 109.5 H(24A)-C(24)-H(24B) 109.5 H(24B)-C(24)-H(24C) 109.5 C(21)-C(24)-H(24C) 109.5 _________________________________________________________________________________ Table A.22: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for [(Tpt-Bu,4CN)2Mn(H2O)4]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ Mn(1) 5000 5000 0 48(1) N(1) 7424(2) 2599(2) 3259(1) 43(1) N(8) 8435(2) 2810(2) 5325(1) 46(1) N(4) 6226(2) 2204(2) 4027(1) 48(1) N(2) 8256(2) 2268(2) 3050(1) 44(1) N(5) 5589(2) 3091(2) 3835(1) 48(1) N(7) 7965(2) 3092(2) 4595(1) 46(1) N(3) 6256(2) 4224(2) 927(1) 57(1) N(9) 9153(2) 6582(2) 5384(2) 63(1) N(6) 3293(4) 603(3) 4463(2) 106(1) C(3) 6731(2) 3829(2) 1473(2) 44(1) C(17) 8083(2) 4145(2) 4501(2) 44(1) C(1) 6823(2) 3242(2) 2737(1) 43(1) C(2) 7246(2) 3322(2) 2159(1) 41(1) C(4) 8160(2) 2690(2) 2383(1) 42(1) C(21) 9434(2) 3709(2) 6500(2) 46(1) C(18) 8645(2) 4584(2) 5174(2) 42(1) C(19) 8930(2) 5681(3) 5297(2) 48(1) C(24) 9400(3) 2581(3) 6825(2) 56(1) C(5) 8909(3) 2441(3) 1966(2) 53(1) C(22) 8934(3) 4508(3) 6901(2) 66(1) C(9) 5713(3) 1384(3) 4224(2) 61(1) C(12) 4678(3) 2803(3) 3904(2) 52(1) 119 C(10) 4729(3) 1715(3) 4157(2) 62(1) C(7) 8453(3) 1528(3) 1412(2) 78(1) C(23) 10544(3) 4052(3) 6609(2) 60(1) C(13) 3797(3) 3582(3) 3735(2) 58(1) C(16) 2826(3) 3030(3) 3224(2) 70(1) C(8) 9938(3) 2066(4) 2496(2) 73(1) C(14) 4054(3) 4584(3) 3358(3) 78(1) C(11) 3944(4) 1088(3) 4328(2) 80(1) C(6) 9091(4) 3434(4) 1545(3) 89(1) C(15) 3611(4) 3901(4) 4464(2) 85(1) C(20) 8845(2) 3705(2) 5681(2) 42(1) B(1) 7339(3) 2243(3) 4028(2) 49(1) O(1) 5149(2) 6404(2) 674(1) 57(1) O(2) 3864(2) 4424(2) 531(1) 75(1) ________________________________________________________________________________ Table A.23: Anisotropic displacement parameters (Å2x 103) for [(Tpt-Bu,4CN)2Mn(H2O)4]. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ Mn(1) 73(1) 24(1) 24(1) 6(1) -21(1) -11(1) N(1) 56(2) 36(1) 25(1) -1(1) -7(1) 11(1) N(8) 63(2) 39(1) 23(1) -1(1) -6(1) 15(1) N(4) 61(2) 38(1) 32(1) 1(1) -2(1) 9(1) N(2) 52(2) 39(1) 28(1) -5(1) -8(1) 9(1) N(5) 65(2) 37(1) 35(1) 1(1) 4(1) 8(1) N(7) 65(2) 36(1) 25(1) 2(1) -5(1) 13(1) N(3) 76(2) 42(2) 33(1) 7(1) -11(1) -4(1) N(9) 68(2) 49(2) 58(2) 0(1) -1(2) -3(2) N(6) 134(4) 72(3) 124(3) 34(2) 57(3) -6(2) C(3) 56(2) 34(2) 30(2) 0(1) -7(1) -5(1) C(17) 53(2) 39(2) 31(1) 2(1) -2(1) 10(1) C(1) 52(2) 34(2) 30(2) 0(1) -7(1) 7(1) 120 C(2) 50(2) 33(2) 27(1) -1(1) -6(1) 1(1) C(4) 51(2) 34(2) 26(1) -5(1) -8(1) 1(1) C(21) 53(2) 49(2) 26(1) -4(1) -3(1) 13(2) C(18) 46(2) 38(2) 35(2) -1(1) 1(1) 9(1) C(19) 49(2) 45(2) 38(2) 0(1) -3(1) 3(2) C(24) 66(2) 65(2) 25(1) 1(1) -2(1) 8(2) C(5) 56(2) 53(2) 39(2) -7(1) -2(2) -2(2) C(22) 78(3) 72(2) 37(2) -14(2) 4(2) 17(2) C(9) 96(3) 38(2) 45(2) 11(2) 13(2) 0(2) C(12) 70(2) 43(2) 40(2) -1(1) 13(2) -6(2) C(10) 80(3) 50(2) 53(2) 8(2) 16(2) 4(2) C(7) 68(3) 95(3) 59(2) -40(2) 3(2) 0(2) C(23) 58(2) 65(2) 40(2) 4(2) -7(2) 5(2) C(13) 68(2) 46(2) 61(2) -2(2) 23(2) 5(2) C(16) 72(3) 59(2) 74(2) -7(2) 16(2) 0(2) C(8) 56(2) 96(3) 56(2) -16(2) -1(2) 7(2) C(14) 71(3) 47(2) 120(3) 17(2) 37(3) 14(2) C(11) 102(3) 55(2) 88(3) 18(2) 35(3) -3(2) C(6) 85(3) 94(3) 92(3) 20(3) 34(3) 5(3) C(15) 92(3) 85(3) 85(3) -25(2) 39(3) -5(2) C(20) 48(2) 42(2) 29(1) -1(1) 0(1) 14(1) B(1) 75(3) 33(2) 24(2) 1(1) -8(2) 13(2) O(1) 72(2) 32(1) 41(1) -1(1) -21(1) -6(1) O(2) 117(2) 48(1) 34(1) 6(1) -16(1) -40(1) ______________________________________________________________________________ Table A.24. Bond lengths [Å] for [(Tpt-Bu,4CN)2Mn(H2O)4]. _________________________________________________________________________________ Mn(1)-O(1)#1 2.122(2) C(18)-C(20) 1.415(4) Mn(1)-O(1) 2.122(2) C(24)-H(24A) 0.9600 Mn(1)-O(2)#1 2.203(3) C(24)-H(24B) 0.9600 Mn(1)-O(2) 2.203(3) C(24)-H(24C) 0.9600 Mn(1)-N(3) 2.256(2) C(5)-C(6) 1.520(5) Mn(1)-N(3)#1 2.256(2) C(5)-C(8) 1.528(4) 121 N(1)-C(1) 1.334(3) C(5)-C(7) 1.535(4) N(1)-N(2) 1.374(3) C(22)-H(22A) 0.9600 N(1)-B(1) 1.551(4) C(22)-H(22B) 0.9600 N(8)-C(20) 1.325(4) C(22)-H(22C) 0.9600 N(8)-N(7) 1.373(3) C(9)-C(10) 1.372(5) N(4)-C(9) 1.346(4) C(9)-H(9) 0.9300 N(4)-N(5) 1.376(3) C(12)-C(10) 1.419(5) N(4)-B(1) 1.520(5) C(12)-C(13) 1.498(5) N(2)-C(4) 1.330(4) C(18)-C(19) 1.409(4) N(5)-C(12) 1.338(4) C(7)-H(7A) 0.9600 N(7)-C(17) 1.330(4) C(7)-H(7B) 0.9600 N(7)-B(1) 1.555(4) C(7)-H(7C) 0.9600 N(3)-C(3) 1.145(3) C(23)-H(23A) 0.9600 N(9)-C(19) 1.152(4) C(23)-H(23B) 0.9600 N(6)-C(11) 1.162(5) C(23)-H(23C) 0.9600 C(3)-C(2) 1.416(4) C(13)-C(14) 1.520(5) C(17)-C(18) 1.379(4) C(13)-C(15) 1.522(5) C(17)-H(17) 0.9300 C(13)-C(16) 1.541(5) C(1)-C(2) 1.382(4) C(16)-H(16A) 0.9600 C(1)-H(1) 0.9300 C(16)-H(16B) 0.9600 C(2)-C(4) 1.424(4) C(16)-H(16C) 0.9600 C(4)-C(5) 1.499(5) C(8)-H(8A) 0.9600 C(21)-C(20) 1.509(4) C(8)-H(8B) 0.9600 C(21)-C(22) 1.525(4) C(8)-H(8C) 0.9600 C(21)-C(23) 1.527(5) C(14)-H(14A) 0.9600 C(21)-C(24) 1.528(4) C(14)-H(14B) 0.9600 C(10)-C(11) 1.438(6) C(14)-H(14C) 0.9600 C(6)-H(6A) 0.9600 C(15)-H(15C) 0.9600 C(6)-H(6B) 0.9600 B(1)-H(1C) 0.9800 C(6)-H(6C) 0.9600 O(1)-H(1B) 0.94(5) C(15)-H(15A) 0.9600 O(1)-H(2C) 0.95(5) C(15)-H(15B) 0.9600 O(2)-H(2) 0.8200 122 Table A.25. Bond angles [°] for [(Tpt-Bu,4CN)2Mn(H2O)4]. _________________________________________________________________________________ O(1)#1-Mn(1)-O(1) 180.00(12) C(17)-N(7)-B(1) 129.1(2) O(1)#1-Mn(1)-O(2)#1 86.83(9) N(8)-N(7)-B(1) 120.7(2) O(1)-Mn(1)-O(2)#1 93.17(9) C(3)-N(3)-Mn(1) 165.1(3) O(1)#1-Mn(1)-O(2) 93.17(9) N(3)-C(3)-C(2) 175.5(4) O(1)-Mn(1)-O(2) 86.83(9) N(7)-C(17)-C(18) 108.5(2) O(2)#1-Mn(1)-O(2) 180.00(9) N(7)-C(17)-H(17) 125.7 O(1)#1-Mn(1)-N(3) 91.60(9) C(18)-C(17)-H(17) 125.7 O(1)-Mn(1)-N(3) 88.40(9) N(1)-C(1)-C(2) 108.3(3) O(2)#1-Mn(1)-N(3) 90.82(10) N(1)-C(1)-H(1) 125.9 O(2)-Mn(1)-N(3) 89.18(10) C(2)-C(1)-H(1) 125.9 O(1)#1-Mn(1)-N(3)#1 88.40(9) C(1)-C(2)-C(3) 122.7(3) O(1)-Mn(1)-N(3)#1 91.60(9) C(1)-C(2)-C(4) 105.4(2) O(2)#1-Mn(1)-N(3)#1 89.18(10) C(3)-C(2)-C(4) 131.3(3) O(2)-Mn(1)-N(3)#1 90.82(10) N(2)-C(4)-C(2) 108.7(3) N(3)-Mn(1)-N(3)#1 180.0 N(2)-C(4)-C(5) 121.9(3) C(1)-N(1)-N(2) 110.0(2) C(2)-C(4)-C(5) 129.3(3) C(1)-N(1)-B(1) 130.8(3) C(20)-C(21)-C(22) 109.2(2) N(2)-N(1)-B(1) 119.1(2) C(20)-C(21)-C(23) 109.8(3) C(20)-N(8)-N(7) 107.0(2) C(22)-C(21)-C(23) 109.2(3) C(9)-N(4)-N(5) 109.3(3) C(20)-C(21)-C(24) 109.6(2) C(9)-N(4)-B(1) 128.8(3) C(22)-C(21)-C(24) 108.6(3) N(5)-N(4)-B(1) 121.8(3) C(23)-C(21)-C(24) 110.4(3) C(4)-N(2)-N(1) 107.6(2) C(17)-C(18)-C(19) 125.2(3) C(12)-N(5)-N(4) 107.1(3) C(17)-C(18)-C(20) 105.0(3) C(17)-N(7)-N(8) 110.0(2) C(19)-C(18)-C(20) 129.8(3) N(9)-C(19)-C(18) 178.8(3) C(21)-C(23)-H(23B) 109.5 C(21)-C(24)-H(24A) 109.5 H(23A)-C(23)-H(23B) 109.5 C(21)-C(24)-H(24B) 109.5 C(21)-C(23)-H(23C) 109.5 H(24A)-C(24)-H(24B) 109.5 H(23A)-C(23)-H(23C) 109.5 C(21)-C(24)-H(24C) 109.5 H(23B)-C(23)-H(23C) 109.5 H(24A)-C(24)-H(24C) 109.5 C(12)-C(13)-C(14) 109.7(3) H(24B)-C(24)-H(24C) 109.5 C(12)-C(13)-C(15) 108.5(3) C(4)-C(5)-C(6) 110.7(3) C(14)-C(13)-C(15) 109.7(3) 123 C(4)-C(5)-C(8) 111.0(3) C(12)-C(13)-C(16) 109.3(3) C(6)-C(5)-C(8) 108.8(3) C(14)-C(13)-C(16) 110.2(3) C(4)-C(5)-C(7) 107.8(3) C(15)-C(13)-C(16) 109.3(3) C(6)-C(5)-C(7) 109.5(3) C(13)-C(16)-H(16A) 109.5 C(8)-C(5)-C(7) 109.0(3) C(13)-C(16)-H(16B) 109.5 C(21)-C(22)-H(22A) 109.5 H(16A)-C(16)-H(16B) 109.5 C(21)-C(22)-H(22B) 109.5 C(13)-C(16)-H(16C) 109.5 H(22A)-C(22)-H(22B) 109.5 H(16A)-C(16)-H(16C) 109.5 C(21)-C(22)-H(22C) 109.5 H(16B)-C(16)-H(16C) 109.5 H(22A)-C(22)-H(22C) 109.5 C(5)-C(8)-H(8A) 109.5 H(22B)-C(22)-H(22C) 109.5 C(5)-C(8)-H(8B) 109.5 N(4)-C(9)-C(10) 109.1(3) H(8A)-C(8)-H(8B) 109.5 N(4)-C(9)-H(9) 125.5 C(5)-C(8)-H(8C) 109.5 C(10)-C(9)-H(9) 125.5 H(8A)-C(8)-H(8C) 109.5 N(5)-C(12)-C(10) 109.4(3) H(8B)-C(8)-H(8C) 109.5 N(5)-C(12)-C(13) 121.3(3) C(13)-C(14)-H(14A) 109.5 C(10)-C(12)-C(13) 129.4(3) C(13)-C(14)-H(14B) 109.5 C(9)-C(10)-C(12) 105.1(3) H(14A)-C(14)-H(14B) 109.5 C(9)-C(10)-C(11) 126.4(3) C(13)-C(14)-H(14C) 109.5 C(12)-C(10)-C(11) 128.4(4) H(14A)-C(14)-H(14C) 109.5 C(5)-C(7)-H(7A) 109.5 H(14B)-C(14)-H(14C) 109.5 C(5)-C(7)-H(7B) 109.5 N(6)-C(11)-C(10) 178.3(5) H(7A)-C(7)-H(7B) 109.5 C(5)-C(6)-H(6A) 109.5 C(5)-C(7)-H(7C) 109.5 C(5)-C(6)-H(6B) 109.5 H(7A)-C(7)-H(7C) 109.5 H(6A)-C(6)-H(6B) 109.5 H(7B)-C(7)-H(7C) 109.5 C(5)-C(6)-H(6C) 109.5 C(21)-C(23)-H(23A) 109.5 H(6A)-C(6)-H(6C) 109.5 H(6B)-C(6)-H(6C) 109.5 N(4)-B(1)-N(1) 111.5(2) C(13)-C(15)-H(15A) 109.5 N(4)-B(1)-N(7) 111.2(3) C(13)-C(15)-H(15B) 109.5 N(1)-B(1)-N(7) 105.6(3) H(15A)-C(15)-H(15B) 109.5 N(4)-B(1)-H(1C) 109.5 C(13)-C(15)-H(15C) 109.5 N(1)-B(1)-H(1C) 109.5 H(15A)-C(15)-H(15C) 109.5 N(7)-B(1)-H(1C) 109.5 H(15B)-C(15)-H(15C) 109.5 Mn(1)-O(1)-H(1B) 127(3) N(8)-C(20)-C(18) 109.5(2) Mn(1)-O(1)-H(2C) 125(3) 124 N(8)-C(20)-C(21) 122.2(3) H(1B)-O(1)-H(2C) 107(3) C(18)-C(20)-C(21) 128.4(3) Mn(1)-O(2)-H(2) 109.5 _____________________________________________________________________________________ Table A.26: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103)for [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ B(1) 4063(3) 3453(2) 11655(2) 21(1) C(1) 2747(3) 2321(2) 9515(2) 21(1) C(2) 2081(3) 2574(2) 8672(2) 20(1) C(3) 1387(3) 1821(2) 7553(2) 21(1) C(4) 2211(3) 3702(2) 9187(2) 22(1) C(5) 1655(3) 4428(2) 8703(2) 28(1) C(6) 1727(4) 4239(3) 7600(2) 33(1) C(7) 103(4) 4096(4) 8556(4) 65(1) C(8) 2586(5) 5691(3) 9466(3) 73(2) C(9) 1777(3) 3191(2) 12016(2) 23(1) C(10) 1421(3) 3771(2) 12799(2) 20(1) C(11) 40(3) 3473(2) 12812(2) 24(1) C(12) 2718(3) 4738(2) 13561(2) 20(1) C(13) 2966(3) 5641(2) 14626(2) 26(1) C(14) 1965(4) 6227(3) 14392(3) 42(1) C(15) 2613(3) 5054(2) 15363(2) 33(1) C(16) 4514(3) 6540(2) 15211(2) 33(1) C(17) 5415(3) 2184(2) 11854(2) 24(1) C(18) 5046(3) 1057(2) 11711(2) 24(1) C(19) 6001(3) 518(2) 11853(2) 28(1) C(20) 3538(3) 583(2) 11413(2) 22(1) C(21) 2535(3) -636(2) 11108(2) 29(1) C(22) 1035(3) -734(2) 10973(3) 35(1) C(23) 2443(4) -1405(3) 10028(3) 44(1) 125 C(24) 3125(4) -1016(3) 12008(3) 44(1) C(25) 3236(3) 333(2) 5039(3) 34(1) C(26) 2393(3) 750(2) 4302(2) 31(1) C(27) 648(3) 1594(2) 4051(2) 30(1) C(28) -481(3) 1770(2) 4440(2) 30(1) C(29) -2381(3) 784(2) 4944(2) 31(1) C(101) 4912(4) 3191(3) 7594(3) 45(1) N(1) 3220(2) 3223(2) 10452(2) 21(1) N(2) 2905(2) 4080(2) 10259(2) 24(1) N(3) 798(2) 1202(2) 6644(2) 24(1) N(4) 3171(2) 3762(2) 12285(2) 20(1) N(5) 3769(2) 4729(2) 13240(2) 21(1) N(6) -1081(3) 3239(2) 12824(2) 34(1) N(7) 4217(2) 2355(2) 11659(2) 20(1) N(8) 3047(2) 1371(2) 11380(2) 22(1) N(9) 6742(3) 63(2) 11970(2) 38(1) N(10) 1488(2) 1181(2) 4754(2) 23(1) N(11) -1389(3) 678(2) 4415(2) 27(1) 5000 19(1) 6635(2) 35(1) Ni(1) O(101) 0 0 4034(2) 3220(2) ________________________________________________________________________________ Table A.27: Anisotropic displacement parameters (Å2x 103)for [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2 U11 + ... + 2 h k a* b* U12 ]. ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ B(1) 20(2) 20(1) 17(2) 5(1) 5(1) 6(1) C(1) 24(2) 16(1) 21(2) 4(1) 10(1) 9(1) C(2) 22(2) 20(1) 17(1) 6(1) 7(1) 9(1) C(3) 22(2) 19(1) 24(2) 9(1) 10(1) 11(1) C(4) 25(2) 21(1) 20(2) 7(1) 10(1) 10(1) C(5) 41(2) 25(1) 20(2) 9(1) 10(1) 19(1) C(6) 43(2) 34(2) 29(2) 18(1) 14(2) 20(2) 126 C(7) 73(3) 118(4) 75(3) 74(3) 54(2) 76(3) C(8) 130(4) 26(2) 35(2) 6(2) -2(2) 36(2) C(9) 23(2) 18(1) 20(2) 3(1) 4(1) 6(1) C(10) 21(2) 19(1) 19(1) 7(1) 7(1) 8(1) C(11) 29(2) 22(1) 20(2) 7(1) 9(1) 12(1) C(12) 23(2) 22(1) 20(1) 11(1) 10(1) 12(1) C(13) 29(2) 24(1) 23(2) 5(1) 12(1) 12(1) C(14) 51(2) 34(2) 38(2) 7(2) 14(2) 28(2) C(15) 37(2) 34(2) 22(2) 7(1) 12(1) 10(1) C(16) 36(2) 27(2) 26(2) 2(1) 14(1) 9(1) C(17) 23(2) 28(1) 17(2) 6(1) 7(1) 12(1) C(18) 26(2) 30(1) 18(2) 8(1) 8(1) 17(1) C(19) 26(2) 28(1) 24(2) 7(1) 6(1) 10(1) C(20) 25(2) 26(1) 15(1) 7(1) 8(1) 13(1) C(21) 33(2) 29(1) 30(2) 14(1) 14(1) 17(1) C(22) 31(2) 27(2) 45(2) 15(2) 17(2) 8(1) C(23) 50(2) 26(2) 49(2) 6(2) 26(2) 11(2) C(24) 45(2) 51(2) 59(2) 38(2) 28(2) 28(2) C(25) 27(2) 37(2) 35(2) 8(1) 11(1) 16(1) C(26) 29(2) 29(2) 30(2) 9(1) 13(1) 8(1) C(27) 40(2) 23(1) 25(2) 13(1) 9(1) 13(1) C(28) 41(2) 21(1) 26(2) 10(1) 9(1) 17(1) C(29) 33(2) 29(2) 30(2) 7(1) 11(1) 20(1) C(101) 46(2) 39(2) 35(2) 15(2) 6(2) 11(2) N(1) 26(1) 21(1) 17(1) 7(1) 9(1) 11(1) N(2) 31(1) 19(1) 20(1) 6(1) 9(1) 12(1) N(3) 28(1) 22(1) 18(1) 6(1) 5(1) 12(1) N(4) 22(1) 18(1) 14(1) 3(1) 4(1) 8(1) N(5) 23(1) 18(1) 16(1) 3(1) 5(1) 8(1) N(6) 28(2) 38(1) 36(2) 14(1) 14(1) 13(1) N(7) 19(1) 22(1) 17(1) 5(1) 6(1) 9(1) N(8) 21(1) 22(1) 22(1) 8(1) 9(1) 9(1) N(9) 34(2) 37(1) 41(2) 12(1) 10(1) 24(1) N(10) 25(1) 19(1) 21(1) 7(1) 6(1) 10(1) N(11) 33(1) 21(1) 18(1) 3(1) 4(1) 13(1) 127 Ni(1) 23(1) 16(1) 15(1) 4(1) 5(1) 10(1) O(101) 32(1) 28(1) 31(1) 9(1) 9(1) 3(1) _________________________________________________________________________________ Table A.28: Bond lengths [Å] for [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH. _________________________________________________________________________________ B(1)-N(7) 1.540(3) C(6)-H(6A) 0.9600 B(1)-N(4) 1.547(4) C(6)-H(6B) 0.9600 B(1)-N(1) 1.552(4) C(6)-H(6C) 0.9600 B(1)-H(1A) 0.9800 C(7)-H(7A) 0.9600 C(1)-N(1) 1.334(3) C(7)-H(7B) 0.9600 C(1)-C(2) 1.385(4) C(7)-H(7C) 0.9600 C(1)-H(1) 0.9300 C(8)-H(8A) 0.9600 C(2)-C(3) 1.413(4) C(8)-H(8B) 0.9600 C(2)-C(4) 1.425(3) C(8)-H(8C) 0.9600 C(3)-N(3) 1.149(3) C(9)-N(4) 1.331(3) C(4)-N(2) 1.325(3) C(9)-C(10) 1.377(4) C(4)-C(5) 1.508(3) C(9)-H(9) 0.9300 C(5)-C(7) 1.519(5) C(10)-C(12) 1.417(4) C(5)-C(6) 1.523(4) C(10)-C(11) 1.419(4) C(5)-C(8) 1.528(4) C(11)-N(6) 1.152(4) C(12)-N(5) 1.332(3) C(25)-C(26) 1.517(4) C(12)-C(13) 1.519(4) C(25)-C(29)#1 1.518(4) C(13)-C(16) 1.520(4) C(25)-H(25A) 0.9700 C(13)-C(14) 1.530(4) C(25)-H(25B) 0.9700 C(13)-C(15) 1.535(4) C(26)-N(10) 1.472(4) C(14)-H(14A) 0.9600 C(26)-H(26A) 0.9700 C(14)-H(14B) 0.9600 C(26)-H(26B) 0.9700 C(14)-H(14C) 0.9600 C(27)-N(10) 1.483(3) C(15)-H(15A) 0.9600 C(27)-C(28) 1.518(4) C(15)-H(15B) 0.9600 C(27)-H(27A) 0.9700 C(15)-H(15C) 0.9600 C(27)-H(27B) 0.9700 C(16)-H(16A) 0.9600 C(28)-N(11) 1.481(3) C(16)-H(16B) 0.9600 C(28)-H(28A) 0.9700 128 C(16)-H(16C) 0.9600 C(28)-H(28B) 0.9700 C(17)-N(7) 1.337(3) C(29)-N(11) 1.480(4) C(17)-C(18) 1.384(4) C(29)-C(25)#1 1.518(4) C(17)-H(17) 0.9300 C(29)-H(29A) 0.9700 C(18)-C(20) 1.422(4) C(29)-H(29B) 0.9700 C(18)-C(19) 1.426(4) C(101)-O(101) 1.420(4) C(19)-N(9) 1.146(3) C(101)-H(10A) 0.9600 C(20)-N(8) 1.326(3) C(101)-H(10B) 0.9600 C(20)-C(21) 1.514(4) C(101)-H(10C) 0.9600 C(21)-C(22) 1.523(4) N(1)-N(2) 1.372(3) C(21)-C(23) 1.525(4) N(3)-Ni(1) 2.131(2) C(21)-C(24) 1.537(4) N(4)-N(5) 1.375(3) C(22)-H(22A) 0.9600 N(7)-N(8) 1.374(3) C(22)-H(22B) 0.9600 N(10)-Ni(1) 2.070(2) C(22)-H(22C) 0.9600 N(10)-H(10) 0.9100 C(23)-H(23A) 0.9600 N(11)-Ni(1) 2.068(2) C(23)-H(23B) 0.9600 N(11)-H(11) 0.9100 C(23)-H(23C) 0.9600 Ni(1)-N(11)#1 2.068(2) C(24)-H(24A) 0.9600 Ni(1)-N(10)#1 2.070(2) C(24)-H(24B) 0.9600 Ni(1)-N(3)#1 2.131(2) C(24)-H(24C) 0.9600 O(101)-H(10D) 0.85(3) _________________________________________________________________________________ Table A.29: Bond angles [°] for [(Tpt-Bu,4CN)2Ni(cyclam)]·MeOH. _________________________________________________________________________________ N(7)-B(1)-N(4) 111.8(2) H(7B)-C(7)-H(7C) 109.5 N(7)-B(1)-N(1) 107.7(2) C(5)-C(8)-H(8A) 109.5 N(4)-B(1)-N(1) 106.7(2) C(5)-C(8)-H(8B) 109.5 N(7)-B(1)-H(1A) 110.2 H(8A)-C(8)-H(8B) 109.5 N(4)-B(1)-H(1A) 110.2 C(5)-C(8)-H(8C) 109.5 N(1)-B(1)-H(1A) 110.2 H(8A)-C(8)-H(8C) 109.5 N(1)-C(1)-C(2) 107.7(2) H(8B)-C(8)-H(8C) 109.5 N(1)-C(1)-H(1) 126.1 N(4)-C(9)-C(10) 108.5(2) C(2)-C(1)-H(1) 126.1 N(4)-C(9)-H(9) 125.7 C(1)-C(2)-C(3) 125.3(2) C(10)-C(9)-H(9) 125.7 C(1)-C(2)-C(4) 105.3(2) C(9)-C(10)-C(12) 105.0(2) 129 C(3)-C(2)-C(4) 129.3(2) C(9)-C(10)-C(11) 126.9(2) N(3)-C(3)-C(2) 178.7(3) C(12)-C(10)-C(11) 128.0(2) N(2)-C(4)-C(2) 109.1(2) N(6)-C(11)-C(10) 179.5(3) N(2)-C(4)-C(5) 120.5(2) N(5)-C(12)-C(10) 109.6(2) C(2)-C(4)-C(5) 130.3(2 N(5)-C(12)-C(13) 122.8(2) C(4)-C(5)-C(7) 108.2(2) C(10)-C(12)-C(13) 127.6(2) C(4)-C(5)-C(6) 111.0(2) C(12)-C(13)-C(16) 111.3(2) C(7)-C(5)-C(6) 109.4(3) C(12)-C(13)-C(14) 109.6(2) C(4)-C(5)-C(8) 109.4(2) C(16)-C(13)-C(14) 109.0(2) C(7)-C(5)-C(8) 111.0(3) C(12)-C(13)-C(15) 108.8(2) C(6)-C(5)-C(8) 107.9(3) C(16)-C(13)-C(15) 109.5(2) C(5)-C(6)-H(6A) 109.5 C(14)-C(13)-C(15) 108.6(2) C(5)-C(6)-H(6B) 109.5 C(13)-C(14)-H(14A) 109.5 H(6A)-C(6)-H(6B) 109.5 C(13)-C(14)-H(14B) 109.5 C(5)-C(6)-H(6C) 109.5 H(14A)-C(14)-H(14B) 109.5 H(6A)-C(6)-H(6C) 109.5 C(13)-C(14)-H(14C) 109.5 H(6B)-C(6)-H(6C) 109.5 H(14A)-C(14)-H(14C) 109.5 C(5)-C(7)-H(7A) 109.5 H(14B)-C(14)-H(14C) 109.5 C(5)-C(7)-H(7B) 109.5 C(13)-C(15)-H(15A) 109.5 H(7A)-C(7)-H(7B) 109.5 C(13)-C(15)-H(15B) 109.5 C(5)-C(7)-H(7C) 109.5 H(15A)-C(15)-H(15B) 109.5 H(7A)-C(7)-H(7C) 109.5 C(13)-C(15)-H(15C) 109.5 H(15A)-C(15)-H(15C) 109.5 H(23B)-C(23)-H(23C) 109.5 H(15B)-C(15)-H(15C) 109.5 C(21)-C(24)-H(24A) 109.5 C(13)-C(16)-H(16A) 109.5 C(21)-C(24)-H(24B) 109.5 C(13)-C(16)-H(16B) 109.5 H(24A)-C(24)-H(24B) 109.5 H(16A)-C(16)-H(16B) 109.5 H(24A)-C(24)-H(24B) 109.5 C(13)-C(16)-H(16C) 109.5 H(24A)-C(24)-H(24B) 109.5 H(16A)-C(16)-H(16C) 109.5 H(24A)-C(24)-H(24B) 109.5 H(16B)-C(16)-H(16C) 109.5 C(21)-C(24)-H(24C) 109.5 N(7)-C(17)-C(18) 107.7(2) H(24A)-C(24)-H(24C) 109.5 N(7)-C(17)-H(17) 126.1 H(24B)-C(24)-H(24C) 109.5 C(18)-C(17)-H(17) 126.1 C(26)-C(25)-C(29)#1 116.3(2) C(17)-C(18)-C(20) 105.0(2) C(26)-C(25)-H(25A) 108.2 C(17)-C(18)-C(19) 126.4(3) C(29)#1-C(25)-H(25A) 108.2 130 C(20)-C(18)-C(19) 128.7(2) C(26)-C(25)-H(25B) 108.2 N(9)-C(19)-C(18) 178.2(3) C(29)#1-C(25)-H(25B) 108.2 N(8)-C(20)-C(18) 110.1(2) H(25A)-C(25)-H(25B) 107.4 N(8)-C(20)-C(21) 121.3(2) N(10)-C(26)-C(25) 111.5(2) C(18)-C(20)-C(21) 128.6(2) N(10)-C(26)-H(26A) 109.3 C(20)-C(21)-C(22) 110.7(2) C(25)-C(26)-H(26A) 109.3 C(20)-C(21)-C(23) 108.7(2) N(10)-C(26)-H(26B) 109.3 C(22)-C(21)-C(23) 108.9(3) C(25)-C(26)-H(26B) 109.3 C(20)-C(21)-C(24) 109.4(2) H(26A)-C(26)-H(26B) 108.0 C(22)-C(21)-C(24) 109.2(2) N(10)-C(27)-C(28) 108.9(2) C(23)-C(21)-C(24) 109.9(3) N(10)-C(27)-H(27A) 109.9 C(21)-C(22)-H(22A) 109.5 C(28)-C(27)-H(27A) 109.9 C(21)-C(22)-H(22B) 109.5 N(10)-C(27)-H(27B) 109.9 H(22A)-C(22)-H(22B) 109.5 C(28)-C(27)-H(27B) 109.9 C(21)-C(22)-H(22C) 109.5 H(27A)-C(27)-H(27B) 108.3 H(22A)-C(22)-H(22C) 109.5 N(11)-C(28)-C(27) 108.5(2) H(22B)-C(22)-H(22C) 109.5 N(11)-C(28)-H(28A) 110.0 C(21)-C(23)-H(23A) 109.5 C(27)-C(28)-H(28A) 110.0 C(21)-C(23)-H(23B) 109.5 N(11)-C(28)-H(28B) 110.0 H(23A)-C(23)-H(23B) 109.5 C(27)-C(28)-H(28B) 110.0 C(21)-C(23)-H(23C) 109.5 H(28A)-C(28)-H(28B) 108.4 H(23A)-C(23)-H(23C) 109.5 N(11)-C(29)-C(25)#1 112.4(2) N(11)-C(29)-H(29A) 109.1 C(27)-N(10)-Ni(1) 105.62(17) C(25)#1-C(29)-H(29A) 109.1 C(26)-N(10)-H(10) 107.8 N(11)-C(29)-H(29B) 109.1 C(27)-N(10)-H(10) 107.8 C(25)#1-C(29)-H(29B) 109.1 Ni(1)-N(10)-H(10) 107.8 H(29A)-C(29)-H(29B) 107.9 C(29)-N(11)-C(28) 113.6(2) O(101)-C(101)-H(10A) 109.5 C(29)-N(11)-Ni(1) 116.61(17) O(101)-C(101)-H(10B) 109.5 C(28)-N(11)-Ni(1) 106.03(17) H(10A)-C(101)-H(10B) 109.5 C(29)-N(11)-H(11) 106.7 O(101)-C(101)-H(10C) 109.5 C(28)-N(11)-H(11) 106.7 H(10A)-C(101)-H(10C) 109.5 Ni(1)-N(11)-H(11) 106.7 H(10B)-C(101)-H(10C) 109.5 N(11)#1-Ni(1)-N(11) 180.00(14) C(1)-N(1)-N(2) 110.7(2) N(11)#1-Ni(1)-N(10) 94.48(9) C(1)-N(1)-B(1) 131.5(2) N(11)-Ni(1)-N(10) 85.52(9) 131 N(2)-N(1)-B(1) 117.7(2) N(11)#1-Ni(1)-N(10)#1 85.52(9) C(4)-N(2)-N(1) 107.2(2) N(11)-Ni(1)-N(10)#1 94.48(9) C(3)-N(3)-Ni(1) 170.9(2) N(10)-Ni(1)-N(10)#1 180.00(11) C(9)-N(4)-N(5) 110.4(2) N(11)#1-Ni(1)-N(3) 87.12(8) C(9)-N(4)-B(1) 127.7(2) N(11)-Ni(1)-N(3) 92.88(8) N(5)-N(4)-B(1) 121.9(2) N(10)-Ni(1)-N(3) 89.15(9) C(12)-N(5)-N(4) 106.5(2) N(10)#1-Ni(1)-N(3) 90.85(9) C(17)-N(7)-N(8) 111.1(2) N(11)#1-Ni(1)-N(3)#1 92.88(8) C(17)-N(7)-B(1) 127.2(2) N(11)-Ni(1)-N(3)#1 87.12(8) N(8)-N(7)-B(1) 121.6(2) N(10)-Ni(1)-N(3)#1 90.85(9) C(20)-N(8)-N(7) 106.2(2) N(10)#1-Ni(1)-N(3)#1 89.15(9) C(26)-N(10)-C(27) 112.8(2) N(3)-Ni(1)-N(3)#1 180.0 C(26)-N(10)-Ni(1) 114.81(16) C(101)-O(101)-H(10D) 103(2) _________________________________________________________________________________ Table A.30: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103)for Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)·3C7H8. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ B(1) 2840(7) 565(8) 3287(5) 41(3) B(2) 2381(7) 4560(8) 1109(5) 41(3) C(1) 2612(7) 5507(7) 1959(5) 51(3) C(2) 2796(7) 5234(7) 2642(5) 50(3) C(3) 2808(9) 5942(8) 3011(5) 63(3) C(4) 2879(6) 4121(7) 2869(4) 37(2) C(5) 3076(6) 3416(7) 3560(4) 38(2) C(6) 3935(8) 3456(8) 3857(5) 62(3) C(7) 4161(8) 2786(10) 4502(6) 73(3) C(8) 3514(11) 2153(9) 4830(5) 77(4) C(9) 2626(9) 2132(8) 4556(5) 62(3) C(10) 2390(8) 2781(7) 3895(4) 52(3) 132 C(11) 3767(6) 4260(7) 276(4) 45(2) C(12) 4631(6) 3506(7) 275(4) 41(2) C(13) 5283(7) 3496(7) -288(4) 50(3) C(14) 4668(6) 2728(6) 906(4) 34(2) C(15) 5472(6) 1816(6) 1154(4) 34(2) C(16) 6490(6) 1919(7) 995(4) 41(2) C(17) 7289(6) 1083(8) 1228(4) 50(3) C(18) 7089(6) 133(7) 1627(4) 46(2) C(19) 6121(6) -19(7) 1806(4) 41(2) C(20) 5312(6) 818(6) 1576(4) 35(2) C(21) 647(7) 4260(8) 821(5) 56(3) C(22) 102(7) 3452(8) 1028(5) 59(3) C(23) -874(8) 3443(9) 775(5) 78(4) C(24) 679(6) 2628(7) 1545(4) 42(2) C(25) 395(6) 1603(7) 1931(4) 41(2) C(26) 214(6) 912(8) 1590(5) 55(3) C(27) -157(7) -13(8) 1931(6) 60(3) C(28) -341(8) -226(9) 2602(7) 70(3) C(29) -144(7) 425(9) 2941(5) 62(3) C(30) 220(6) 1339(8) 2611(5) 55(3) C(31) 4697(8) 252(7) 3740(4) 49(3) C(32) 5502(7) 748(7) 3542(5) 50(3) C(33) 6455(11) 449(9) 3860(6) 86(4) C(34) 5191(6) 1613(6) 2971(4) 36(2) C(35) 5782(6) 2387(7) 2583(4) 39(2) C(36) 6822(7) 2139(8) 2539(4) 52(3) C(37) 7373(7) 2887(9) 2184(5) 68(3) C(38) 6907(7) 3904(9) 1869(5) 68(3) C(39) 5878(7) 4183(7) 1903(4) 53(3) C(40) 5304(6) 3435(6) 2252(4) 40(2) C(41) 2532(6) -742(7) 2634(4) 39(2) C(42) 2557(6) -687(7) 1971(5) 40(2) C(43) 2281(8) -1450(9) 1706(5) 59(3) C(44) 2801(6) 305(7) 1618(4) 36(2) C(45) 2972(6) 727(7) 887(4) 42(2) 133 C(46) 3489(6) -12(8) 570(5) 54(3) C(47) 3690(7) 355(10) -119(5) 63(3) C(48) 3372(8) 1382(10) -473(5) 65(3) C(49) 2872(7) 2099(8) -165(5) 56(3) C(50) 2652(7) 1777(7) 514(4) 46(2) C(51) 1680(7) -67(8) 4272(4) 52(3) C(52) 1719(7) -1002(8) 4794(4) 53(3) C(53) 980(8) -1245(7) 5294(5) 67(3) C(54) 2628(6) -1694(7) 4703(4) 45(2) C(55) 3016(7) -2770(7) 5135(5) 51(3) C(56) 2974(7) -3015(8) 5822(5) 59(3) C(57) 3355(8) -4012(9) 6239(5) 70(3) C(58) 3752(9) -4791(9) 5965(6) 78(4) C(59) 3782(9) -4575(8) 5279(7) 82(4) C(60) 3440(8) -3553(8) 4860(5) 69(3) C(101) 2347(16) 2384(16) 6563(10) 212(9) C(102) 3184(5) 2583(6) 6904(4) 103(4) C(103) 4167(6) 2288(6) 6694(3) 89(4) C(104) 4992(5) 2410(6) 7017(4) 80(3) C(105) 4834(6) 2828(6) 7549(4) 113(5) C(106) 3851(7) 3123(6) 7758(3) 130(5) C(107) 3026(5) 3001(6) 7435(4) 84(4) C(108) 9053(12) 600(20) 9961(8) 102(5) C(109) 9860(20) 1084(13) 9768(7) 113(5) C(110) 9660(50) 2270(30) 9570(20) 350(50) C(115) 728(9) 5162(9) 7739(6) 50 C(114) 486(9) 5548(8) 7063(6) 50 C(113) 26(9) 4954(9) 6770(4) 50 C(112) -192(8) 3974(9) 7153(6) 50 C(117) 51(10) 3588(8) 7829(5) 50 C(116) 510(10) 4182(10) 8122(5) 50 C(111) 10833(16) 440(20) 9818(7) C(118) -928(19) 4330(20) 5287(12) 50 C(119) 130(20) 3750(20) 5344(13) 50 C(120) 861(15) 4420(15) 4992(9) 50 134 112(6) Co(1) 3045(1) 2313(1) 2137(1) 35(1) N(1) 2593(5) 4635(5) 1798(3) 40(2) N(2) 2756(5) 3758(5) 2361(3) 36(2) N(3) 2803(8) 6547(7) 3287(5) 87(3) N(4) 3321(5) 3952(5) 861(3) 34(2) N(5) 3835(4) 2991(5) 1252(3) 32(2) N(6) 5798(7) 3512(7) -736(4) 75(3) N(7) 1499(5) 3948(6) 1183(3) 43(2) N(8) 1536(5) 2959(6) 1636(3) 41(2) N(9) -1650(8) 3481(10) 569(5) 118(4) N(10) 3923(5) 759(5) 3318(3) 37(2) N(11) 4224(5) 1601(5) 2841(3) 36(2) N(12) 7297(9) 139(8) 4098(6) 114(4) N(13) 2746(5) 151(5) 2678(3) 36(2) N(14) 2895(5) 834(5) 2051(3) 35(2) N(15) 2025(8) -2032(7) 1471(5) 77(3) N(16) 2527(5) -190(6) 3902(3) 47(2) N(17) 3106(5) -1192(5) 4166(3) 48(2) N(18) 386(7) -1481(7) 5707(5) 91(3) ________________________________________________________________________________ Table A.31: Anisotropic displacement parameters (Å2x 103) Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)·3C7H8. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. _________________________________________________________________________________ U11 U22 U33 U23 U13 U12 _________________________________________________________________________________ B(1) 32(6) 34(6) 45(7) 0(5) 5(5) 5(5) B(2) 32(6) 49(7) 35(6) -7(5) -4(5) 1(5) C(1) 60(6) 33(6) 51(7) -2(5) 13(5) -8(5) C(2) 66(7) 38(6) 47(6) -12(5) 10(5) -19(5) C(3) 110(9) 33(6) 45(6) -3(5) 9(6) -26(6) C(4) 36(5) 39(6) 32(5) -5(4) 3(4) -12(4) C(5) 28(5) 44(6) 44(6) -15(5) 3(4) -9(4) 135 C(6) 58(7) 83(8) 48(7) -21(6) -2(5) -17(6) C(7) 49(7) 91(9) 75(9) -20(7) -17(6) -6(7) C(8) 103(10) 75(9) 46(7) -17(6) -25(7) 10(8) C(9) 94(9) 57(7) 42(6) -13(5) 7(6) -35(6) C(10) 69(7) 48(6) 40(6) -8(5) -1(5) -16(5) C(11) 36(5) 45(6) 42(6) 0(4) 9(4) -7(4) C(12) 31(5) 55(6) 35(5) -8(5) 6(4) -16(4) C(13) 48(6) 57(6) 37(6) -1(5) 8(5) -18(5) C(14) 27(5) 38(5) 36(5) -10(4) 6(4) -10(4) C(15) 27(5) 39(5) 37(5) -12(4) 1(4) -6(4) C(16) 29(5) 42(5) 44(5) -3(4) 1(4) -9(4) C(17) 19(5) 69(7) 57(6) -16(6) 1(4) -5(5) C(18) 31(5) 46(6) 52(6) -7(5) 2(4) -1(4) C(19) 34(5) 34(5) 53(6) -12(4) 9(4) -5(4) C(20) 25(5) 38(5) 44(5) -16(4) 6(4) -8(4) C(21) 33(6) 69(7) 52(6) 5(5) 5(5) -15(5) C(22) 39(6) 73(8) 47(6) 7(6) -3(5) -12(6) C(23) 43(7) 106(10) 50(7) 39(6) -11(6) -31(7) C(24) 29(5) 61(7) 34(5) -7(5) 7(4) -12(5) C(25) 20(5) 50(6) 43(6) -1(5) -7(4) -4(4) C(26) 35(5) 76(8) 57(7) -24(6) 5(5) -14(5) C(27) 33(6) 53(7) 96(9) -24(6) -1(6) -11(5) C(28) 49(7) 60(8) 95(10) -7(7) 2(7) -25(6) C(29) 59(7) 67(8) 49(6) 11(6) 3(5) -30(6) C(30) 41(6) 82(8) 41(6) -16(6) 4(5) -16(5) C(31) 67(7) 33(5) 37(6) 5(4) -20(5) -4(5) C(32) 50(6) 34(6) 62(7) -1(5) -22(5) -12(5) C(33) 96(10) 58(8) 93(9) 16(7) -36(8) -41(8) C(34) 39(5) 33(5) 34(5) -9(4) -7(4) -6(4) C(35) 37(5) 37(5) 42(5) -10(4) -6(4) -7(4) C(36) 40(6) 54(6) 57(6) -11(5) -11(5) -2(5) C(37) 33(6) 81(9) 84(8) -14(7) 10(6) -18(6) C(38) 39(6) 76(8) 88(8) -20(7) 4(6) -19(6) C(39) 48(6) 48(6) 57(6) -2(5) -6(5) -14(5) C(40) 31(5) 38(5) 46(5) -4(4) -4(4) -11(4) 136 C(41) 37(5) 31(5) 44(6) -6(4) -2(4) -3(4) C(42) 34(5) 37(6) 57(6) -22(5) -2(4) -12(4) C(43) 55(7) 48(7) 62(7) -4(6) -6(5) 0(6) C(44) 26(5) 39(6) 45(6) -17(5) -1(4) -5(4) C(45) 34(5) 54(6) 41(6) -17(5) 5(4) -14(5) C(46) 39(6) 76(7) 49(6) -24(5) 4(5) -5(5) C(47) 49(6) 102(10) 51(7) -42(7) 11(5) -15(6) C(48) 59(7) 103(10) 39(6) -22(7) 14(5) -35(7) C(49) 53(6) 63(7) 57(7) -14(6) -4(5) -24(5) C(50) 49(6) 53(6) 36(6) -12(5) 2(5) -16(5) C(51) 41(6) 60(7) 42(6) -5(5) 7(5) -1(5) C(52) 52(6) 61(7) 33(5) 0(5) 14(5) -5(5) C(53) 60(7) 49(6) 63(7) 7(5) 17(6) 10(5) C(54) 41(5) 45(6) 39(5) -3(5) 12(4) -4(5) C(55) 46(6) 43(6) 49(6) 3(5) 16(5) -5(5) C(56) 52(6) 57(7) 62(7) -10(6) 16(5) -14(5) C(57) 61(7) 75(8) 50(7) 10(6) 8(6) -9(6) C(58) 77(8) 53(8) 82(9) 5(7) 4(7) -1(6) C(59) 85(9) 43(7) 105(10) -10(7) 19(8) -7(6) C(60) 75(8) 47(7) 70(7) -5(6) 7(6) -2(6) C(108) 59(10) 169(19) 79(11) -46(13) -2(8) -5(12) C(109) 153(17) 120(14) 69(10) -33(9) -47(12) -15(16) C(110) 650(120) 130(40) 310(60) -120(40) -320(70) 20(50) C(111) 105(17) 175(18) 57(9) 1(11) -4(8) -86(15) Co(1) 30(1) 33(1) 36(1) -4(1) 3(1) -3(1) N(1) 47(5) 26(4) 38(4) -1(4) 3(3) -1(3) N(2) 35(4) 38(4) 33(4) -5(4) 3(3) -10(3) N(3) 141(9) 59(7) 71(7) -22(5) 11(6) -40(6) N(4) 32(4) 25(4) 39(4) -1(3) 5(3) -8(3) N(5) 24(4) 29(4) 39(4) -5(3) -3(3) 1(3) N(6) 69(6) 94(7) 47(5) -5(5) 17(5) -9(5) N(7) 35(4) 41(5) 41(4) 0(4) 1(4) 0(4) N(8) 37(4) 45(5) 35(4) -10(4) 3(3) 1(4) N(9) 55(7) 171(11) 91(8) 38(7) -22(6) -55(7) N(10) 42(4) 32(4) 32(4) -3(3) -2(3) -3(4) 137 N(11) 36(4) 30(4) 32(4) 0(3) 4(3) 0(3) N(12) 112(10) 85(8) 128(10) 20(7) -60(8) -46(7) N(13) 31(4) 36(4) 35(4) -2(4) 8(3) -6(3) N(14) 26(4) 42(4) 32(4) -5(4) 5(3) -8(3) N(15) 92(7) 47(6) 90(7) -22(5) -28(6) 4(5) N(16) 40(4) 49(5) 42(5) -9(4) 12(4) 4(4) N(17) 47(5) 34(4) 47(5) 3(4) 10(4) 1(4) N(18) 66(6) 85(7) 84(7) 6(5) 39(6) 14(5) ______________________________________________________________________________ Table A.32: Bond lengths [Å] for Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)·3C7H8. _________________________________________________________________________________ B(1)-N(16) 1.473(11) C(14)-N(5) 1.349(9) B(1)-N(10) 1.531(11) C(14)-C(15) 1.448(10) B(1)-N(13) 1.568(12) C(15)-C(16) 1.409(10) B(1)-H(1) 0.9800 C(15)-C(20) 1.409(10) B(2)-N(4) 1.525(10) C(16)-C(17) 1.382(11) B(2)-N(1) 1.531(12) C(16)-H(44) 0.9300 B(2)-N(7) 1.539(12) C(17)-C(18) 1.360(11) B(2)-H(2) 0.9800 C(17)-H(45) 0.9300 C(1)-N(1) 1.322(10) C(18)-C(19) 1.366(11) C(1)-C(2) 1.393(12) C(18)-H(46) 0.9300 C(1)-H(30) 0.9300 C(19)-C(20) 1.389(10) C(2)-C(3) 1.406(13) C(19)-H(47) 0.9300 C(2)-C(4) 1.406(11) C(20)-H(48) 0.9300 C(3)-N(3) 1.135(11) C(21)-N(7) 1.333(10) C(4)-N(2) 1.334(10) C(21)-C(22) 1.369(12) C(4)-C(5) 1.476(11) C(21)-H(49) 0.9300 C(5)-C(6) 1.357(12) C(22)-C(24) 1.424(12) C(5)-C(10) 1.389(11) C(22)-C(23) 1.443(14) C(6)-C(7) 1.392(14) C(23)-N(9) 1.136(12) C(6)-H(39) 0.9300 C(24)-N(8) 1.352(10) C(7)-C(8) 1.343(15) C(24)-C(25) 1.476(12) 138 C(7)-H(38) 0.9300 C(25)-C(30) 1.382(11) C(8)-C(9) 1.360(14) C(25)-C(26) 1.398(12) C(8)-H(37) 0.9300 C(26)-C(27) 1.397(12) C(9)-C(10) 1.410(12) C(26)-H(54) 0.9300 C(9)-H(36) 0.9300 C(27)-C(28) 1.371(14) C(10)-H(35) 0.9300 C(27)-H(55) 0.9300 C(11)-N(4) 1.320(9) C(28)-C(29) 1.355(14) C(11)-C(12) 1.386(11) C(28)-H(56) 0.9300 C(11)-H(40) 0.9300 C(29)-C(30) 1.375(12) C(12)-C(14) 1.410(11) C(29)-H(57) 0.9300 C(12)-C(13) 1.436(11) C(30)-H(58) 0.9300 C(13)-N(6) 1.136(10) C(31)-N(10) 1.338(10) C(31)-C(32) 1.355(12) C(49)-H(28) 0.9300 C(31)-H(1A) 0.9300 C(50)-H(29) 0.9300 C(32)-C(33) 1.405(15) C(51)-N(16) 1.354(9) C(32)-C(34) 1.406(11) C(51)-C(52) 1.384(11) C(33)-N(12) 1.204(14) C(51)-H(10) 0.9300 C(34)-N(11) 1.343(10) C(52)-C(53) 1.413(12) C(34)-C(35) 1.447(11) C(52)-C(54) 1.428(11) C(35)-C(36) 1.375(11) C(53)-N(18) 1.157(11) C(35)-C(40) 1.406(10) C(54)-N(17) 1.326(9) C(36)-C(37) 1.368(12) C(54)-C(55) 1.463(11) C(36)-H(5) 0.9300 C(55)-C(60) 1.370(12) C(37)-C(38) 1.362(13) C(55)-C(56) 1.382(12) C(37)-H(6) 0.9300 C(56)-C(57) 1.373(13) C(38)-C(39) 1.363(12) C(56)-H(19) 0.9300 C(38)-H(7) 0.9300 C(57)-C(58) 1.355(14) C(39)-C(40) 1.385(11) C(57)-H(18) 0.9300 C(39)-H(8) 0.9300 C(58)-C(59) 1.384(15) C(40)-H(9) 0.9300 C(58)-H(17) 0.9300 C(41)-N(13) 1.316(10) C(59)-C(60) 1.388(13) C(41)-C(42) 1.375(11) C(59)-H(16) 0.9300 C(41)-H(20) 0.9300 C(60)-H(15) 0.9300 C(42)-C(44) 1.401(11) C(101)-C(102) 1.47(2) C(42)-C(43) 1.421(14) C(101)-H(14A) 0.9600 139 C(43)-N(15) 1.155(12) C(101)-H(14B) 0.9600 C(44)-N(14) 1.342(10) C(101)-H(14C) 0.9600 C(44)-C(45) 1.488(11) C(102)-C(103) 1.3900 C(45)-C(50) 1.383(11) C(102)-C(107) 1.3900 C(45)-C(46) 1.416(11) C(103)-C(104) 1.3900 C(46)-C(47) 1.409(12) C(103)-H(146) 0.9300 C(46)-H(25) 0.9300 C(104)-C(105) 1.3900 C(47)-C(48) 1.348(13) C(104)-H(143) 0.9300 C(47)-H(26) 0.9300 C(105)-C(106) 1.3900 C(48)-C(49) 1.374(13) C(105)-H(142) 0.9300 C(48)-H(27) 0.9300 C(106)-C(107) 1.3900 C(49)-C(50) 1.392(11) C(106)-H(141) 0.9300 C(107)-H(147) 0.9300 C(117)-H(132) 0.9300 C(108)-C(111)#1 1.31(2) C(116)-H(133) 0.9300 C(108)-C(109) 1.35(2) C(111)-C(108)#1 1.31(2) C(108)-H(106) 0.9300 C(111)-H(107) 0.9300 C(109)-C(111) 1.41(2) C(118)-C(119) 1.47(3) C(109)-C(110) 1.48(4) C(118)-C(120)#2 1.62(3) C(110)-H(12A) 1.0008 C(119)-C(120) 1.47(3) C(110)-H(12B) 0.9944 C(120)-C(118)#2 1.62(3) C(110)-H(12C) 1.0036 Co(1)-N(14) 2.098(7) C(115)-C(114) 1.3900 Co(1)-N(2) 2.097(7) C(115)-C(116) 1.3900 Co(1)-N(11) 2.102(7) C(115)-H(130) 0.9300 Co(1)-N(5) 2.127(6) C(114)-C(113) 1.3900 Co(1)-N(8) 2.225(7) C(114)-H(135) 0.9300 N(1)-N(2) 1.382(8) C(113)-C(112) 1.3900 N(4)-N(5) 1.373(8) C(113)-H(134) 0.9300 N(7)-N(8) 1.369(9) C(112)-C(117) 1.3900 N(10)-N(11) 1.370(8) C(112)-H(131) 0.9300 N(13)-N(14) 1.385(8) C(117)-C(116) 1.3900 N(16)-N(17) 1.382(8) ________________________________________________________________________________ 140 Table A.33: Bond angles [°] for Co(κ3-TpPh,4CN)(κ2-TpPh,4CN)·3C7H8. _________________________________________________________________________________ N(16)-B(1)-N(10) 113.6(7) N(1)-B(2)-H(2) 110.0 N(16)-B(1)-N(13) 109.6(8) N(7)-B(2)-H(2) 110.0 N(10)-B(1)-N(13) 109.2(6) N(1)-C(1)-C(2) 109.2(8) N(16)-B(1)-H(1) 108.1 N(1)-C(1)-H(30) 125.4 N(10)-B(1)-H(1) 108.1 C(2)-C(1)-H(30) 125.4 N(13)-B(1)-H(1) 108.1 C(1)-C(2)-C(3) 126.5(9) N(4)-B(2)-N(1) 109.8(7) C(1)-C(2)-C(4) 104.3(8) N(4)-B(2)-N(7) 109.3(7) C(3)-C(2)-C(4) 129.1(9) N(1)-B(2)-N(7) 107.7(7) N(3)-C(3)-C(2) 177.2(11) N(4)-B(2)-H(2) 110.0 N(2)-C(4)-C(2) 110.2(8) N(2)-C(4)-C(5) 122.9(8) C(15)-C(16)-H(44) 119.0 C(2)-C(4)-C(5) 126.9(8) C(18)-C(17)-C(16) 119.1(8) C(6)-C(5)-C(10) 122.1(9) C(18)-C(17)-H(45) 120.5 C(6)-C(5)-C(4) 116.7(8) C(16)-C(17)-H(45) 120.4 C(10)-C(5)-C(4) 121.2(8) C(17)-C(18)-C(19) 121.9(8) C(5)-C(6)-C(7) 118.5(10) C(17)-C(18)-H(46) 119.0 C(5)-C(6)-H(39) 120.8 C(19)-C(18)-H(46) 119.0 C(7)-C(6)-H(39) 120.8 C(18)-C(19)-C(20) 119.5(8) C(8)-C(7)-C(6) 120.1(11) C(18)-C(19)-H(47) 120.3 C(8)-C(7)-H(38) 119.9 C(20)-C(19)-H(47) 120.3 C(6)-C(7)-H(38) 119.9 C(19)-C(20)-C(15) 121.1(7) C(7)-C(8)-C(9) 122.6(11) C(19)-C(20)-H(48) 119.5 C(7)-C(8)-H(37) 118.7 C(15)-C(20)-H(48) 119.5 C(9)-C(8)-H(37) 118.7 N(7)-C(21)-C(22) 107.2(9) C(8)-C(9)-C(10) 118.6(10) N(7)-C(21)-H(49) 126.4 C(8)-C(9)-H(36) 120.7 C(22)-C(21)-H(49) 126.4 C(10)-C(9)-H(36) 120.7 C(21)-C(22)-C(24) 106.9(9) C(5)-C(10)-C(9) 118.0(10) C(21)-C(22)-C(23) 126.5(9) C(5)-C(10)-H(35) 121.0 C(24)-C(22)-C(23) 126.6(9) C(9)-C(10)-H(35) 121.0 N(9)-C(23)-C(22) 177.1(14) N(4)-C(11)-C(12) 107.8(7) N(8)-C(24)-C(22) 107.8(8) N(4)-C(11)-H(40) 126.1 N(8)-C(24)-C(25) 125.2(8) C(12)-C(11)-H(40) 126.1 C(22)-C(24)-C(25) 126.9(8) 141 C(11)-C(12)-C(14) 106.1(7) C(30)-C(25)-C(26) 118.6(9) C(11)-C(12)-C(13) 125.4(8) C(30)-C(25)-C(24) 122.3(9) C(14)-C(12)-C(13) 128.3(8) C(26)-C(25)-C(24) 118.8(8) N(6)-C(13)-C(12) 178.5(10) C(27)-C(26)-C(25) 120.3(9) N(5)-C(14)-C(12) 108.3(7) C(27)-C(26)-H(54) 119.9 N(5)-C(14)-C(15) 125.3(7) C(25)-C(26)-H(54) 119.9 C(12)-C(14)-C(15) 126.3(7) C(28)-C(27)-C(26) 118.8(10) C(16)-C(15)-C(20) 116.4(7) C(28)-C(27)-H(55) 120.6 C(16)-C(15)-C(14) 119.5(7) C(26)-C(27)-H(55) 120.6 C(20)-C(15)-C(14) 124.1(7) C(29)-C(28)-C(27) 121.4(10) C(17)-C(16)-C(15) 122.0(8) C(29)-C(28)-H(56) 119.3 C(17)-C(16)-H(44) 119.0 C(27)-C(28)-H(56) 119.3 C(28)-C(29)-C(30) 120.4(10) N(13)-C(41)-H(20) 126.1 C(28)-C(29)-H(57) 119.8 C(42)-C(41)-H(20) 126.1 C(30)-C(29)-H(57) 119.8 C(41)-C(42)-C(44) 106.3(8) C(29)-C(30)-C(25) 120.5(10) C(41)-C(42)-C(43) 125.6(9) C(29)-C(30)-H(58) 119.7 C(44)-C(42)-C(43) 127.8(9) C(25)-C(30)-H(58) 119.7 N(15)-C(43)-C(42) 176.8(11) N(10)-C(31)-C(32) 108.9(8) N(14)-C(44)-C(42) 109.0(7) N(10)-C(31)-H(1A) 125.5 N(14)-C(44)-C(45) 123.7(8) C(32)-C(31)-H(1A) 125.5 C(42)-C(44)-C(45) 127.4(8) C(31)-C(32)-C(33) 125.7(9) C(50)-C(45)-C(46) 119.7(8) C(31)-C(32)-C(34) 106.8(8) C(50)-C(45)-C(44) 123.7(7) C(33)-C(32)-C(34) 127.4(9) C(46)-C(45)-C(44) 116.6(8) N(12)-C(33)-C(32) 174.5(15) C(47)-C(46)-C(45) 118.7(9) N(11)-C(34)-C(32) 107.4(8) C(47)-C(46)-H(25) 120.6 N(11)-C(34)-C(35) 125.1(8) C(45)-C(46)-H(25) 120.6 C(32)-C(34)-C(35) 127.5(8) C(48)-C(47)-C(46) 120.6(9) C(36)-C(35)-C(40) 117.8(8) C(48)-C(47)-H(26) 119.7 C(36)-C(35)-C(34) 121.8(8) C(46)-C(47)-H(26) 119.7 C(40)-C(35)-C(34) 120.4(7) C(47)-C(48)-C(49) 120.6(9) C(37)-C(36)-C(35) 121.1(9) C(47)-C(48)-H(27) 119.7 C(37)-C(36)-H(5) 119.5 C(49)-C(48)-H(27) 119.7 C(35)-C(36)-H(5) 119.4 C(48)-C(49)-C(50) 121.0(10) C(38)-C(37)-C(36) 120.9(9) C(48)-C(49)-H(28) 119.5 142 C(38)-C(37)-H(6) 119.5 C(50)-C(49)-H(28) 119.5 C(36)-C(37)-H(6) 119.5 C(45)-C(50)-C(49) 119.3(8) C(37)-C(38)-C(39) 119.8(10) C(45)-C(50)-H(29) 120.3 C(37)-C(38)-H(7) 120.1 C(49)-C(50)-H(29) 120.3 C(39)-C(38)-H(7) 120.1 N(16)-C(51)-C(52) 107.1(8) C(38)-C(39)-C(40) 120.3(9) N(16)-C(51)-H(10) 126.4 C(38)-C(39)-H(8) 119.9 C(52)-C(51)-H(10) 126.4 C(40)-C(39)-H(8) 119.8 C(51)-C(52)-C(53) 127.0(8) C(39)-C(40)-C(35) 120.1(8) C(51)-C(52)-C(54) 106.2(7) C(39)-C(40)-H(9) 119.9 C(53)-C(52)-C(54) 126.8(8) C(35)-C(40)-H(9) 119.9 N(18)-C(53)-C(52) 177.7(11) N(13)-C(41)-C(42) 107.9(8) N(17)-C(54)-C(52) 109.0(7) N(17)-C(54)-C(55) 124.0(7) C(104)-C(105)-C(106) 120.0 C(52)-C(54)-C(55) 126.9(7) C(104)-C(105)-H(142) 120.0 C(60)-C(55)-C(56) 118.9(9) C(106)-C(105)-H(142) 120.0 C(60)-C(55)-C(54) 120.0(9) C(105)-C(106)-C(107) 120.0 C(56)-C(55)-C(54) 121.1(9) C(105)-C(106)-H(141) 120.0 C(57)-C(56)-C(55) 122.3(10) C(107)-C(106)-H(141) 120.0 C(57)-C(56)-H(19) 118.9 C(106)-C(107)-C(102) 120.0 C(55)-C(56)-H(19) 118.9 C(106)-C(107)-H(147) 120.0 C(58)-C(57)-C(56) 118.7(10) C(102)-C(107)-H(147) 120.0 C(58)-C(57)-H(18) 120.6 C(111)#1-C(108)-C(109) 120.9(15) C(56)-C(57)-H(18) 120.7 C(111)#1-C(108)-H(106) 119.5 C(57)-C(58)-C(59) 120.2(10) C(109)-C(108)-H(106) 119.6 C(57)-C(58)-H(17) 119.9 C(108)-C(109)-C(111) 118.1(15) C(59)-C(58)-H(17) 119.9 C(108)-C(109)-C(110) 116(4) C(58)-C(59)-C(60) 120.8(11) C(111)-C(109)-C(110) 125(4) C(58)-C(59)-H(16) 119.6 C(114)-C(115)-C(116) 120.0 C(60)-C(59)-H(16) 119.6 C(114)-C(115)-H(130) 120.1 C(55)-C(60)-C(59) 119.1(10) C(116)-C(115)-H(130) 119.9 C(55)-C(60)-H(15) 120.5 C(113)-C(114)-C(115) 120.0 C(59)-C(60)-H(15) 120.5 C(113)-C(114)-H(135) 120.0 C(102)-C(101)-H(14A) 109.5 C(115)-C(114)-H(135) 120.0 C(102)-C(101)-H(14B) 109.5 C(114)-C(113)-C(112) 120.0 H(14A)-C(101)-H(14B) 109.5 C(114)-C(113)-H(134) 120.0 143 C(102)-C(101)-H(14C) 109.5 C(112)-C(113)-H(134) 120.0 H(14A)-C(101)-H(14C) 109.5 C(117)-C(112)-C(113) 120.0 H(14B)-C(101)-H(14C) 109.5 C(117)-C(112)-H(131) 120.0 C(103)-C(102)-C(107) 120.0 C(113)-C(112)-H(131) 120.0 C(103)-C(102)-C(101) 117.3(10) C(112)-C(117)-C(116) 120.0 C(107)-C(102)-C(101) 122.6(10) C(112)-C(117)-H(132) 120.0 C(102)-C(103)-C(104) 120.0 C(116)-C(117)-H(132) 120.0 C(102)-C(103)-H(146) 120.0 C(117)-C(116)-C(115) 120.0 C(104)-C(103)-H(146) 120.0 C(117)-C(116)-H(133) 120.0 C(105)-C(104)-C(103) 120.0 C(115)-C(116)-H(133) 120.0 C(105)-C(104)-H(143) 120.0 C(108)#1-C(111)-C(109) 121.0(15) C(103)-C(104)-H(143) 120.0 C(108)#1-C(111)-H(107) 119.6 C(109)-C(111)-H(107) 119.5 C(14)-N(5)-Co(1) 139.5(5) C(119)-C(118)-C(120)#2 105.8(19) N(4)-N(5)-Co(1) 113.6(4) C(118)-C(119)-C(120) C(21)-N(7)-N(8) 111.6(7) C(119)-C(120)-C(118)#2 138.4(18) C(21)-N(7)-B(2) 126.7(8) N(14)-Co(1)-N(2) 162.3(2) N(8)-N(7)-B(2) 121.6(7) N(14)-Co(1)-N(11) 91.8(3) C(24)-N(8)-N(7) 106.4(7) N(2)-Co(1)-N(11) 94.6(3) C(24)-N(8)-Co(1) 140.0(6) N(14)-Co(1)-N(5) 103.2(2) N(7)-N(8)-Co(1) 112.4(5) N(2)-Co(1)-N(5) 91.5(2) C(31)-N(10)-N(11) 108.6(7) N(11)-Co(1)-N(5) 102.7(2) C(31)-N(10)-B(1) 132.5(7) N(14)-Co(1)-N(8) 87.1(3) N(11)-N(10)-B(1) 118.9(7) N(2)-Co(1)-N(8) 82.4(3) C(34)-N(11)-N(10) 108.2(6) N(11)-Co(1)-N(8) 164.5(2) C(34)-N(11)-Co(1) 143.3(6) N(5)-Co(1)-N(8) 92.6(2) N(10)-N(11)-Co(1) 108.3(5) C(1)-N(1)-N(2) 109.7(7) C(41)-N(13)-N(14) 110.9(7) C(1)-N(1)-B(2) 127.3(8) C(41)-N(13)-B(1) 132.5(7) N(2)-N(1)-B(2) 122.9(7) N(14)-N(13)-B(1) 116.6(7) C(4)-N(2)-N(1) 106.6(7) C(44)-N(14)-N(13) 105.9(7) C(4)-N(2)-Co(1) 138.9(6) C(44)-N(14)-Co(1) 144.4(6) N(1)-N(2)-Co(1) 112.7(5) N(13)-N(14)-Co(1) 109.4(5) C(11)-N(4)-N(5) 111.1(6) C(51)-N(16)-N(17) 110.3(7) C(11)-N(4)-B(2) 126.8(7) C(51)-N(16)-B(1) 128.7(7) N(5)-N(4)-B(2) 122.1(6) N(17)-N(16)-B(1) 120.9(6) 113(2) 144 C(14)-N(5)-N(4) 106.5(6) C(54)-N(17)-N(16) 107.4(6) _________________________________________________________________________________ Table A.34: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for [(TpPh,4CN)2Mn(MeOH)2(H2O)2]·H2O. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ B(1) 2602(8) 8023(10) 1785(8) 95(3) C(1) 1869(7) 9168(7) 801(7) 98(2) C(2) 3280(7) 8612(7) -374(6) 91(2) C(3) 2264(7) 9313(7) -13(7) 93(2) C(4) 4071(8) 8411(10) -1255(8) 102(3) C(9) -432(6) 5964(7) 1246(5) 77(2) C(10) 562(6) 5482(7) 1590(5) 79(2) C(11) 466(7) 4446(7) 1728(6) 92(2) C(12) -668(11) 4218(14) 2189(12) 189(7) C(13) 3170(9) 9439(11) 3667(9) 124(3) C(14) 2625(10) 10322(12) 4424(10) 130(3) C(20) 351(11) 11083(11) 4315(9) 127(3) C(21) -5127(11) 5820(11) 2427(9) 159(4) C(22) 196(6) 6917(7) 1221(6) 91(2) C(23) 1717(8) 9974(8) -451(7) 102(2) C(24) 1387(8) 10327(9) 3901(9) 106(3) C(26) 3089(13) 10858(13) 5353(12) 171(5) 5507(7) 924(5) 82(2) C(27) -1802(6) C(28) 1437(16) 2842(12) 1620(11) 165(4) C(29) 1483(11) 3770(9) 1406(8) 131(3) C(31) 4552(12) 7423(13) -1749(9) 149(4) C(32) 5360(20) 7320(18) -2502(13) 218(8) C(33) 4373(10) 9286(11) -1535(9) 129(3) C(34) 5039(16) 9214(15) -2287(12) 157(4) C(36) 383(16) 2515(13) 2063(12) 174(5) C(37) 5552(13) 8190(20) -2818(12) 186(7) 145 C(44) 275(15) 11646(12) 5338(13) 153(5) C(45) -610(30) 12259(19) 5716(15) 207(7) C(46) -1720(20) 12349(15) 5108(19) 206(7) C(47) -1690(17) 11668(14) 4045(18) 201(6) C(48) -731(10) 11026(9) 3711(9) 128(3) C(49) -668(16) 2282(12) 186(6) 0 84(1) Mn(1) 3138(14) -5000 5000 N(1) 2601(5) 8458(6) 958(5) 95(2) N(2) 3467(5) 8088(5) 225(5) 91(2) N(3) 1719(5) 6140(5) 1757(4) 83(2) N(4) 1481(5) 7027(5) 1533(5) 88(2) N(5) 2396(5) 9006(7) 2809(6) 101(2) N(6) 1270(6) 9554(7) 2970(6) 104(2) N(7) 1302(7) 10492(6) -846(6) 116(2) N(8) 3569(14) 11360(14) 6195(10) 241(7) N(9) -2875(5) 5159(5) 625(5) 93(2) O(1) -5703(5) 5553(5) 1515(5) 107(2) O(3) -4568(5) 6718(5) 206(5) 97(2) O(4) 7309(6) 8036(5) 1680(7) 158(3) ________________________________________________________________________________ Table A.35: Anisotropic displacement parameters (Å2x 103) Ph,4CN for )2Mn(MeOH)2(H2O)2]·H2O. The anisotropic displacement factor exponent takes the form: [(Tp 2 2 2π [ h a*2U11 + ... + 2 h k a* b* U12 ]. ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ B(1) 51(4) 141(9) 123(8) 83(8) 6(5) 22(5) C(1) 63(4) 130(7) 121(7) 69(5) 3(4) 34(4) C(2) 56(4) 119(6) 124(6) 79(5) -5(4) 4(4) C(3) 65(4) 128(6) 115(6) 77(5) 6(4) 25(4) C(4) 55(4) 150(8) 127(7) 83(7) 5(5) 13(5) C(9) 36(3) 114(6) 91(5) 51(4) 8(3) 19(3) C(10) 38(3) 125(6) 85(5) 53(4) 13(3) 23(3) C(11) 52(4) 126(6) 117(6) 70(5) -4(4) 11(4) 146 C(12) 101(8) 276(16) 295(16) 240(15) -52(9) -45(9) C(13) 63(5) 195(11) 134(8) 94(8) -13(6) 0(6) C(14) 100(7) 189(10) 109(8) 72(8) -18(6) 20(7) C(20) 110(8) 180(10) 105(8) 72(8) 22(6) 32(7) C(21) 93(7) 233(13) 137(9) 62(8) 0(6) 43(7) C(22) 46(3) 131(7) 124(6) 78(5) 9(4) 23(4) C(23) 77(5) 130(7) 123(6) 74(6) 0(4) 25(4) C(24) 70(5) 139(8) 118(7) 65(6) 3(5) 17(5) C(26) 129(9) 229(14) 138(11) 65(10) -33(8) 19(9) C(27) 45(3) 124(6) 100(5) 65(4) 15(3) 30(4) C(28) 139(11) 159(11) 197(12) 75(10) 1(9) 27(9) C(29) 119(8) 133(8) 174(10) 92(7) 17(7) 42(6) C(31) 141(9) 240(14) 120(8) 112(9) 63(7) 93(9) C(32) 250(20) 300(20) 167(13) 124(14) 68(13) 170(17) C(33) 99(7) 179(10) 129(8) 90(8) 17(6) -4(6) C(34) 133(10) 204(14) 159(12) 101(11) 17(9) 16(10) C(36) 110(9) 198(13) 238(15) 119(12) -9(10) 6(10) C(37) 115(9) 330(20) 156(13) 141(16) 35(8) 59(12) C(44) 133(10) 155(11) 169(15) 60(10) 33(9) 50(8) C(45) 250(20) 225(19) 170(15) 101(14) 37(16) 36(17) C(46) 250(20) 173(14) 198(17) 70(13) 100(16) 88(13) C(47) 188(15) 178(13) 260(20) 102(14) 57(14) 75(12) C(48) 95(6) 124(7) 160(9) 50(6) 2(6) 44(6) C(49) 128(11) 216(14) 251(16) 150(13) -33(11) -39(10) Mn(1) 33(1) 127(1) 129(1) 87(1) 12(1) 21(1) N(1) 45(3) 139(5) 135(5) 88(4) 10(3) 21(3) N(2) 49(3) 119(5) 132(5) 78(4) 2(3) 13(3) N(3) 45(3) 114(4) 106(4) 60(4) 10(3) 23(3) N(4) 36(3) 129(5) 127(5) 81(4) 7(3) 15(3) N(5) 50(3) 145(6) 139(6) 91(5) -12(4) 9(3) N(6) 71(4) 148(6) 113(6) 73(5) 4(4) 24(4) N(7) 102(5) 136(6) 133(6) 76(5) -6(4) 33(4) N(8) 182(11) 325(17) 140(9) 21(9) -51(8) 69(11) N(9) 40(3) 129(5) 140(5) 84(4) 9(3) 24(3) O(1) 54(3) 178(5) 138(5) 109(4) 25(3) 42(3) 147 Table A.36. Bond lengths [Å] for [(TpPh,4CN)2Mn(MeOH)2(H2O)2]·H2O. (1)-N(5) 1.531(12) C(21)-H(21B) 0.9800 B(1)-N(1) 1.534(11) C(21)-H(21C) 0.9800 B(1)-N(4) 1.538(11) C(22)-N(4) 1.332(8) B(1)-H(1A) 1.0000 C(22)-H(22) 0.9500 C(1)-N(1) 1.326(8) C(23)-N(7) 1.157(9) C(1)-C(3) 1.338(10) C(24)-N(6) 1.295(11) C(1)-H(1) 0.9500 C(26)-N(8) 1.182(15) C(2)-N(2) 1.339(8) C(27)-N(9) 1.126(8) C(2)-C(3) 1.394(10) C(28)-C(29) 1.367(15) C(2)-C(4) 1.461(12) C(28)-C(36) 1.370(18) C(3)-C(23) 1.415(10) C(28)-H(28) 0.9500 C(4)-C(31) 1.325(14) C(29)-H(29) 0.9500 C(4)-C(33) 1.374(13) C(31)-C(32) 1.35(2) C(9)-C(22) 1.348(10) C(31)-H(31) 0.9500 C(9)-C(10) 1.422(8) C(32)-C(37) 1.39(2) C(9)-C(27) 1.426(9) C(32)-H(32) 0.9500 C(10)-N(3) 1.322(8) C(33)-C(34) 1.266(16) C(10)-C(11) 1.441(10) C(33)-H(33) 0.9500 C(11)-C(29) 1.372(12) C(34)-C(37) 1.38(2) C(11)-C(12) 1.398(14) C(34)-H(34) 0.9500 C(12)-C(49) 1.470(17) C(36)-C(49) 1.354(19) C(12)-H(12) 0.9500 C(36)-H(36) 0.9500 C(13)-N(5) 1.328(10) C(37)-H(37) 0.9500 C(13)-C(14) 1.380(14) C(44)-C(45) 1.23(2) C(13)-H(13) 0.9500 C(44)-H(44) 0.9500 C(14)-C(26) 1.283(17) C(45)-C(46) 1.45(2) C(14)-C(24) 1.448(12) C(45)-H(45) 0.9500 C(20)-C(44) 1.360(16) C(46)-C(47) 1.42(2) C(20)-C(48) 1.362(13) C(46)-H(46) 0.9500 C(20)-C(24) 1.461(14) C(47)-C(48) 1.300(16) C(21)-O(1) 1.328(11) C(47)-H(47) 0.9500 C(21)-H(21A) 0.9800 C(48)-H(48) 0.9500 148 C(49)-H(49) 0.9500 Mn(1)-N(9) 2.257(5) Mn(1)-O(3) 2.124(6) N(1)-N(2) 1.343(9) Mn(1)-O(3)#1 2.124(6) N(3)-N(4) 1.369(7) Mn(1)-O(1)#1 2.165(6) N(5)-N(6) 1.367(9) Mn(1)-O(1) 2.165(6) O(3)-H(3A) 0.70(7) Mn(1)-N(9)#1 2.257(5) Table A.37. Bond angles [°] for [(TpPh,4CN)2Mn(MeOH)2(H2O)2]·H2O. N(5)-B(1)-N(1) 109.1(7) C(9)-C(10)-C(11) 130.2(6) N(5)-B(1)-N(4) 110.1(7) C(29)-C(11)-C(12) 125.3(10) N(1)-B(1)-N(4) 110.5(6) C(29)-C(11)-C(10) 118.0(8) N(5)-B(1)-H(1A) 109.0 C(12)-C(11)-C(10) 116.7(9) N(1)-B(1)-H(1A) 109.0 C(11)-C(12)-C(49) 112.0(13) N(4)-B(1)-H(1A) 109.0 C(11)-C(12)-H(12) 124.0 N(1)-C(1)-C(3) 110.0(7) C(49)-C(12)-H(12) 124.0 N(1)-C(1)-H(1) 125.0 N(5)-C(13)-C(14) 111.3(9) C(3)-C(1)-H(1) 125.0 N(5)-C(13)-H(13) 124.3 N(2)-C(2)-C(3) 109.4(7) C(14)-C(13)-H(13) 124.3 N(2)-C(2)-C(4) 121.3(7) C(26)-C(14)-C(13) 125.9(11) C(3)-C(2)-C(4) 129.3(7) C(26)-C(14)-C(24) 132.8(13) C(1)-C(3)-C(2) 104.7(6) C(13)-C(14)-C(24) 100.8(9) C(1)-C(3)-C(23) 127.8(8) C(44)-C(20)-C(48) 117.6(11) C(2)-C(3)-C(23) 127.4(8) C(44)-C(20)-C(24) 120.1(11) C(31)-C(4)-C(33) 120.1(10) C(48)-C(20)-C(24) 120.4(11) C(31)-C(4)-C(2) 120.9(9) O(1)-C(21)-H(21A) 109.5 C(33)-C(4)-C(2) 118.9(10) O(1)-C(21)-H(21B) 109.5 C(22)-C(9)-C(10) 106.2(6) H(21A)-C(21)-H(21B) 109.5 C(22)-C(9)-C(27) 126.1(6) O(1)-C(21)-H(21C) 109.5 C(10)-C(9)-C(27) 127.6(7) H(21A)-C(21)-H(21C) 109.5 N(3)-C(10)-C(9) 108.4(7) H(21B)-C(21)-H(21C) 109.5 N(3)-C(10)-C(11) 121.3(6) N(4)-C(22)-C(9) 108.1(6) 149 N(4)-C(22)-H(22) 125.9 C(44)-C(45)-C(46) 122.7(19) C(9)-C(22)-H(22) 125.9 C(44)-C(45)-H(45) 118.7 N(7)-C(23)-C(3) 177.1(10) C(46)-C(45)-H(45) 118.7 N(6)-C(24)-C(14) 111.8(9) C(47)-C(46)-C(45) 114.2(17) N(6)-C(24)-C(20) 121.1(8) C(47)-C(46)-H(46) 122.9 C(14)-C(24)-C(20) 127.1(11) C(45)-C(46)-H(46) 122.9 N(8)-C(26)-C(14) 177.2(17) C(48)-C(47)-C(46) 119.3(17) N(9)-C(27)-C(9) 176.2(8) C(48)-C(47)-H(47) 120.4 C(29)-C(28)-C(36) 123.3(14) C(46)-C(47)-H(47) 120.4 C(29)-C(28)-H(28) 118.4 C(47)-C(48)-C(20) 122.8(14) C(36)-C(28)-H(28) 118.4 C(47)-C(48)-H(48) 118.6 C(28)-C(29)-C(11) 117.4(11) C(20)-C(48)-H(48) 118.6 C(28)-C(29)-H(29) 121.3 C(36)-C(49)-C(12) 123.7(14) C(11)-C(29)-H(29) 121.3 C(36)-C(49)-H(49) 118.2 C(4)-C(31)-C(32) 118.2(14) C(12)-C(49)-H(49) 118.2 C(4)-C(31)-H(31) 120.9 O(3)-Mn(1)-O(3)#1 180.0 C(32)-C(31)-H(31) 120.9 O(3)-Mn(1)-O(1)#1 88.7(2) C(31)-C(32)-C(37) 119.7(14) O(3)#1-Mn(1)-O(1)#1 91.3(2) C(31)-C(32)-H(32) 120.2 O(3)-Mn(1)-O(1) 91.3(2) C(37)-C(32)-H(32) 120.2 O(3)#1-Mn(1)-O(1) 88.7(2) C(34)-C(33)-C(4) 124.8(13) O(1)#1-Mn(1)-O(1) 180.000(1) C(34)-C(33)-H(33) 117.6 O(3)-Mn(1)-N(9)#1 93.0(2) C(4)-C(33)-H(33) 117.6 O(3)#1-Mn(1)-N(9)#1 87.0(2) C(33)-C(34)-C(37) 116.3(15) O(1)#1-Mn(1)-N(9)#1 90.2(2) C(33)-C(34)-H(34) 121.8 O(1)-Mn(1)-N(9)#1 89.8(2) C(37)-C(34)-H(34) 121.8 O(3)-Mn(1)-N(9) 87.0(2) C(49)-C(36)-C(28) 117.8(15) O(3)#1-Mn(1)-N(9) 93.0(2) C(49)-C(36)-H(36) 121.1 O(1)#1-Mn(1)-N(9) 89.8(2) C(28)-C(36)-H(36) 121.1 O(1)-Mn(1)-N(9) 90.2(2) C(34)-C(37)-C(32) 120.4(14) N(9)#1-Mn(1)-N(9) 180.0(3) C(34)-C(37)-H(37) 119.8 C(1)-N(1)-N(2) 109.4(7) C(32)-C(37)-H(37) 119.8 C(1)-N(1)-B(1) 131.9(8) C(45)-C(44)-C(20) 122.0(17) N(2)-N(1)-B(1) 118.7(6) C(45)-C(44)-H(44) 119.0 C(2)-N(2)-N(1) 106.5(6) C(20)-C(44)-H(44) 119.0 C(10)-N(3)-N(4) 106.9(5) 150 (22)-N(4)-N(3) 110.3(6) N(6)-N(5)-B(1) 121.9(6) C(22)-N(4)-B(1) 130.3(6) C(24)-N(6)-N(5) 107.2(7) N(3)-N(4)-B(1) 119.0(5) C(27)-N(9)-Mn(1) 161.7(6) C(13)-N(5)-N(6) 108.8(9) C(21)-O(1)-Mn(1) 134.7(6) C(13)-N(5)-B(1) 129.2(8) Mn(1)-O(3)-H(3A) 137(6) Table A.38: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for [(TpPh,4CN)2Mn(MeOH)4]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ B(1) 2432(5) 2866(4) 6784(4) 38(1) C(1) 56(4) 1849(3) 6270(3) 36(1) C(2) -533(4) 844(3) 6268(3) 32(1) C(3) -1867(4) 446(3) 5981(3) 36(1) C(4) 512(4) 308(3) 6535(3) 33(1) C(5) 475(4) -764(4) 6685(3) 40(1) C(6) -583(5) -1108(5) 7109(4) 57(1) C(7) -563(6) -2066(5) 7333(6) 75(2) C(8) 483(7) -2686(5) 7125(6) 80(2) C(9) 1523(7) -2371(4) 6687(5) 70(2) C(10) 1519(5) -1399(4) 6478(4) 52(1) C(11) 3081(5) 4284(4) 8692(4) 47(1) C(12) 2533(5) 5156(4) 9410(4) 50(1) C(13) 3155(6) 5836(6) 10429(5) 74(2) C(14) 1287(5) 5175(4) 8917(4) 43(1) C(15) 252(5) 5922(4) 9308(4) 48(1) C(16) 394(7) 6799(5) 10306(4) 69(2) C(17) -604(8) 7483(6) 10639(5) 82(2) 151 C(18) -1741(7) 7334(5) 10019(5) 70(2) C(19) -1892(6) 6452(5) 9019(5) 65(2) C(20) -919(5) 5763(4) 8687(4) 51(1) C(21) 1754(4) 4107(4) 5745(4) 39(1) C(22) 2205(4) 4294(3) 4891(3) 37(1) C(23) 1728(4) 5045(4) 4459(4) 41(1) C(24) 3178(4) 3555(3) 4537(3) 35(1) C(25) 4001(4) 3408(4) 3659(4) 41(1) C(26) 4306(6) 2363(5) 3015(5) 65(2) C(27) 5084(7) 2219(6) 2187(6) 84(2) C(28) 5545(6) 3160(6) 2010(5) 72(2) C(29) 5255(6) 4209(5) 2655(5) 65(2) C(30) 4478(5) 4333(4) 3481(4) 52(1) C(31) -3758(7) 2578(5) 5856(9) 121(4) C(32) -5199(6) 759(6) 7557(5) 79(2) Mn(1) -5000 5000 35(1) 0 N(1) 1331(3) 1886(3) 6514(3) 35(1) N(2) 1624(3) 942(3) 6679(3) 34(1) N(3) -2955(4) 141(3) 5737(3) 41(1) N(4) 2224(3) 3816(3) 7824(3) 39(1) N(5) 1124(4) 4363(3) 7964(3) 40(1) N(6) 3698(7) 6379(6) 11241(5) 114(2) N(7) 2425(3) 3311(3) 5883(3) 37(1) N(8) 3300(3) 2961(3) 5135(3) 36(1) N(9) 1354(4) 5657(3) 4107(3) 50(1) O(1) -4739(3) 1745(2) 5285(3) 46(1) O(2) -5821(3) 400(3) 6518(3) 48(1) ________________________________________________________________________________ 152 Table A.39: Anisotropic displacement parameters (Å2x 103) for [(TpPh,4CN)2Mn(MeOH)4]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ B(1) 30(2) 37(2) 56(3) 28(2) 5(2) 6(2) C(1) 33(2) 33(2) 45(2) 18(2) 2(2) 5(2) C(2) 33(2) 29(2) 36(2) 14(2) 5(2) 5(2) C(3) 39(3) 29(2) 42(2) 16(2) 7(2) 8(2) C(4) 38(2) 31(2) 32(2) 12(2) 6(2) 6(2) C(5) 43(2) 34(2) 47(2) 22(2) -4(2) -2(2) C(6) 47(3) 62(3) 78(4) 48(3) -5(3) -6(2) C(7) 62(4) 80(4) 105(5) 68(4) -9(3) -18(3) C(8) 87(5) 53(3) 113(5) 58(4) -37(4) -20(3) C(9) 82(4) 39(3) 91(4) 29(3) -16(3) 9(3) C(10) 59(3) 36(2) 66(3) 24(2) 5(2) 11(2) C(11) 43(3) 52(3) 51(3) 28(2) -3(2) -6(2) C(12) 56(3) 50(3) 43(3) 21(2) -4(2) -11(2) C(13) 63(4) 72(4) 67(4) 11(3) -8(3) -4(3) C(14) 51(3) 37(2) 46(2) 24(2) 3(2) -3(2) C(15) 71(3) 38(2) 42(2) 23(2) 12(2) 7(2) C(16) 92(4) 64(3) 45(3) 14(3) 8(3) 16(3) C(17) 122(6) 62(4) 56(4) 12(3) 26(4) 27(4) C(18) 98(5) 64(4) 63(4) 32(3) 33(3) 36(3) C(19) 78(4) 66(3) 65(3) 36(3) 21(3) 29(3) C(20) 66(3) 46(3) 46(3) 19(2) 13(2) 14(2) C(21) 33(2) 39(2) 50(2) 22(2) 6(2) 11(2) C(22) 38(2) 32(2) 46(2) 19(2) 3(2) 7(2) C(23) 41(2) 38(2) 48(2) 21(2) 6(2) 10(2) C(24) 35(2) 28(2) 45(2) 17(2) 4(2) 2(2) C(25) 37(2) 42(2) 52(3) 26(2) 5(2) 5(2) C(26) 73(4) 50(3) 86(4) 35(3) 36(3) 16(3) C(27) 98(5) 75(4) 93(5) 38(4) 56(4) 34(4) C(28) 60(4) 92(5) 82(4) 48(4) 33(3) 14(3) 153 C(29) 60(3) 75(4) 73(4) 47(3) 11(3) -11(3) C(30) 55(3) 46(3) 60(3) 27(2) 5(2) -4(2) C(31) 60(4) 32(3) 246(11) 33(4) -28(5) 4(3) C(32) 65(4) 103(5) 69(4) 30(4) 10(3) 30(4) Mn(1) 29(1) 26(1) 56(1) 22(1) 5(1) 6(1) N(1) 34(2) 30(2) 47(2) 22(2) 7(2) 8(1) N(2) 35(2) 32(2) 42(2) 20(2) 7(2) 9(2) N(3) 35(2) 35(2) 57(2) 22(2) 4(2) 5(2) N(4) 36(2) 40(2) 48(2) 24(2) 0(2) 1(2) N(5) 44(2) 38(2) 43(2) 19(2) 2(2) 7(2) N(6) 85(4) 124(6) 84(4) -6(4) -24(4) -1(4) N(7) 36(2) 34(2) 49(2) 24(2) 7(2) 6(2) N(8) 33(2) 31(2) 51(2) 23(2) 9(2) 6(1) N(9) 48(2) 54(2) 60(2) 34(2) 5(2) 14(2) O(1) 39(2) 30(2) 76(2) 28(2) 8(2) 8(1) O(2) 40(2) 52(2) 61(2) 31(2) 12(2) 15(2) ______________________________________________________________________________ Table A.40: Bond lengths [Å] for [(TpPh,4CN)2Mn(MeOH)4]. B(1)-N(4) 1.521(6) C(5)-C(6) 1.392(7) B(1)-N(7) 1.551(6) C(6)-C(7) 1.389(7) B(1)-N(1) 1.557(6) C(6)-H(6) 0.9300 B(1)-H(1A) 0.9800 C(7)-C(8) 1.367(10) C(1)-N(1) 1.327(5) C(7)-H(7) 0.9300 C(1)-C(2) 1.398(5) C(8)-C(9) 1.373(10) C(1)-H(1) 0.9300 C(8)-H(8) 0.9300 C(2)-C(3) 1.409(6) C(9)-C(10) 1.395(7) C(2)-C(4) 1.421(6) C(9)-H(9) 0.9300 C(3)-N(3) 1.146(5) C(10)-H(10) 0.9300 C(4)-N(2) 1.320(5) C(11)-N(4) 1.341(6) C(4)-C(5) 1.478(5) C(11)-C(12) 1.365(7) C(5)-C(10) 1.375(7) C(11)-H(11) 0.9300 154 C(5)-C(6) 1.392(7) C(23)-N(9) 1.151(6) C(6)-C(7) 1.389(7) C(24)-N(8) 1.330(5) C(6)-H(6) 0.9300 C(24)-C(25) 1.476(6) C(7)-C(8) 1.367(10) C(25)-C(26) 1.371(7) C(7)-H(7) 0.9300 C(25)-C(30) 1.377(6) C(8)-C(9) 1.373(10) C(26)-C(27) 1.392(8) C(8)-H(8) 0.9300 C(26)-H(26) 0.9300 C(9)-C(10) 1.395(7) C(27)-C(28) 1.391(9) C(9)-H(9) 0.9300 C(27)-H(27) 0.9300 C(10)-H(10) 0.9300 C(28)-C(29) 1.370(9) C(11)-N(4) 1.341(6) C(28)-H(28) 0.9300 C(11)-C(12) 1.365(7) C(29)-C(30) 1.393(7) C(11)-H(11) 0.9300 C(29)-H(29) 0.9300 C(12)-C(13) 1.414(8) C(30)-H(30) 0.9300 C(12)-C(14) 1.418(7) C(31)-O(1) 1.378(7) C(13)-N(6) 1.145(8) C(31)-H(31A) 0.9600 C(14)-N(5) 1.315(6) C(31)-H(31B) 0.9600 C(14)-C(15) 1.473(7) C(31)-H(31C) 0.9600 C(15)-C(20) 1.386(7) C(32)-O(2) 1.410(7) C(15)-C(16) 1.391(7) C(32)-H(32A) 0.9600 C(16)-C(17) 1.386(9) C(32)-H(32B) 0.9600 C(16)-H(16) 0.9300 C(32)-H(32C) 0.9600 C(17)-C(18) 1.359(10) Mn(1)-O(1) 2.135(3) C(17)-H(17) 0.9300 Mn(1)-O(1)#1 2.135(3) C(18)-C(19) 1.396(9) Mn(1)-O(2) 2.182(3) C(18)-H(18) 0.9300 Mn(1)-O(2)#1 2.182(3) C(19)-C(20) 1.367(7) Mn(1)-N(3) 2.241(4) C(19)-H(19) 0.9300 Mn(1)-N(3)#1 2.241(4) C(20)-H(20) 0.9300 N(1)-N(2) 1.374(4) C(21)-N(7) 1.343(5) N(4)-N(5) 1.361(5) C(21)-C(22) 1.385(6) N(7)-N(8) 1.372(5) C(21)-H(21) 0.9300 O(1)-H(1B) 0.89(6) C(22)-C(24) 1.409(6) O(2)-H(2A) 0.87(6) C(22)-C(23) 1.418(6) 155 Table A.41: Bond angles [°] for [(TpPh,4CN)2Mn(MeOH)4]. N(4)-B(1)-N(7) 109.5(3) C(5)-C(10)-H(10) 119.5 N(4)-B(1)-N(1) 109.7(3) C(9)-C(10)-H(10) 119.5 N(7)-B(1)-N(1) 110.2(4) N(4)-C(11)-C(12) 107.6(4) N(4)-B(1)-H(1A) 109.1 N(4)-C(11)-H(11) 126.2 N(7)-B(1)-H(1A) 109.1 C(12)-C(11)-H(11) 126.2 N(1)-B(1)-H(1A) 109.1 C(11)-C(12)-C(13) 123.3(5) N(1)-C(1)-C(2) 107.6(3) C(11)-C(12)-C(14) 105.8(4) N(1)-C(1)-H(1) 126.2 C(13)-C(12)-C(14) 130.9(5) C(2)-C(1)-H(1) 126.2 N(6)-C(13)-C(12) 177.8(8) C(1)-C(2)-C(3) 125.7(4) N(5)-C(14)-C(12) 108.9(4) C(1)-C(2)-C(4) 105.0(3) N(5)-C(14)-C(15) 120.4(4) C(3)-C(2)-C(4) 129.2(4) C(12)-C(14)-C(15) 130.6(4) N(3)-C(3)-C(2) 178.4(4) C(20)-C(15)-C(16) 117.4(5) N(2)-C(4)-C(2) 109.5(3) C(20)-C(15)-C(14) 120.5(4) N(2)-C(4)-C(5) 121.1(4) C(16)-C(15)-C(14) 122.1(5) C(2)-C(4)-C(5) 129.4(4) C(17)-C(16)-C(15) 120.1(6) C(10)-C(5)-C(6) 118.7(4) C(17)-C(16)-H(16) 120.0 C(10)-C(5)-C(4) 120.8(4) C(15)-C(16)-H(16) 120.0 C(6)-C(5)-C(4) 120.3(4) C(18)-C(17)-C(16) 122.2(6) C(7)-C(6)-C(5) 120.1(5) C(18)-C(17)-H(17) 118.9 C(7)-C(6)-H(6) 119.9 C(16)-C(17)-H(17) 118.9 C(5)-C(6)-H(6) 119.9 C(17)-C(18)-C(19) 117.9(6) C(8)-C(7)-C(6) 120.4(5) C(17)-C(18)-H(18) 121.0 C(8)-C(7)-H(7) 119.8 C(19)-C(18)-H(18) 121.0 C(6)-C(7)-H(7) 119.8 C(20)-C(19)-C(18) 120.4(6) C(7)-C(8)-C(9) 120.2(5) C(20)-C(19)-H(19) 119.8 C(7)-C(8)-H(8) 119.9 C(18)-C(19)-H(19) 119.8 C(9)-C(8)-H(8) 119.9 C(19)-C(20)-C(15) 122.0(5) C(8)-C(9)-C(10) 119.6(6) C(19)-C(20)-H(20) 119.0 C(8)-C(9)-H(9) 120.2 C(15)-C(20)-H(20) 119.0 C(10)-C(9)-H(9) 120.2 N(7)-C(21)-C(22) 107.7(4) C(5)-C(10)-C(9) 120.9(5) N(7)-C(21)-H(21) 126.1 156 C(22)-C(21)-H(21) 126.1 H(32A)-C(32)-H(32B) 109.5 C(21)-C(22)-C(24) 105.4(3) O(2)-C(32)-H(32C) 109.5 C(21)-C(22)-C(23) 126.0(4) H(32A)-C(32)-H(32C) 109.5 C(24)-C(22)-C(23) 128.6(4) H(32B)-C(32)-H(32C) 109.5 N(9)-C(23)-C(22) 179.3(5) O(1)-Mn(1)-O(1)#1 180.0 N(8)-C(24)-C(22) 109.8(4) O(1)-Mn(1)-O(2) 90.40(13) N(8)-C(24)-C(25) 121.3(4) O(1)#1-Mn(1)-O(2) 89.60(13) C(22)-C(24)-C(25) 128.9(4) O(1)-Mn(1)-O(2)#1 89.60(13) C(26)-C(25)-C(30) 119.1(4) O(1)#1-Mn(1)-O(2)#1 90.40(13) C(26)-C(25)-C(24) 121.1(4) O(2)-Mn(1)-O(2)#1 C(30)-C(25)-C(24) 119.8(4) O(1)-Mn(1)-N(3) 89.15(13) C(25)-C(26)-C(27) 121.4(5) O(1)#1-Mn(1)-N(3) 90.85(13) C(25)-C(26)-H(26) 119.3 O(2)-Mn(1)-N(3) 92.54(13) C(27)-C(26)-H(26) 119.3 O(2)#1-Mn(1)-N(3) 87.46(13) C(28)-C(27)-C(26) 118.7(6) O(1)-Mn(1)-N(3)#1 90.85(13) C(28)-C(27)-H(27) 120.7 O(1)#1-Mn(1)-N(3)#1 89.15(13) C(26)-C(27)-H(27) 120.7 O(2)-Mn(1)-N(3)#1 87.46(13) C(29)-C(28)-C(27) 120.3(5) O(2)#1-Mn(1)-N(3)#1 92.54(13) C(29)-C(28)-H(28) 119.8 N(3)-Mn(1)-N(3)#1 180.0 C(27)-C(28)-H(28) 119.8 C(1)-N(1)-N(2) 110.8(3) C(28)-C(29)-C(30) 120.0(5) C(1)-N(1)-B(1) 130.1(3) C(28)-C(29)-H(29) 120.0 N(2)-N(1)-B(1) 118.5(3) C(30)-C(29)-H(29) 120.0 C(4)-N(2)-N(1) 107.2(3) C(25)-C(30)-C(29) 120.5(5) C(3)-N(3)-Mn(1) 159.4(3) C(25)-C(30)-H(30) 119.8 C(11)-N(4)-N(5) 110.3(4) C(29)-C(30)-H(30) 119.8 C(11)-N(4)-B(1) 127.0(4) O(1)-C(31)-H(31A) 109.5 N(5)-N(4)-B(1) 122.6(3) O(1)-C(31)-H(31B) 109.5 C(14)-N(5)-N(4) 107.4(4) H(31A)-C(31)-H(31B) 109.5 C(21)-N(7)-N(8) 110.3(3) O(1)-C(31)-H(31C) 109.5 C(21)-N(7)-B(1) 130.0(4) H(31A)-C(31)-H(31C) 109.5 N(8)-N(7)-B(1) 119.4(3) H(31B)-C(31)-H(31C) 109.5 C(24)-N(8)-N(7) 106.8(3) O(2)-C(32)-H(32A) 109.5 C(31)-O(1)-Mn(1) 131.8(4) O(2)-C(32)-H(32B) 109.5 C(31)-O(1)-H(1B) 110(4) 157 180.00(9) Mn(1)-O(1)-H(1B) 115(3) C(32)-O(2)-H(2A) 114(4) C(32)-O(2)-Mn(1) 130.6(3) Mn(1)-O(2)-H(2A) 114(4) Table A.42: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for {[Tpt-Bu,4CNCu][MeCN]}n. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ B(1) 4077(1) 4237(2) 3632(2) 20(1) C(1) 4278(1) 4226(2) 2302(2) 26(1) C(2) 4211(1) 3623(2) 1639(2) 26(1) C(3) 4286(1) 3851(2) 890(2) 37(1) C(4) 4019(1) 2806(2) 1842(2) 23(1) C(5) 3878(1) 1893(2) 1365(2) 32(1) C(6) 4160(2) 1801(2) 771(2) 49(1) C(7) 3243(1) 1837(2) 797(2) 47(1) C(8) 4083(1) 1119(2) 2042(2) 38(1) C(9) 3188(1) 5189(2) 3145(2) 22(1) C(10) 2626(1) 5017(2) 2811(2) 23(1) C(11) 2778(1) 725(2) 2515(2) 24(1) C(12) 2575(1) 4055(2) 2811(2) 23(1) C(13) 2063(1) 3461(2) 2533(2) 29(1) C(14) 1558(1) 4048(2) 2386(3) 62(1) C(15) 2157(1) 2767(2) 3258(2) 36(1) C(16) 1951(1) 2972(2) 1672(2) 45(1) C(17) 4732(1) 3790(2) 5244(2) 22(1) C(18) 4832(1) 3022(2) 5766(2) 23(1) C(19) 5263(1) 2990(2) 6655(2) 32(1) C(20) 4445(1) 2361(2) 5215(2) 22(1) C(21) 4344(1) 1383(2) 5390(2) 28(1) C(22) 4776(2) 1083(2) 6307(2) 59(1) C(23) 4384(1) 768(2) 4695(2) 41(1) 158 C(24) 3761(1) 1306(2) 5317(2) 46(1) C(101) 3421(2) 3974(3) 5484(3) 66(1) C(102) 2977(2) 4431(4) 5550(4) 90(2) Cu(1) 3494(1) 2414(1) 3195(1) 22(1) N(1) 4134(1) 3807(1) 2856(1) 20(1) N(2) 3964(1) 2933(1) 2575(1) 22(1) N(3) 4327(1) 4076(2) 282(2) 56(1) N(4) 3453(1) 4399(1) 3328(1) 20(1) N(5) 3082(1) 3687(1) 3115(1) 20(1) N(6) 3065(1) 1343(1) 2775(1) 25(1) N(7) 4319(1) 3608(1) 4443(1) 19(1) N(8) 4135(1) 2729(1) 4418(1) 20(1) N(9) 5622(1) 3019(2) 7362(2) 48(1) N(101) 2631(3) 4803(5) 5616(5) 175(3) ________________________________________________________________________________ Anisotropic displacement parameters (┼2x 103) for {[Tpt-Bu,4CNCu][MeCN]}n. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. Table A.43: ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ B(1) 19(1) 14(1) 22(2) 1(1) 6(1) -5(1) C(1) 24(1) 23(1) 30(2) 5(1) 13(1) -5(1) C(2) 23(1) 30(2) 26(1) 4(1) 13(1) 0(1) C(3) 40(2) 36(2) 44(2) 3(1) 27(2) -4(1) C(4) 19(1) 26(1) 22(1) 3(1) 7(1) 2(1) C(5) 39(2) 32(2) 28(2) -6(1) 18(1) -1(1) C(6) 76(2) 40(2) 46(2) -6(2) 42(2) 3(2) C(7) 46(2) 47(2) 38(2) -16(2) 11(2) -12(2) C(8) 54(2) 28(2) 44(2) -3(1) 32(2) 0(1) C(9) 26(1) 14(1) 24(1) 1(1) 8(1) -1(1) C(10) 24(1) 16(1) 25(1) 2(1) 8(1) 3(1) C(11) 25(1) 18(1) 28(2) -1(1) 10(1) 2(1) C(12) 22(1) 19(1) 22(1) 1(1) 6(1) 1(1) C(13) 17(1) 17(1) 42(2) 5(1) 6(1) 1(1) 159 C(14) 22(2) 28(2) 122(3) 10(2) 22(2) 1(1) C(15) 30(2) 28(2) 51(2) 2(1) 20(1) -3(1) C(16) 42(2) 35(2) 34(2) 2(1) -3(1) -14(1) C(17) 18(1) 23(1) 23(1) -3(1) 6(1) -5(1) C(18) 20(1) 26(1) 18(1) 0(1) 4(1) -3(1) C(19) 27(2) 33(2) 29(2) 1(1) 8(1) -3(1) C(20) 20(1) 25(1) 19(1) 3(1) 8(1) 2(1) C(21) 29(2) 22(1) 25(1) 7(1) 6(1) -1(1) C(22) 67(2) 39(2) 36(2) 18(2) -6(2) -11(2) C(23) 53(2) 19(1) 45(2) 4(1) 17(2) 7(1) C(24) 51(2) 35(2) 61(2) 10(2) 33(2) -7(2) C(101) 56(2) 73(3) 72(3) 0(2) 31(2) -2(2) C(102) 74(3) 83(4) 111(4) 18(3) 42(3) 13(3) Cu(1) 22(1) 15(1) 23(1) -1(1) 6(1) -4(1) N(1) 19(1) 17(1) 22(1) 1(1) 7(1) -4(1) N(2) 25(1) 17(1) 23(1) -2(1) 11(1) -2(1) N(3) 81(2) 50(2) 60(2) 6(2) 52(2) -4(2) N(4) 20(1) 12(1) 22(1) 0(1) 6(1) -2(1) N(5) 18(1) 14(1) 24(1) 0(1) 6(1) -2(1) N(6) 24(1) 15(1) 32(1) 0(1) 9(1) -1(1) N(7) 19(1) 15(1) 20(1) 0(1) 5(1) -4(1) N(8) 21(1) 14(1) 21(1) 1(1) 7(1) -2(1) N(9) 36(2) 60(2) 28(2) 1(1) -2(1) -5(1) N(101) 130(5) 188(6) 230(7) 30(5) 102(5) 75(5) ______________________________________________________________________________ 160 Table A.44: Bond lengthes [Å] for {[Tpt-Bu,4CNCu][MeCN]}n B(1)-N(7) 1.533(3) C(12)-C(13) 1.515(3) B(1)-N(1) 1.537(3) C(13)-C(15) 1.530(4) B(1)-N(4) 1.541(3) C(13)-C(16) 1.531(4) B(1)-H(1) 0.9800 C(13)-C(14) 1.536(4) C(1)-N(1) 1.327(3) C(14)-H(17A) 0.9600 C(1)-C(2) 1.380(4) C(14)-H(17B) 0.9600 C(1)-H(8) 0.9300 C(14)-H(17C) 0.9600 C(2)-C(4) 1.413(3) C(15)-H(19A) 0.9600 C(2)-C(3) 1.422(4) C(15)-H(19B) 0.9600 C(3)-N(3) 1.142(4) C(15)-H(19C) 0.9600 C(4)-N(2) 1.338(3) C(16)-H(20A) 0.9600 C(4)-C(5) 1.521(4) C(16)-H(20B) 0.9600 C(5)-C(8) 1.528(4) C(16)-H(20C) 0.9600 C(5)-C(6) 1.530(4) C(17)-N(7) 1.330(3) C(5)-C(7) 1.537(4) C(17)-C(18) 1.383(3) C(6)-H(1A) 0.9600 C(17)-H(14) 0.9300 C(6)-H(1B) 0.9600 C(18)-C(20) 1.418(3) C(6)-H(1C) 0.9600 C(18)-C(19) 1.422(4) C(7)-H(2A) 0.9600 C(19)-N(9) 1.146(3) C(7)-H(2B) 0.9600 C(20)-N(8) 1.337(3) C(7)-H(2C) 0.9600 C(20)-C(21) 1.515(3) C(8)-H(4A) 0.9600 C(21)-C(22) 1.520(4) C(8)-H(4B) 0.9600 C(21)-C(23) 1.531(4) C(8)-H(4C) 0.9600 C(21)-C(24) 1.531(4) C(9)-N(4) 1.323(3) C(22)-H(13A) 0.9600 C(9)-C(10) 1.380(3) C(22)-H(13B) 0.9600 C(9)-H(16) 0.9300 C(22)-H(13C) 0.9600 C(10)-C(12) 1.419(3) C(23)-H(10A) 0.9600 C(10)-C(11)#1 1.421(3) C(23)-H(10B) 0.9600 C(11)-N(6) 1.143(3) C(23)-H(10C) 0.9600 C(11)-C(10)#2 1.421(3) C(24)-H(12A) 0.9600 C(12)-N(5) 1.337(3) C(24)-H(12B) 0.9600 161 C(24)-H(12C) 0.9600 Cu(1)-N(8) 2.053(2) C(101)-C(102) 1.426(6) Cu(1)-N(2) 2.135(2) C(101)-H(10D) 0.9600 Cu(1)-N(5) 2.148(2) C(101)-H(10E) 0.9600 N(1)-N(2) 1.371(3) C(101)-H(10F) 0.9600 N(4)-N(5) 1.376(3) C(102)-N(101) 1.133(6) N(7)-N(8) 1.376(3) Cu(1)-N(6) 1.888(2) Table A.45: Bond angles [°] for {[Tpt-Bu,4CNCu][MeCN]}n. N(4)-B(1)-N(7) 109.5(3) C(6)-C(5)-C(7) 109.5(3) N(4)-B(1)-N(1) 109.7(3) C(5)-C(6)-H(1A) 109.5 N(7)-B(1)-N(1) 110.2(4) C(5)-C(6)-H(1B) 109.5 N(4)-B(1)-H(1A) 109.1 H(1A)-C(6)-H(1B) 109.5 N(7)-B(1)-H(1A) 109.1 C(5)-C(6)-H(1C) 109.5 N(1)-B(1)-H(1A) 109.1 H(1A)-C(6)-H(1C) 109.5 N(1)-C(1)-C(2) 107.6(3) H(1B)-C(6)-H(1C) 109.5 N(1)-C(1)-H(1) 126.2 C(5)-C(7)-H(2A) 109.5 C(2)-C(1)-H(1) 126.2 C(5)-C(7)-H(2B) 109.5 C(1)-C(2)-C(3) 125.7(4) H(2A)-C(7)-H(2B) 109.5 C(1)-C(2)-C(4) 105.0(3) C(5)-C(7)-H(2C) 109.5 C(3)-C(2)-C(4) 129.2(4) H(2A)-C(7)-H(2C) 109.5 N(3)-C(3)-C(2) 178.4(4) H(2B)-C(7)-H(2C) 109.5 N(2)-C(4)-C(2) 109.5(3) C(5)-C(8)-H(4A) 109.5 N(2)-C(4)-C(5) 121.1(4) C(5)-C(8)-H(4B) 109.5 C(2)-C(4)-C(5) 129.4(4) H(4A)-C(8)-H(4B) 109.5 C(10)-C(5)-C(6) 118.7(4) C(5)-C(8)-H(4C) 109.5 C(10)-C(5)-C(4) 120.8(4) H(4A)-C(8)-H(4C) 109.5 C(6)-C(5)-C(4) 120.3(4) H(4B)-C(8)-H(4C) 109.5 C(7)-C(6)-C(5) 120.1(5) N(4)-C(9)-C(10) 108.1(2) C(7)-C(6)-H(6) 119.9 N(4)-C(9)-H(16) 126.0 162 C(17)-C(18)-C(20) 105.5(2) C(17)-C(18)-C(20) 105.5(2) C(17)-C(18)-C(19) 122.2(2) C(17)-C(18)-C(19) 122.2(2) C(20)-C(18)-C(19) 132.3(2) C(20)-C(18)-C(19) 132.3(2) N(9)-C(19)-C(18) 175.5(3) N(9)-C(19)-C(18) 175.5(3) N(8)-C(20)-C(18) 108.6(2) N(8)-C(20)-C(18) 108.6(2) N(8)-C(20)-C(21) 119.9(2) N(8)-C(20)-C(21) 119.9(2) C(18)-C(20)-C(21) 131.5(2) C(18)-C(20)-C(21) 131.5(2) C(20)-C(21)-C(22) 110.7(2) C(20)-C(21)-C(22) 110.7(2) C(20)-C(21)-C(23) 108.8(2) C(20)-C(21)-C(23) 108.8(2) C(22)-C(21)-C(23) 109.1(3) C(22)-C(21)-C(23) 109.1(3) C(20)-C(21)-C(24) 109.0(2) C(20)-C(21)-C(24) 109.0(2) C(22)-C(21)-C(24) 109.7(3) C(22)-C(21)-C(24) 109.7(3) C(23)-C(21)-C(24) 109.4(2) C(23)-C(21)-C(24) 109.4(2) C(21)-C(22)-H(13A) 109.5 C(21)-C(22)-H(13A) 109.5 C(21)-C(22)-H(13B) 109.5 C(21)-C(22)-H(13B) 109.5 H(13A)-C(22)-H(13B) 109.5 H(13A)-C(22)-H(13B) 109.5 C(21)-C(22)-H(13C) 109.5 C(21)-C(22)-H(13C) 109.5 H(13A)-C(22)-H(13C) 109.5 H(13A)-C(22)-H(13C) 109.5 H(13B)-C(22)-H(13C) 109.5 H(13B)-C(22)-H(13C) 109.5 C(21)-C(23)-H(10A) 109.5 C(21)-C(23)-H(10A) 109.5 C(21)-C(23)-H(10B) 109.5 C(21)-C(23)-H(10B) 109.5 H(10A)-C(23)-H(10B) 109.5 H(10A)-C(23)-H(10B) 109.5 C(21)-C(23)-H(10C) 109.5 C(21)-C(23)-H(10C) 109.5 H(10A)-C(23)-H(10C) 109.5 H(10A)-C(23)-H(10C) 109.5 H(10B)-C(23)-H(10C) 109.5 H(10B)-C(23)-H(10C) 109.5 C(21)-C(24)-H(12A) 109.5 C(21)-C(24)-H(12A) 109.5 C(21)-C(24)-H(12B) 109.5 C(21)-C(24)-H(12B) 109.5 H(12A)-C(24)-H(12B) 109.5 H(12A)-C(24)-H(12B) 109.5 C(21)-C(24)-H(12C) 109.5 C(21)-C(24)-H(12C) 109.5 H(12A)-C(24)-H(12C) 109.5 H(12A)-C(24)-H(12C) 109.5 H(12B)-C(24)-H(12C) 109.5 H(12B)-C(24)-H(12C) 109.5 C(102)-C(101)-H(10D) 109.5 C(102)-C(101)-H(10D) 109.5 C(102)-C(101)-H(10E) 109.5 C(102)-C(101)-H(10E) 109.5 H(10D)-C(101)-H(10E) 109.5 H(10D)-C(101)-H(10E) 109.5 C(102)-C(101)-H(10F) 109.5 C(102)-C(101)-H(10F) 109.5 163 H(10D)-C(101)-H(10F) 109.5 N(1)-N(2)-Cu(1) 109.99(14) H(10E)-C(101)-H(10F) 109.5 C(9)-N(4)-N(5) 110.69(19) N(101)-C(102)-C(101) 178.7(7) C(9)-N(4)-B(1) 127.2(2) N(6)-Cu(1)-N(8) 130.91(8) N(5)-N(4)-B(1) 121.74(18) N(6)-Cu(1)-N(2) 120.84(9) C(12)-N(5)-N(4) 106.85(19) N(8)-Cu(1)-N(2) 90.26(8) C(12)-N(5)-Cu(1) 141.84(17) N(6)-Cu(1)-N(5) 119.28(8) N(4)-N(5)-Cu(1) 110.36(14) N(8)-Cu(1)-N(5) 92.23(8) C(11)-N(6)-Cu(1) 175.8(2) N(2)-Cu(1)-N(5) 94.01(8) C(17)-N(7)-N(8) 109.90(19) C(1)-N(1)-N(2) 110.4(2) C(17)-N(7)-B(1) 127.5(2) C(1)-N(1)-B(1) 126.9(2) N(8)-N(7)-B(1) 122.60(19) N(2)-N(1)-B(1) 122.23(19) C(20)-N(8)-N(7) 107.44(19) C(4)-N(2)-N(1) 106.96(19) C(20)-N(8)-Cu(1) 141.05(17) C(4)-N(2)-Cu(1) 139.62(17) N(7)-N(8)-Cu(1) 111.51(14) Table A.46: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for Ag-1. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ Ag(1) 1454(1) 7192(1) 1836(1) 41(1) B(1) 856(4) 9068(8) 1383(7) 35(3) C(1) 1748(5) 9974(7) 1790(6) 40(3) C(2) 2321(4) 9848(7) 2160(6) 42(3) C(3) 2725(5) 10499(8) 2400(7) 49(3) C(4) 2384(4) 8945(6) 2263(6) 42(3) C(5) 2946(4) 8435(8) 2640(8) 72(4) C(6) 3292(8) 8702(13) 2141(14) 91(7) C(7) 3322(7) 8853(13) 3574(11) 107(8) C(8) 2853(7) 7524(12) 2800(20) 167(17) C(9) 705(4) 9178(7) 2724(7) 44(3) C(10) 762(4) 8678(8) 3395(7) 51(3) 164 C(11) 776(5) 8985(9) 4180(8) 64(4) C(12) 870(4) 7844(7) 3179(8) 50(3) C(13) 987(6) 7002(9) 3683(8) 78(4) C(14) 1617(7) 7038(13) 4317(10) 140(8) C(15) 627(6) 6967(9) 4182(9) 94(5) C(16) 867(7) 6225(9) 3107(10) 108(6) C(17) 224(4) 8738(6) -169(7) 38(3) C(18) 109(4) 8059(7) -730(6) 39(3) C(19) -300(5) 8096(8) -1591(8) 56(3) C(20) 465(4) 7384(7) -243(6) 38(3) C(21) 531(4) 6483(6) -529(6) 48(3) C(22) 762(8) 6539(10) -1195(11) 94(7) C(23) -93(7) 6057(11) -1009(12) 95(7) C(24) 906(8) 5874(10) 227(9) 75(6) C(101) 2240(14) 110(20) 4840(20) 251(13) C(102) 2448(16) 1370(30) 4530(30) 300(18) C(103) 1987(18) 440(30) 3910(30) 317(19) C(6A) 2864(18) 7670(30) 1880(30) 16(16) C(7A) 3430(40) 8890(60) 2710(60) 80(30) C(8A) 2950(20) 7930(40) 3320(30) 34(19) C(22A) 1220(20) 6400(40) -310(40) 40(20) C(23A) 150(20) 6400(30) -1540(30) 31(19) C(24A) 500(30) 5880(40) 100(40) 35(19) N(1) 1885(3) 8572(5) 1975(5) 41(2) N(2) 1493(3) 9219(5) 1686(4) 35(2) N(3) 3056(4) 11044(6) 2630(6) 59(3) N(4) 874(3) 7861(5) 2412(5) 42(2) N(5) 772(3) 8700(5) 2142(5) 36(2) N(6) 790(5) 9230(9) 4798(7) 96(4) N(7) 762(3) 7651(5) 553(5) 34(2) N(8) 605(3) 8489(5) 588(5) 34(2) N(9) -633(5) 8160(8) -2275(7) 88(4) O(101) 1745(10) 1090(16) 4593(15) 283(10) ________________________________________________________________________________ 165 Table A.47: Anisotropic displacement parameters (Å2x 103) for Ag-1. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ] ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ Ag(1) 38(1) 34(1) 46(1) 6(1) 14(1) 7(1) B(1) 23(7) 39(7) 36(7) -1(6) 8(6) 8(6) C(1) 47(8) 24(7) 42(7) 0(5) 13(6) -2(6) C(2) 39(8) 45(8) 36(6) -1(5) 12(6) -3(6) C(3) 52(8) 44(8) 47(7) -11(6) 18(6) -9(7) C(4) 41(8) 31(7) 45(7) -2(5) 11(6) 3(6) C(5) 27(7) 67(9) 102(11) -6(8) 9(7) 1(7) C(6) 65(12) 129(17) 101(16) -4(13) 57(12) 20(11) C(7) 66(12) 118(17) 89(14) 31(12) -13(11) 11(11) C(8) 34(11) 36(12) 330(40) 30(18) -14(16) 19(9) C(9) 34(6) 48(7) 48(7) -5(7) 15(6) -1(5) C(10) 28(6) 80(10) 43(8) -6(8) 15(5) 0(6) C(11) 43(7) 104(11) 49(9) -11(8) 25(7) -14(7) C(12) 39(7) 54(9) 57(8) 17(7) 21(6) 6(6) C(13) 88(11) 96(11) 71(9) 38(9) 55(9) 22(8) C(14) 85(13) 230(20) 104(13) 112(14) 40(11) 52(13) C(15) 122(13) 104(11) 88(10) 17(8) 77(10) -6(9) C(16) 183(17) 65(10) 139(14) 42(10) 128(13) 26(10) C(17) 32(6) 38(7) 40(7) 11(6) 12(6) 15(5) C(18) 32(6) 47(7) 29(7) -1(6) 6(6) 4(5) C(19) 50(8) 70(9) 41(9) -6(6) 14(8) 7(6) C(20) 33(6) 49(8) 30(7) -7(6) 13(6) -10(6) C(21) 49(7) 42(7) 52(7) -11(6) 20(6) -2(6) C(22) 149(19) 78(12) 110(16) -10(10) 108(16) 8(12) C(23) 65(11) 84(13) 120(16) -49(11) 26(11) -25(9) C(24) 77(15) 58(11) 64(11) 2(8) 8(10) 20(9) N(1) 30(6) 33(5) 53(5) -3(4) 11(4) -6(5) N(2) 40(6) 26(6) 36(5) 3(4) 14(4) 10(5) N(3) 48(6) 45(6) 74(7) -12(5) 15(5) -12(5) N(4) 57(6) 39(6) 38(6) 8(4) 28(5) 4(4) 166 N(5) 38(5) 40(6) 34(5) 0(5) 18(4) 6(4) N(6) 90(9) 149(12) 69(8) -43(8) 53(7) -44(8) N(7) 30(5) 33(6) 37(6) -3(4) 12(4) 2(4) N(8) 34(5) 33(6) 34(6) 0(4) 14(5) 3(4) N(9) 75(8) 104(9) 48(7) 4(6) -9(7) 13(7) ______________________________________________________________________________ Table A.48: Bond lengths [Å] for Ag-1. Ag(1)-N(3)#1 2.158(10) C(12)-N(4) 1.341(13) Ag(1)-N(7) 2.300(8) C(12)-C(13) 1.529(16) Ag(1)-N(1) 2.385(8) C(13)-C(16) 1.512(18) Ag(1)-N(4) 2.396(8) C(13)-C(14) 1.55(2) B(1)-N(8) 1.538(13) C(17)-N(8) 1.322(11) B(1)-N(2) 1.540(13) C(17)-C(18) 1.379(13) B(1)-N(5) 1.543(13) C(18)-C(20) 1.416(13) C(1)-N(2) 1.322(12) C(18)-C(19) 1.418(16) C(1)-C(2) 1.373(13) C(19)-N(9) 1.137(14) C(2)-C(3) 1.392(16) C(20)-N(7) 1.329(11) C(2)-C(4) 1.412(14) C(20)-C(21) 1.520(14) C(3)-N(3) 1.153(13) C(21)-C(22) 1.526(17) C(4)-N(1) 1.318(12) C(21)-C(24) 1.572(18) C(4)-C(5) 1.550(15) C(21)-C(23) 1.626(18) C(5)-C(8) 1.48(2) C(101)-C(103) 1.55(5) C(5)-C(6) 1.56(2) C(101)-O(101) 1.92(4) C(5)-C(7) 1.63(2) C(102)-C(103) 1.90(5) C(9)-N(5) 1.328(12) C(103)-O(101) 1.87(4) C(9)-C(10) 1.356(14) N(1)-N(2) 1.370(10) C(10)-C(12) 1.409(14) N(3)-Ag(1)#2 2.158(10) C(10)-C(11) 1.435(17) N(4)-N(5) 1.369(10) C(11)-N(6) 1.128(14) N(7)-N(8) 1.372(10) 167 Table A.49: Bond angles [°] for Ag-1]. N(3)#1-Ag(1)-N(7) 138.4(3) C(12)-C(13)-C(15) 109.7(11) N(3)#1-Ag(1)-N(1) 121.8(3) C(16)-C(13)-C(14) 110.7(13) 87.8(3) C(12)-C(13)-C(14) 105.4(11) 123.1(3) C(15)-C(13)-C(14) 109.3(11) N(7)-Ag(1)-N(4) 83.9(3) N(8)-C(17)-C(18) 108.9(8) N(1)-Ag(1)-N(4) 86.0(3) C(17)-C(18)-C(20) 104.7(8) N(8)-B(1)-N(2) 112.1(8) C(17)-C(18)-C(19) 123.6(10) N(8)-B(1)-N(5) 113.0(8) C(20)-C(18)-C(19) 131.7(10) N(2)-B(1)-N(5) 107.6(7) N(9)-C(19)-C(18) 177.0(13) N(2)-C(1)-C(2) 109.1(9) N(7)-C(20)-C(18) 109.4(8) C(1)-C(2)-C(3) 125.3(10) N(7)-C(20)-C(21) 122.0(9) C(1)-C(2)-C(4) 104.2(9) C(18)-C(20)-C(21) 128.5(9) C(3)-C(2)-C(4) 130.5(10) C(20)-C(21)-C(22) 109.7(9) N(3)-C(3)-C(2) 177.0(11) C(20)-C(21)-C(24) 113.3(9) N(1)-C(4)-C(2) 110.2(9) C(22)-C(21)-C(24) 111.2(12) N(1)-C(4)-C(5) 123.1(9) C(20)-C(21)-C(23) 107.9(9) C(2)-C(4)-C(5) 126.7(10) C(22)-C(21)-C(23) 106.2(11) C(8)-C(5)-C(4) 111.2(10) C(24)-C(21)-C(23) 108.2(12) C(8)-C(5)-C(6) 122.7(17) C(103)-C(101)-O(101) 64(2) C(4)-C(5)-C(6) 107.9(11) C(101)-C(103)-O(101) 68(2) C(8)-C(5)-C(7) 105.7(17) C(101)-C(103)-C(102) 77(3) C(4)-C(5)-C(7) 105.9(11) O(101)-C(103)-C(102) 62.1(18) C(6)-C(5)-C(7) 101.7(13) C(4)-N(1)-N(2) 106.6(8) N(5)-C(9)-C(10) 109.7(10) C(4)-N(1)-Ag(1) 141.6(7) C(9)-C(10)-C(12) 104.7(9) N(2)-N(1)-Ag(1) 111.7(6) C(9)-C(10)-C(11) 125.4(12) C(1)-N(2)-N(1) 109.9(8) C(12)-C(10)-C(11) 129.4(12) C(1)-N(2)-B(1) 126.5(9) N(6)-C(11)-C(10) 179.4(14) N(1)-N(2)-B(1) 123.3(8) N(4)-C(12)-C(10) 109.7(9) C(3)-N(3)-Ag(1)#2 167.0(9) N(4)-C(12)-C(13) 120.2(11) C(12)-N(4)-N(5) 106.0(8) C(10)-C(12)-C(13) 130.0(12) C(12)-N(4)-Ag(1) 133.6(7) C(16)-C(13)-C(12) 111.5(11) N(5)-N(4)-Ag(1) 109.5(6) N(7)-Ag(1)-N(1) N(3)#1-Ag(1)-N(4) 168 C(9)-N(5)-N(4) 109.8(8) N(8)-N(7)-Ag(1) 112.1(5) C(9)-N(5)-B(1) 124.3(9) C(17)-N(8)-N(7) 110.1(7) N(4)-N(5)-B(1) 124.5(8) C(17)-N(8)-B(1) 124.9(8) C(20)-N(7)-N(8) 106.9(7) N(7)-N(8)-B(1) 124.9(8) C(20)-N(7)-Ag(1) 141.0(7) C(103)-O(101)-C(101) 48.1(15) Table A.50: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for Ag-2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ C(44) 10000 Ag(1) 5000 Ag(2) 9160(40) 720(50) 320(40) 10797(1) 1028(1) 48(1) 7050(1) 9226(1) 4211(1) 52(1) N(8) 7013(3) 8122(6) 4947(5) 55(3) N(11) 7047(3) 10056(5) 5232(5) 42(2) N(12) 6844(4) 12013(7) 6968(6) 64(3) N(10) 7298(3) 9752(5) 5757(5) 46(2) N(7) 7262(3) 8232(6) 5560(4) 48(2) N(6) 6646(3) 9381(6) 3285(5) 53(3) C(16) 7218(3) 7587(6) 5982(6) 45(3) C(19) 6824(4) 7421(7) 4999(6) 51(3) C(17) 6933(4) 7050(7) 5663(6) 53(3) C(27) 6865(4) 10725(6) 5469(5) 37(2) C(25) 7006(4) 10851(7) 6153(5) 47(3) C(26) 6918(4) 11525(7) 6609(6) 41(3) C(24) 7279(4) 10222(7) 6295(6) 47(3) N(14) 7810(3) 9105(6) 4424(5) 56(3) N(13) 7905(3) 9033(5) 5106(5) 39(2) C(35) 8195(4) 9095(6) 4073(7) 55(3) C(36) 8202(5) 9106(9) 3278(7) 62(4) C(10) 6368(4) 9461(7) 2888(6) 50(3) C(9) 6029(3) 9550(7) 2421(5) 42(3) 169 C(13) 6542(4) 11141(7) 2332(7) 57(3) C(14) 5775(5) 11722(7) 2298(7) 74(4) C(12) 6111(4) 11070(7) 1952(7) 50(3) C(11) 5892(4) 10252(7) 2037(5) 43(3) C(8) 5717(3) 8975(7) 2263(5) 41(3) N(5) 5524(3) 10091(6) 1687(5) 39(2) N(4) 5417(3) 9311(5) 1834(4) 42(2) C(7) 4599(5) 10615(7) -742(8) 76(4) C(5) 5000 10121(11) -832(10) 60(5) C(2) 5000 8629(14) -361(9) 58(5) C(18) 6781(4) 6289(9) 5952(7) 57(3) C(4) 5000 9440(13) -299(9) 52(5) C(1) 5000 8315(12) 321(8) 53(4) C(22) 6125(5) 7675(9) 4402(9) 104(6) C(28) 6569(4) 11284(6) 5019(6) 49(3) C(23) 6779(5) 7144(9) 3748(8) 81(4) C(39) 7871(8) 8467(14) 2986(9) 102(9) C(20) 6519(4) 7119(7) 4441(6) 61(3) C(21) 6382(6) 6254(8) 4540(8) 98(6) C(29) 6282(9) 11870(18) 5435(11) 108(11) C(32) 8348(5) 9032(8) 5175(7) 62(4) C(33) 8540(4) 9008(8) 4550(7) 58(3) C(30) 6219(8) 10731(10) 4687(15) 101(11) N(1) 5000 8918(8) 742(6) 42(3) N(9) 6678(4) 5707(8) 6215(6) 75(3) N(2) 5000 9644(10) 368(7) 53(4) B(2) 7560(5) 8963(8) 5683(8) 55(4) B(1) 5000 8920(11) 1531(9) 41(4) C(15) 6174(4) 1213(6) 64(4) C(6) 5000 9761(13) -1547(11) 84(7) C(34) 8977(4) 8943(8) 4425(7) 63(4) N(15) 9348(5) 8882(9) 4339(8) 102(4) C(31) 6871(7) 11728(15) 4492(13) 100(10) 11270(9) Ag(3) 10000 9649(3) 3782(2) 76(1) Ag(4) 10000 8998(3) 3873(3) 111(2) 170 C(3) 5000 8100(15) -934(14) 88(7) N(3) 5000 7645(13) -1443(11) 103(7) C(38) 7999(8) 9927(14) 3043(9) 88(8) C(37) 8653(7) 9061(19) 2999(11) 113(12) C(30A) 6519(11) 10940(17) 4254(19) 19(10) C(29A) 6147(11) 11310(20) 5326(18) 16(10) C(31A) 6825(14) 12100(20) 4990(20) 34(12) C(37A) 8511(16) 8320(30) 3050(20) 34(14) C(38A) 8428(16) 9810(30) 3000(20) 35(15) N(16) 5000 12110(14) 806(12) C(39A) 7730(20) 9170(40) 2960(30) 55(18) 120(7) C(43) 10000 9258(11) 1518(11) 60(5) C(41) 10000 8526(18) 1774(17) 118(9) C(40) 10000 8470(20) 2460(20) 145(11) N(18) 10000 9304(16) 2672(17) 147(10) C(42) 10000 7750(20) 1420(20) 163(14) N(17) 10000 9740(20) 2020(20) 182(13) ________________________________________________________________________________ Table A.51: Anisotropic displacement parameters (Å2x 103)for Ag-2. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ Ag(1) 41(1) 68(1) 35(1) 15(1) 0 0 Ag(2) 48(1) 68(1) 40(1) 0(1) -13(1) 12(1) N(8) 47(6) 59(7) 59(7) -11(5) -5(5) 15(5) N(11) 43(5) 53(5) 30(5) -9(4) -5(4) 11(5) N(12) 91(8) 56(6) 46(6) -7(6) 7(6) -13(6) N(10) 42(6) 59(6) 37(5) 7(5) -6(4) -4(5) N(7) 40(5) 71(6) 32(5) 7(5) -10(4) 22(5) N(6) 42(6) 66(7) 51(6) 0(5) -15(5) 9(5) C(16) 42(6) 48(6) 43(6) 2(6) -6(6) 16(5) C(19) 71(8) 43(7) 40(7) 0(5) -15(6) 19(6) 171 C(17) 58(8) 61(8) 39(7) 11(6) 7(6) 23(6) C(27) 35(6) 41(6) 36(6) 2(5) -6(5) -3(5) C(25) 50(7) 60(7) 30(6) -3(5) 7(5) -24(6) C(26) 45(7) 39(6) 40(7) 0(5) -5(5) -6(5) C(24) 52(7) 56(7) 33(6) 0(6) 0(5) -6(6) N(14) 45(6) 89(7) 34(5) -12(5) -4(4) 26(5) N(13) 27(5) 53(5) 38(5) -9(4) -5(4) 11(4) C(35) 52(7) 48(7) 64(9) -29(6) -13(6) 11(5) C(36) 63(9) 76(10) 47(8) 0(7) 0(7) -2(8) C(10) 46(7) 68(8) 36(6) -10(6) -10(6) 17(6) C(9) 35(6) 63(7) 29(6) 1(5) 6(5) 15(5) C(13) 49(8) 62(7) 61(8) 8(7) -10(6) -17(6) C(14) 95(11) 65(8) 63(9) 20(7) 19(8) -14(7) C(12) 41(7) 51(7) 58(8) 20(6) -8(6) -12(6) C(11) 47(7) 58(7) 25(6) 0(5) 1(5) 4(5) C(8) 34(6) 59(6) 30(6) 8(5) 1(5) 9(5) N(5) 34(5) 64(6) 20(4) 16(4) 6(4) 1(5) N(4) 45(5) 58(6) 24(4) 6(4) 4(4) -4(4) C(7) 90(10) 86(10) 51(8) 13(8) 21(9) 12(7) C(5) 18(7) 117(14) 43(10) 34(12) 0 0 C(2) 43(10) 100(16) 31(10) 2(10) 0 0 C(18) 41(7) 76(9) 54(8) 1(7) -4(6) 3(6) C(4) 27(9) 99(16) 30(10) 18(9) 0 0 C(1) 41(10) 89(13) 30(9) 13(9) 0 0 C(22) 95(12) 99(11) 117(16) -40(10) -57(11) 34(9) C(28) 57(8) 47(6) 44(7) 2(6) -3(6) 9(6) C(23) 103(12) 77(10) 62(9) -9(8) 27(9) -7(9) C(39) 160(20) 107(18) 39(10) -55(11) 16(12) -43(16) C(20) 77(9) 63(8) 44(7) -9(6) -17(6) 5(7) C(21) 150(16) 47(8) 96(12) -10(8) -39(11) -12(9) C(29) 130(20) 140(20) 59(13) -10(14) 0(12) 100(20) C(32) 62(9) 67(8) 58(9) 6(6) -29(7) -1(7) C(33) 46(8) 78(9) 50(8) -21(6) -12(6) 11(6) C(30) 89(18) 48(11) 170(30) -5(12) -93(18) -1(10) N(1) 32(7) 65(8) 29(7) 3(7) 0 0 172 N(9) 62(8) 95(9) 66(8) 2(7) 3(6) -6(6) N(2) 22(7) 102(11) 33(8) 15(8) 0 0 B(2) 64(10) 49(8) 52(9) 8(7) -22(8) 8(7) B(1) 34(10) 40(9) 49(11) 13(8) 0 0 C(15) 58(8) 105(11) 28(6) 12(7) -5(6) -27(7) C(6) 110(18) 84(16) 57(14) 15(12) 0 0 C(34) 29(7) 89(9) 72(10) -32(7) -6(6) 6(6) N(15) 76(10) 126(11) 105(12) -26(10) -2(9) 1(8) C(31) 98(16) 103(17) 100(20) 81(16) -13(13) -37(13) Ag(3) 59(2) 107(3) 61(2) -31(2) 0 0 Ag(4) 55(2) 107(3) 172(5) 47(3) 0 0 C(3) 77(14) 106(17) 81(19) 54(16) 0 0 N(3) 131(18) 121(17) 59(12) -10(12) 0 0 C(38) 120(20) 103(16) 39(10) -19(10) -12(10) 30(14) C(37) 55(12) 230(40) 58(13) -26(16) 20(10) 6(15) ______________________________________________________________________________ Table A.52: Bond lengths [Å] for Ag-2. C(44)-C(43) 1.55(9) N(10)-B(2) 1.537(17) Ag(1)-N(16) 2.22(2) N(7)-C(16) 1.352(13) Ag(1)-N(2) 2.298(16) N(7)-B(2) 1.530(17) Ag(1)-N(5) 2.352(8) N(6)-C(10) 1.149(13) Ag(1)-N(5)#1 2.352(8) C(16)-C(17) 1.387(16) Ag(2)-N(6) 2.188(10) C(16)-H(16) 0.9300 Ag(2)-N(8) 2.321(11) C(19)-C(17) 1.463(15) Ag(2)-N(14) 2.349(10) C(19)-C(20) 1.509(17) Ag(2)-N(11) 2.409(9) C(17)-C(18) 1.455(18) N(8)-C(19) 1.299(15) C(27)-C(25) 1.410(15) N(8)-N(7) 1.419(13) C(27)-C(28) 1.556(15) N(11)-C(27) 1.320(13) C(25)-C(24) 1.359(16) N(11)-N(10) 1.368(12) C(25)-C(26) 1.449(16) N(12)-C(26) 1.089(13) C(24)-H(24) 0.9300 N(10)-C(24) 1.302(13) N(14)-C(35) 1.352(15) 173 N(14)-N(13) 1.358(13) C(2)-C(1) 1.42(2) N(13)-C(32) 1.351(15) C(18)-N(9) 1.134(15) N(13)-B(2) 1.535(18) C(4)-N(2) 1.33(2) C(35)-C(33) 1.403(16) C(1)-N(1) 1.29(2) C(35)-C(36) 1.541(19) C(1)-H(1) 0.9300 C(36)-C(37) 1.47(2) C(22)-C(20) 1.511(18) C(36)-C(38) 1.56(3) C(22)-H(22A) 0.9600 C(36)-C(39) 1.56(2) C(22)-H(22B) 0.9600 C(10)-C(9) 1.377(15) C(22)-H(22C) 0.9600 C(9)-C(8) 1.377(16) C(28)-C(29) 1.53(2) C(9)-C(11) 1.442(15) C(28)-C(30) 1.54(2) C(13)-C(12) 1.505(16) C(28)-C(31) 1.56(2) C(13)-H(13A) 0.9600 C(23)-C(20) 1.559(18) C(13)-H(13B) 0.9600 C(23)-H(23A) 0.9600 C(13)-H(13C) 0.9600 C(23)-H(23B) 0.9600 C(14)-C(12) 1.629(18) C(23)-H(23C) 0.9600 C(14)-H(14A) 0.9600 C(20)-C(21) 1.503(19) C(14)-H(14B) 0.9600 C(21)-H(21A) 0.9600 C(14)-H(14C) 0.9600 C(21)-H(21B) 0.9600 C(12)-C(15) 1.482(16) C(21)-H(21C) 0.9600 C(12)-C(11) 1.519(16) C(32)-C(33) 1.345(18) C(11)-N(5) 1.331(13) C(32)-H(32) 0.9300 C(8)-N(4) 1.352(13) C(33)-C(34) 1.352(18) C(8)-H(8) 0.9300 N(1)-N(2) 1.405(19) N(5)-N(4) 1.363(12) N(1)-B(1) 1.53(2) N(4)-B(1) 1.537(14) B(2)-H(2) 0.9800 C(7)-C(5) 1.477(17) B(1)-N(4)#1 1.537(14) C(7)-H(7A) 0.9600 B(1)-H(1A) 0.9800 C(7)-H(7B) 0.9600 C(15)-H(15A) 0.9600 C(7)-H(7C) 0.9600 C(15)-H(15B) 0.9600 C(5)-C(7)#1 1.477(17) C(15)-H(15C) 0.9600 C(5)-C(6) 1.51(3) C(6)-H(6A) 0.9646 C(5)-C(4) 1.53(2) C(6)-H(6B) 0.9647 C(2)-C(4) 1.35(3) C(6)-H(6C) 0.9646 C(2)-C(3) 1.41(3) C(34)-N(15) 1.143(16) 174 N(15)-Ag(4) 2.183(15) N(16)-C(42)#3 1.59(4) N(15)-Ag(3) 2.587(16) C(43)-N(17) 1.26(4) Ag(3)-Ag(4) 1.092(5) C(43)-C(41) 1.31(3) Ag(3)-N(18) 2.22(3) C(41)-C(40) 1.33(4) Ag(3)-N(15)#2 2.587(16) C(41)-C(42) 1.46(4) Ag(4)-N(15)#2 2.183(15) C(40)-N(18) 1.45(4) Ag(4)-N(18) 2.38(3) N(18)-N(17) 1.45(4) C(3)-N(3) 1.24(3) C(42)-N(16)#4 1.59(4) Table A.53: Bond angles [°] for Ag-2. N(16)-Ag(1)-N(2) 135.1(7) C(16)-N(7)-B(2) 126.1(9) N(16)-Ag(1)-N(5) 126.4(4) N(8)-N(7)-B(2) 123.1(9) N(2)-Ag(1)-N(5) 83.6(4) C(10)-N(6)-Ag(2) 166.8(10) N(16)-Ag(1)-N(5)#1 126.4(4) N(7)-C(16)-C(17) 107.4(10) N(2)-Ag(1)-N(5)#1 83.6(4) N(7)-C(16)-H(16) 126.3 N(5)-Ag(1)-N(5)#1 85.1(4) C(17)-C(16)-H(16) 126.3 N(6)-Ag(2)-N(8) 124.7(4) N(8)-C(19)-C(17) 110.1(11) N(6)-Ag(2)-N(14) 134.7(4) N(8)-C(19)-C(20) 120.8(10) N(8)-Ag(2)-N(14) 82.7(3) C(17)-C(19)-C(20) 129.0(12) N(6)-Ag(2)-N(11) 127.1(3) C(16)-C(17)-C(18) 125.6(11) N(8)-Ag(2)-N(11) 86.9(3) C(16)-C(17)-C(19) 105.3(11) N(14)-Ag(2)-N(11) 84.8(3) C(18)-C(17)-C(19) 129.1(12) C(19)-N(8)-N(7) 106.5(10) N(11)-C(27)-C(25) 108.9(10) C(19)-N(8)-Ag(2) 140.7(8) N(11)-C(27)-C(28) 123.1(9) N(7)-N(8)-Ag(2) 112.8(7) C(25)-C(27)-C(28) 127.9(10) C(27)-N(11)-N(10) 106.5(9) C(24)-C(25)-C(27) 105.2(10) C(27)-N(11)-Ag(2) 140.1(7) C(24)-C(25)-C(26) 125.5(10) N(10)-N(11)-Ag(2) 113.4(6) C(27)-C(25)-C(26) 129.2(11) C(24)-N(10)-N(11) 110.5(9) N(12)-C(26)-C(25) 177.3(13) C(24)-N(10)-B(2) 127.3(10) N(10)-C(24)-C(25) 108.9(10) N(11)-N(10)-B(2) 122.2(9) N(10)-C(24)-H(24) 125.5 C(16)-N(7)-N(8) 110.6(9) C(25)-C(24)-H(24) 125.5 175 C(35)-N(14)-N(13) 107.7(9) C(8)-N(4)-B(1) 128.0(11) C(35)-N(14)-Ag(2) 139.6(8) N(5)-N(4)-B(1) 121.0(10) N(13)-N(14)-Ag(2) 112.7(7) C(7)-C(5)-C(7)#1 111.0(17) C(32)-N(13)-N(14) 108.0(10) C(7)-C(5)-C(6) 109.1(11) C(32)-N(13)-B(2) 127.2(10) C(7)#1-C(5)-C(6) 109.1(11) N(14)-N(13)-B(2) 124.8(9) C(7)-C(5)-C(4) 109.2(10) N(14)-C(35)-C(33) 108.3(11) C(7)#1-C(5)-C(4) 109.2(10) N(14)-C(35)-C(36) 120.8(11) C(6)-C(5)-C(4) 109.2(17) C(33)-C(35)-C(36) 130.6(12) C(4)-C(2)-C(3) 133.5(17) C(37)-C(36)-C(35) 112.2(14) C(4)-C(2)-C(1) 106.3(17) C(37)-C(36)-C(38) 107.7(17) C(3)-C(2)-C(1) 120.2(19) C(35)-C(36)-C(38) 107.3(11) N(9)-C(18)-C(17) 175.5(14) C(37)-C(36)-C(39) 115.4(16) N(2)-C(4)-C(2) 109.8(15) C(35)-C(36)-C(39) 110.2(12) N(2)-C(4)-C(5) 117.9(18) C(38)-C(36)-C(39) 103.4(16) C(2)-C(4)-C(5) 132.3(17) N(6)-C(10)-C(9) 178.9(14) N(1)-C(1)-C(2) 107.7(17) C(8)-C(9)-C(10) 125.8(10) N(1)-C(1)-H(1) 126.1 C(8)-C(9)-C(11) 104.1(9) C(2)-C(1)-H(1) 126.2 C(10)-C(9)-C(11) 129.9(11) C(29)-C(28)-C(30) 101.7(17) C(15)-C(12)-C(13) 110.0(10) C(29)-C(28)-C(31) 112.4(17) C(15)-C(12)-C(11) 111.2(10) C(30)-C(28)-C(31) 114.3(17) C(13)-C(12)-C(11) 113.3(9) C(29)-C(28)-C(27) 114.2(11) C(15)-C(12)-C(14) 109.3(10) C(30)-C(28)-C(27) 106.0(10) C(13)-C(12)-C(14) 106.9(11) C(31)-C(28)-C(27) 108.1(11) C(11)-C(12)-C(14) 105.9(9) C(21)-C(20)-C(19) 113.2(11) N(5)-C(11)-C(9) 110.1(10) C(21)-C(20)-C(22) 111.7(13) N(5)-C(11)-C(12) 119.3(9) C(19)-C(20)-C(22) 108.6(10) C(9)-C(11)-C(12) 130.5(10) C(21)-C(20)-C(23) 105.9(11) N(4)-C(8)-C(9) 108.4(10) C(19)-C(20)-C(23) 107.3(11) N(4)-C(8)-H(8) 125.8 C(22)-C(20)-C(23) 109.9(12) C(9)-C(8)-H(8) 125.8 C(33)-C(32)-N(13) 109.9(12) C(11)-N(5)-N(4) 106.5(8) C(33)-C(32)-H(32) 125.1 C(11)-N(5)-Ag(1) 138.0(8) N(13)-C(32)-H(32) 125.0 N(4)-N(5)-Ag(1) 115.0(6) C(32)-C(33)-C(34) 126.0(12) C(8)-N(4)-N(5) 110.9(9) C(32)-C(33)-C(35) 105.6(11) 176 C(34)-C(33)-C(35) 128.3(13) Ag(4)-Ag(3)-N(15)#2 56.5(4) C(1)-N(1)-N(2) 109.7(13) N(18)-Ag(3)-N(15)#2 106.1(6) C(1)-N(1)-B(1) 129.4(14) N(15)-Ag(3)-N(15)#2 99.7(7) N(2)-N(1)-B(1) 120.9(14) Ag(3)-Ag(4)-N(15) 98.8(4) C(4)-N(2)-N(1) 106.4(15) Ag(3)-Ag(4)-N(15)#2 98.8(4) C(4)-N(2)-Ag(1) 138.4(13) N(15)-Ag(4)-N(15)#2 129.9(9) N(1)-N(2)-Ag(1) 115.1(9) Ag(3)-Ag(4)-N(18) 68.4(7) N(7)-B(2)-N(13) 110.5(10) N(15)-Ag(4)-N(18) 115.0(4) N(7)-B(2)-N(10) 112.4(10) N(15)#2-Ag(4)-N(18) 115.0(4) N(13)-B(2)-N(10) 110.9(10) N(3)-C(3)-C(2) 179(2) N(7)-B(2)-H(2) 107.6 C(42)#3-N(16)-Ag(1) 120.6(18) N(13)-B(2)-H(2) 107.6 N(17)-C(43)-C(41) 107(3) N(10)-B(2)-H(2) 107.6 N(17)-C(43)-C(44) 147(3) N(1)-B(1)-N(4) 112.5(8) C(41)-C(43)-C(44) 106(3) N(1)-B(1)-N(4)#1 112.5(8) C(43)-C(41)-C(40) 117(3) N(4)-B(1)-N(4)#1 110.8(13) C(43)-C(41)-C(42) 130(3) N(1)-B(1)-H(1A) 106.9 C(40)-C(41)-C(42) 114(3) N(4)-B(1)-H(1A) 106.9 C(41)-C(40)-N(18) 102(3) N(4)#1-B(1)-H(1A) 106.9 C(40)-N(18)-N(17) 103(3) N(15)-C(34)-C(33) 178.0(17) C(40)-N(18)-Ag(3) 121(2) C(34)-N(15)-Ag(4) 160.9(15) N(17)-N(18)-Ag(3) 136(2) C(34)-N(15)-Ag(3) 140.4(14) C(40)-N(18)-Ag(4) 94(2) Ag(4)-N(15)-Ag(3) 24.7(2) N(17)-N(18)-Ag(4) 163(2) Ag(4)-Ag(3)-N(18) 84.4(8) Ag(3)-N(18)-Ag(4) Ag(4)-Ag(3)-N(15) 56.5(4) C(41)-C(42)-N(16)#4 160(3) N(18)-Ag(3)-N(15) 106.1(6) C(43)-N(17)-N(18) 111(3) 177 27.2(4) Table A.54: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for Ag-3. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ Ag(1) 3084(1) 4543(1) 1520(1) 44(1) Ag(2) 4384(1) 8701(1) 3453(1) 83(1) B(1) 2504(7) 2912(7) 1007(5) 35(3) B(2) 5534(12) 6606(12) 3693(9) 95(6) C(1) 2392(8) 2102(8) 200(6) 57(3) C(2) 1846(8) 1489(8) 135(5) 57(3) C(3) 1777(11) 1208(9) -372(7) 84(4) C(4) 1313(8) 1222(7) 702(7) 64(4) C(5) 533(9) 553(8) 951(8) 87(5) C(6) -416(9) 945(10) 651(9) 122(7) C(7) 1097(10) 727(7) 89(5) C(8) 252(10) 1610(7) 93(5) -357(8) 421(10) C(9) 2836(8) 1652(7) 1947(5) 51(3) C(10) 3223(10) 1597(8) 2449(5) 69(3) C(11) 3455(14) 2845(6) 94(5) C(12) 3345(11) 2472(8) 2440(5) 73(4) C(13) 3770(20) 2846(10) 2869(9) 150(10) C(14) 2833(18) 3536(12) 3167(7) 146(8) C(15) 4727(14) 3287(12) 2494(9) 133(8) C(16) 4230(30) 1994(14) 3319(11) 350(30) C(17) 683(6) 3748(7) 824(4) 46(3) C(18) 104(6) 4589(7) 848(4) 41(2) C(19) -898(8) 4857(8) 694(5) 56(3) C(20) 708(6) 5071(7) 1034(4) 42(2) C(21) 450(7) 6046(8) 1110(5) 59(3) C(22) -560(11) 6201(11) 1521(9) 137(8) C(23) 1267(9) 6355(9) 1318(8) 103(6) 6658(9) 484(7) 100(5) C(24) 252(12) 764(10) C(25) 6343(7) 6157(7) -152(4) 41(2) C(26) 5280(6) 6264(7) 46(4) 39(2) 178 C(27) 4778(6) 5690(7) 516(5) 39(2) C(28) 4839(7) 7030(7) -362(5) 48(3) C(29) 3726(7) 7403(8) -391(6) 63(3) C(30) 3637(9) 8220(11) -909(7) 114(6) C(31) 3257(9) 7724(9) 180(7) 88(4) C(32) 3208(8) 6644(9) -497(6) 78(4) C(33) 4541(9) 6027(8) 3082(6) 69(4) C(34) 3788(9) 6378(8) 2745(5) 64(3) C(35) 3367(9) 5875(8) 2426(6) 67(3) C(36) 3535(11) 7307(9) 2758(6) 78(4) C(37) 2712(17) 8079(12) 2461(9) 137(8) C(38) 3240(19) 8893(13) 2133(12) 201(13) C(39) 2000(20) 8537(17) 2967(11) 221(16) C(40) 2307(19) 7816(13) 2031(12) 221(15) C(41) 5092(11) 6345(9) 4801(8) 85(5) C(42) 4525(12) 6797(9) 5230(7) 86(5) C(43) 4427(17) 6408(11) 5853(10) 133(8) C(44) 4171(9) 7663(8) 4903(6) 63(3) C(45) 3528(12) 8490(10) 5135(7) 94(5) C(46) 2720(30) 8220(20) 5738(12) 390(30) C(47) 4220(20) 9126(19) 5047(19) 340(30) C(48) 2630(30) 8810(20) 4810(13) 350(30) C(49) 7320(20) 6870(20) 3234(15) 226(16) C(50) 7679(18) 7760(30) 2947(13) 229(17) N(1) 1523(6) 1646(6) 1091(4) 52(2) N(2) 2227(6) 2181(6) 757(4) 46(2) N(3) 1733(12) -799(6) 130(5) N(4) 3073(7) 3023(6) 1949(4) 60(3) N(5) 2727(5) 2509(5) 1652(3) 40(2) N(6) 3649(14) 87(9) 3147(6) 125(6) N(7) 1629(5) 4529(5) 1104(3) 40(2) N(8) 1606(5) 3722(5) 974(3) 35(2) N(9) -1733(6) 5072(7) 579(5) 77(3) N(10) 5574(6) 7358(5) -767(4) 48(2) N(11) 6504(5) 6815(5) -638(4) 38(2) 974(10) 179 N(12) 4349(6) 5234(6) 886(4) 52(2) N(13) 4108(9) 7493(7) 3094(5) 79(3) N(14) 4729(7) 6685(7) 3286(5) 73(3) N(15) 3078(8) 5450(7) 2179(5) 76(3) N(16) 4473(7) 7683(6) 4338(4) 54(2) N(17) 5037(7) 6852(7) 4292(5) 65(3) N(18) 4300(20) 6092(13) 6359(8) 222(12) N(19) 6085(13) 8087(15) 3256(8) 133(7) N(20) 6324(9) 7194(14) 3373(8) 122(6) N(21) 9720(30) 7660(40) 2620(50) 1190(110) C(55) 6550(30) 9964(18) 3233(10) 210(13) C(51) 8660(50) 7760(60) 2500(50) 890(100) C(54) 7610(40) 9820(30) 2180(20) 370(30) C(53) 6770(30) 9570(30) 2620(20) 310(30) C(52) 6820(30) 8460(30) 2989(14) 211(15) C(56) 6010(60) 9780(50) 2160(30) 530(60) ________________________________________________________________________________ Table A.55: Anisotropic displacement parameters (Å2x 103) for Ag-3 The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ Ag(1) 50(1) 34(1) 52(1) -6(1) -15(1) -15(1) Ag(2) 154(1) 45(1) 61(1) 4(1) -39(1) -39(1) B(1) 42(5) 29(6) 36(7) 2(5) -10(5) -16(5) B(2) 74(10) 80(12) 160(19) -65(13) -49(11) 2(9) C(1) 61(6) 53(8) 62(9) -10(6) -15(6) -20(5) C(2) 66(7) 66(8) 52(8) -26(7) -11(6) -20(6) C(3) 111(10) 68(10) 94(11) -30(9) -29(9) -30(8) C(4) 51(6) 39(7) 115(12) -25(7) -39(7) -1(5) C(5) 61(7) 51(8) 168(16) -24(9) -46(9) -23(6) C(6) 62(8) 75(11) 240(20) -21(12) -63(10) -13(7) C(7) 88(8) 44(8) 150(14) -23(9) -41(9) -17(7) C(8) 93(9) 103(12) 91(12) -20(10) 9(8) -58(9) 180 C(9) 75(7) 31(6) 54(7) -9(6) -16(6) -15(5) C(10) 118(10) 50(8) 48(8) 4(6) -40(7) -28(7) C(11) 192(16) 45(9) 57(9) 9(7) -51(10) -42(10) C(12) 150(11) 38(7) 46(8) 7(6) -53(8) -33(7) C(13) 330(30) 44(10) 113(15) 33(10) -131(18) -72(15) C(14) 290(30) 88(14) 81(13) -32(11) -17(14) -75(16) C(15) 183(17) 82(12) 180(19) -45(13) -143(16) 2(12) C(16) 830(70) 114(17) 240(30) 88(17) -400(40) -200(30) C(17) 38(5) 50(7) 52(7) -7(6) -11(5) -13(5) C(18) 33(4) 44(6) 44(6) 5(5) -7(4) -12(4) C(19) 58(6) 55(8) 52(7) 5(6) -19(5) -12(5) C(20) 38(5) 40(6) 45(7) -4(5) -7(4) -7(4) C(21) 35(5) 55(8) 87(9) -22(7) -10(5) 3(5) C(22) 89(11) 102(14) 240(20) -103(15) -5(12) -1(9) C(23) 66(7) 52(9) 210(18) -56(10) -36(9) -1(6) C(24) 142(13) 38(8) 118(14) 3(8) -54(11) -1(8) C(25) 42(5) 38(6) 46(7) -2(5) -19(5) -10(4) C(26) 38(5) 39(6) 46(7) -12(5) -12(5) -12(4) C(27) 30(4) 48(7) 41(7) -11(6) -3(5) -15(5) C(28) 37(5) 45(7) 61(8) -4(6) -7(5) -14(5) C(29) 33(5) 57(8) 81(9) 4(7) -3(6) 4(5) C(30) 54(7) 107(13) 141(15) 37(11) -27(8) 11(7) C(31) 62(7) 63(9) 123(13) -21(9) 3(8) 9(6) C(32) 44(6) 88(10) 104(11) -8(8) -29(6) -9(6) C(33) 75(7) 56(8) 89(10) -40(8) -27(7) 2(6) C(34) 91(8) 54(8) 59(8) -25(7) -19(7) -12(6) C(35) 72(7) 54(8) 82(10) -35(8) -7(7) -5(6) C(36) 113(10) 54(9) 76(10) -12(7) -31(8) -21(7) C(37) 209(19) 90(14) 140(16) -19(13) -127(16) 2(14) C(38) 240(20) 79(15) 290(30) 82(18) -130(20) -71(16) C(39) 270(30) 180(30) 170(20) -80(20) -70(20) 130(20) C(40) 310(30) 75(14) 340(40) -45(18) -260(30) 24(15) C(41) 121(11) 40(8) 117(13) -23(9) -80(10) -3(7) C(42) 155(13) 56(9) 65(10) 26(8) -72(10) -49(9) C(43) 240(20) 63(11) 138(19) 15(12) -115(17) -65(12) 181 C(44) 88(8) 38(7) 69(9) 6(7) -42(7) -14(6) C(45) 129(12) 66(10) 85(11) -19(9) -24(10) -6(9) C(46) 550(70) 240(30) 130(20) 40(20) 130(30) 200(40) C(47) 280(30) 180(30) 620(70) -290(40) 120(40) -130(30) C(48) 410(50) 360(40) 260(30) -230(30) -260(40) 330(40) C(49) 150(20) 280(30) 350(40) -240(30) -40(20) -60(20) C(50) 138(17) 340(40) 300(40) -240(30) 60(20) -150(20) N(1) 52(5) 50(6) 65(6) -14(5) -17(4) -20(4) N(2) 49(4) 47(6) 48(6) -8(5) -11(4) -21(4) N(3) 200(15) 121(13) 108(11) -45(10) -47(10) -68(11) N(4) 107(7) 30(5) 58(6) -5(5) -38(6) -24(5) N(5) 50(4) 28(5) 45(5) -3(4) -13(4) -11(4) N(6) 260(18) 53(8) 85(10) 19(7) -88(11) -58(10) N(7) 32(4) 38(5) 53(6) -10(4) -10(4) -5(3) N(8) 32(4) 30(5) 49(5) -12(4) -12(3) -9(3) N(9) 42(5) 101(9) 87(8) 0(6) -29(5) -11(5) N(10) 41(4) 41(5) 59(6) 4(4) -19(4) -6(4) N(11) 38(4) 29(5) 50(6) -6(4) -17(4) -7(3) N(12) 46(5) 59(6) 56(6) -8(5) -9(4) -21(4) N(13) 118(8) 51(7) 87(8) -15(6) -52(7) -20(6) N(14) 76(6) 64(7) 92(8) -37(7) -27(6) -6(5) N(15) 99(7) 62(7) 83(8) -38(7) -28(6) -8(6) N(16) 76(6) 35(6) 47(6) -3(5) -18(5) -3(4) N(17) 84(6) 43(6) 79(8) -17(6) -44(6) 1(5) N(18) 480(40) 134(16) 108(14) 64(12) -177(19) -160(20) N(19) 116(12) 190(20) 121(13) -65(14) 36(10) -106(14) N(20) 56(7) 169(17) 176(15) -123(14) 3(8) -18(9) N(21) 400(50) 900(120) 2000(300) -400(140) 880(110) -400(70) C(55) 370(40) 190(30) 103(17) -87(18) 20(20) -120(30) C(51) 370(60) 810(160) 1400(200) -400(150) 620(110) -400(90) C(54) 440(70) 300(50) 300(50) -80(40) 200(50) -120(50) C(53) 270(40) 240(40) 380(60) -50(40) 160(40) -190(40) C(52) 220(30) 270(40) 180(30) -200(30) -10(20) 30(30) C(56) 580(120) 460(90) 590(110) 200(70) -400(100) -240(80) _________________________________________________________________________________ 182 Table A.56: Bond lengths [Å] for Ag-3. Ag(1)-N(12) 2.302(10) C(7)-H(7C) 0.9600 Ag(1)-N(4) 2.324(9) C(8)-H(8A) 0.9600 Ag(1)-N(15) 2.314(10) C(8)-H(8B) 0.9600 Ag(1)-N(7) 2.363(7) C(8)-H(8C) 0.9600 Ag(2)-N(6)#1 2.164(14) C(9)-N(5) 1.330(12) Ag(2)-N(19) 2.276(19) C(9)-C(10) 1.359(14) Ag(2)-N(16) 2.299(10) C(9)-H(9) 0.9300 Ag(2)-N(13) 2.341(9) C(10)-C(12) 1.389(15) B(1)-N(2) 1.529(12) C(10)-C(11) 1.411(18) B(1)-N(8) 1.533(12) C(11)-N(6) 1.125(16) B(1)-N(11)#2 1.525(13) C(12)-N(4) 1.327(13) B(1)-N(5) 1.561(13) C(12)-C(13) 1.525(18) B(2)-N(20) 1.52(2) C(13)-C(14) 1.62(3) B(2)-N(17) 1.53(2) C(13)-C(16) 1.57(2) B(2)-N(14) 1.550(17) C(13)-C(15) 1.59(3) B(2)-H(2) 0.9800 C(14)-H(14A) 0.9602 C(1)-N(2) 1.313(13) C(14)-H(14B) 0.9602 C(1)-C(2) 1.370(14) C(14)-H(14C) 0.9602 C(1)-H(1) 0.9300 C(15)-H(15A) 0.9600 C(2)-C(4) 1.397(16) C(15)-H(15B) 0.9600 C(2)-C(3) 1.386(17) C(15)-H(15C) 0.9600 C(3)-N(3) 1.159(16) C(16)-H(16A) 1.1264 C(4)-N(1) 1.344(13) C(16)-H(16B) 1.1202 C(4)-C(5) 1.568(17) C(16)-H(16C) 1.1268 C(5)-C(8) 1.495(19) C(17)-N(8) 1.347(10) C(5)-C(6) 1.520(17) C(17)-C(18) 1.364(13) C(5)-C(7) 1.592(17) C(17)-H(17) 0.9300 C(6)-H(6A) 0.9600 C(18)-C(20) 1.400(13) C(6)-H(6B) 0.9600 C(18)-C(19) 1.414(13) C(6)-H(6C) 0.9600 C(19)-N(9) 1.167(11) C(7)-H(7A) 0.9600 C(20)-N(7) 1.349(11) C(7)-H(7B) 0.9600 C(20)-C(21) 1.510(14) 183 C(21)-C(23) 1.494(15) C(34)-C(36) 1.403(16) C(21)-C(22) 1.510(17) C(34)-C(35) 1.456(16) C(21)-C(24) 1.585(18) C(35)-N(15) 1.141(13) C(22)-H(22A) 0.9600 C(36)-N(13) 1.322(14) C(22)-H(22B) 0.9600 C(36)-C(37) 1.57(2) C(22)-H(22C) 0.9600 C(37)-C(40) 1.41(2) C(23)-H(23A) 0.9600 C(37)-C(39) 1.57(3) C(23)-H(23B) 0.9600 C(37)-C(38) 1.55(3) C(23)-H(23C) 0.9600 C(38)-H(38A) 0.9600 C(24)-H(24A) 0.9600 C(38)-H(38B) 0.9600 C(24)-H(24B) 0.9600 C(38)-H(38C) 0.9600 C(24)-H(24C) 0.9600 C(39)-H(39A) 0.9610 C(25)-N(11) 1.355(12) C(39)-H(39B) 0.9610 C(25)-C(26) 1.399(12) C(39)-H(39C) 0.9610 C(25)-H(25) 0.9300 C(40)-H(40A) 0.9603 C(26)-C(28) 1.431(14) C(40)-H(40B) 0.9604 C(26)-C(27) 1.402(14) C(40)-H(40C) 0.9604 C(27)-N(12) 1.130(12) C(41)-N(17) 1.271(16) C(28)-N(10) 1.326(12) C(41)-C(42) 1.369(19) C(28)-C(29) 1.492(12) C(41)-H(41) 0.9300 C(29)-C(30) 1.533(17) C(42)-C(44) 1.407(16) C(29)-C(31) 1.511(17) C(42)-C(43) 1.44(2) C(29)-C(32) 1.574(16) C(43)-N(18) 1.17(2) C(30)-H(30A) 0.9600 C(44)-N(16) 1.306(14) C(30)-H(30B) 0.9600 C(44)-C(45) 1.523(18) C(30)-H(30C) 0.9600 C(45)-C(48) 1.49(2) C(31)-H(31A) 0.9600 C(45)-C(47) 1.45(3) C(31)-H(31B) 0.9600 C(45)-C(46) 1.64(3) C(31)-H(31C) 0.9600 C(46)-H(46A) 1.1082 C(32)-H(32A) 0.9600 C(46)-H(46B) 1.1145 C(32)-H(32B) 0.9600 C(46)-H(46C) 1.1039 C(32)-H(32C) 0.9600 C(47)-H(47A) 0.9647 C(33)-N(14) 1.309(13) C(47)-H(47B) 0.9653 C(33)-C(34) 1.351(15) C(47)-H(47C) 0.9658 C(33)-H(33) 0.9300 C(48)-H(48A) 1.0355 184 C(48)-H(48B) 1.0292 N(11)-B(1)#2 1.525(13) C(48)-H(48C) 1.0317 N(13)-N(14) 1.371(13) C(49)-N(20) 1.33(2) N(16)-N(17) 1.353(12) C(49)-C(50) 1.52(4) N(19)-C(52) 1.23(4) C(50)-C(51) 1.51(4) N(19)-N(20) 1.32(2) C(50)-C(52) 1.40(4) N(21)-C(51) 1.46(11) N(1)-N(2) 1.392(11) C(55)-C(53) 1.65(5) N(4)-N(5) 1.372(10) C(54)-C(53) 1.43(4) N(6)-Ag(2)#3 2.164(14) C(53)-C(56) 1.56(6) N(7)-N(8) 1.356(9) C(53)-C(52) 1.73(5) N(10)-N(11) 1.389(9) Table A.57: Bond angles [°] for Ag-3. N(12)-Ag(1)-N(4) 130.7(3) N(20)-B(2)-N(14) 109.2(15) N(12)-Ag(1)-N(15) 88.8(4) N(17)-B(2)-N(14) 112.5(11) N(4)-Ag(1)-N(15) 114.6(4) N(20)-B(2)-H(2) 107.8 N(12)-Ag(1)-N(7) 115.6(3) N(17)-B(2)-H(2) 108.0 N(4)-Ag(1)-N(7) 87.4(3) N(14)-B(2)-H(2) 108.0 N(15)-Ag(1)-N(7) 124.1(3) N(2)-C(1)-C(2) 109.7(11) N(6)#1-Ag(2)-N(19) 127.2(7) N(2)-C(1)-H(1) 125.2 N(6)#1-Ag(2)-N(16) 137.8(5) C(2)-C(1)-H(1) 125.1 N(19)-Ag(2)-N(16) 83.2(6) C(1)-C(2)-C(4) 104.3(10) N(6)#1-Ag(2)-N(13) 121.6(4) C(1)-C(2)-C(3) 129.5(13) N(19)-Ag(2)-N(13) 84.9(5) C(4)-C(2)-C(3) 126.2(11) N(16)-Ag(2)-N(13) 85.5(3) N(3)-C(3)-C(2) 179.1(17) N(2)-B(1)-N(8) 107.8(7) N(1)-C(4)-C(2) 111.2(10) N(2)-B(1)-N(11)#2 108.7(8) N(1)-C(4)-C(5) 116.5(13) N(8)-B(1)-N(11)#2 111.1(8) C(2)-C(4)-C(5) 132.3(11) N(2)-B(1)-N(5) 109.4(8) C(8)-C(5)-C(6) 111.0(13) N(8)-B(1)-N(5) 112.6(8) C(8)-C(5)-C(4) 111.8(11) N(11)#2-B(1)-N(5) 107.2(7) C(6)-C(5)-C(4) 107.3(12) N(20)-B(2)-N(17) 111.2(11) C(8)-C(5)-C(7) 113.5(12) 185 C(6)-C(5)-C(7) 108.4(11) C(16)-C(13)-C(15) 107(2) C(4)-C(5)-C(7) 104.4(11) C(13)-C(14)-H(14A) 109.6 C(5)-C(6)-H(6A) 109.4 C(13)-C(14)-H(14B) 109.4 C(5)-C(6)-H(6B) 109.4 H(14A)-C(14)-H(14B) 109.5 H(6A)-C(6)-H(6B) 109.5 C(13)-C(14)-H(14C) 109.5 C(5)-C(6)-H(6C) 109.6 H(14A)-C(14)-H(14C) 109.5 H(6A)-C(6)-H(6C) 109.5 H(14B)-C(14)-H(14C) 109.5 H(6B)-C(6)-H(6C) 109.5 C(13)-C(15)-H(15A) 109.4 C(5)-C(7)-H(7A) 109.4 C(13)-C(15)-H(15B) 109.4 C(5)-C(7)-H(7B) 109.5 H(15A)-C(15)-H(15B) 109.5 H(7A)-C(7)-H(7B) 109.5 C(13)-C(15)-H(15C) 109.6 C(5)-C(7)-H(7C) 109.5 H(15A)-C(15)-H(15C) 109.5 H(7A)-C(7)-H(7C) 109.5 H(15B)-C(15)-H(15C) 109.5 H(7B)-C(7)-H(7C) 109.5 C(13)-C(16)-H(16A) 125.4 C(5)-C(8)-H(8A) 109.7 C(13)-C(16)-H(16B) 124.7 C(5)-C(8)-H(8B) 109.4 H(16A)-C(16)-H(16B) H(8A)-C(8)-H(8B) 109.5 C(13)-C(16)-H(16C) C(5)-C(8)-H(8C) 109.3 H(16A)-C(16)-H(16C) 89.9 H(8A)-C(8)-H(8C) 109.5 H(16B)-C(16)-H(16C) 90.3 H(8B)-C(8)-H(8C) 109.5 N(8)-C(17)-C(18) 108.1(8) N(5)-C(9)-C(10) 108.6(9) N(8)-C(17)-H(17) 125.9 N(5)-C(9)-H(9) 125.6 C(18)-C(17)-H(17) 126.0 C(10)-C(9)-H(9) 125.7 C(17)-C(18)-C(20) 106.5(8) C(9)-C(10)-C(12) 105.8(10) C(17)-C(18)-C(19) 122.8(9) C(9)-C(10)-C(11) 121.9(11) C(20)-C(18)-C(19) 130.7(10) C(12)-C(10)-C(11) 132.3(11) N(9)-C(19)-C(18) 178.7(13) N(6)-C(11)-C(10) 177.9(15) N(7)-C(20)-C(18) 108.2(8) N(4)-C(12)-C(10) 109.7(9) N(7)-C(20)-C(21) 123.5(8) N(4)-C(12)-C(13) 119.2(10) C(18)-C(20)-C(21) 128.1(8) C(10)-C(12)-C(13) 131.0(11) C(23)-C(21)-C(22) 110.1(11) C(12)-C(13)-C(14) 107.4(18) C(23)-C(21)-C(20) 114.8(8) C(12)-C(13)-C(16) 105.8(12) C(22)-C(21)-C(20) 109.8(10) C(14)-C(13)-C(16) 114(2) C(23)-C(21)-C(24) 108.9(11) C(12)-C(13)-C(15) 106.5(16) C(22)-C(21)-C(24) 105.8(11) C(14)-C(13)-C(15) 115.5(13) C(20)-C(21)-C(24) 106.9(9) 186 90.2 125.4 C(21)-C(22)-H(22A) 109.4 C(29)-C(30)-H(30B) 109.4 C(21)-C(22)-H(22B) 109.6 H(30A)-C(30)-H(30B) 109.5 H(22A)-C(22)-H(22B) 109.5 C(29)-C(30)-H(30C) 109.7 C(21)-C(22)-H(22C) 109.5 H(30A)-C(30)-H(30C) 109.5 H(22A)-C(22)-H(22C) 109.5 H(30B)-C(30)-H(30C) 109.5 H(22B)-C(22)-H(22C) 109.5 C(29)-C(31)-H(31A) 109.5 C(21)-C(23)-H(23A) 109.5 C(29)-C(31)-H(31B) 109.4 C(21)-C(23)-H(23B) 109.4 H(31A)-C(31)-H(31B) 109.5 H(23A)-C(23)-H(23B) 109.5 C(29)-C(31)-H(31C) 109.5 C(21)-C(23)-H(23C) 109.5 H(31A)-C(31)-H(31C) 109.5 H(23A)-C(23)-H(23C) 109.5 H(31B)-C(31)-H(31C) 109.5 H(23B)-C(23)-H(23C) 109.5 C(29)-C(32)-H(32A) 109.6 C(21)-C(24)-H(24A) 109.4 C(29)-C(32)-H(32B) 109.4 C(21)-C(24)-H(24B) 109.8 H(32A)-C(32)-H(32B) 109.5 H(24A)-C(24)-H(24B) 109.5 C(29)-C(32)-H(32C) 109.4 C(21)-C(24)-H(24C) 109.2 H(32A)-C(32)-H(32C) 109.5 H(24A)-C(24)-H(24C) 109.5 H(32B)-C(32)-H(32C) 109.5 H(24B)-C(24)-H(24C) 109.5 N(14)-C(33)-C(34) 108.2(11) N(11)-C(25)-C(26) 107.5(8) N(14)-C(33)-H(33) 125.9 N(11)-C(25)-H(25) 126.2 C(34)-C(33)-H(33) 125.9 C(26)-C(25)-H(25) 126.3 C(33)-C(34)-C(36) 105.9(10) C(25)-C(26)-C(28) 104.9(9) C(33)-C(34)-C(35) 125.6(11) C(25)-C(26)-C(27) 126.1(9) C(36)-C(34)-C(35) 128.4(11) C(28)-C(26)-C(27) 128.9(8) N(15)-C(35)-C(34) 176.7(13) N(12)-C(27)-C(26) 177.9(10) N(13)-C(36)-C(34) 109.3(11) N(10)-C(28)-C(26) 110.4(8) N(13)-C(36)-C(37) 120.1(12) N(10)-C(28)-C(29) 121.4(9) C(34)-C(36)-C(37) 130.6(12) C(26)-C(28)-C(29) 128.0(9) C(40)-C(37)-C(39) 122(2) C(30)-C(29)-C(31) 108.9(11) C(40)-C(37)-C(36) 113.0(15) C(30)-C(29)-C(28) 108.8(9) C(39)-C(37)-C(36) 107.1(14) C(31)-C(29)-C(28) 107.4(10) C(40)-C(37)-C(38) 106(2) C(30)-C(29)-C(32) 109.6(11) C(39)-C(37)-C(38) 97.7(18) C(31)-C(29)-C(32) 113.2(10) C(36)-C(37)-C(38) 108.5(17) C(28)-C(29)-C(32) 108.8(9) C(37)-C(38)-H(38A) 110.5 C(29)-C(30)-H(30A) 109.4 C(37)-C(38)-H(38B) 109.0 187 H(38A)-C(38)-H(38B) 109.5 C(45)-C(46)-H(46C) 122.4 C(37)-C(38)-H(38C) 108.9 H(46A)-C(46)-H(46C) 93.5 H(38A)-C(38)-H(38C) 109.5 H(46B)-C(46)-H(46C) 93.4 H(38B)-C(38)-H(38C) 109.5 C(45)-C(47)-H(47A) 109.0 C(37)-C(39)-H(39A) 109.5 C(45)-C(47)-H(47B) 110.1 C(37)-C(39)-H(39B) 109.8 H(47A)-C(47)-H(47B) 109.0 H(39A)-C(39)-H(39B) 109.4 C(45)-C(47)-H(47C) 110.9 C(37)-C(39)-H(39C) 109.4 H(47A)-C(47)-H(47C) 108.7 H(39A)-C(39)-H(39C) 109.4 H(47B)-C(47)-H(47C) 109.0 H(39B)-C(39)-H(39C) 109.4 C(45)-C(48)-H(48A) 117.3 C(37)-C(40)-H(40A) 108.5 C(45)-C(48)-H(48B) 116.2 C(37)-C(40)-H(40B) 110.0 H(48A)-C(48)-H(48B) 101.1 H(40A)-C(40)-H(40B) 109.5 C(45)-C(48)-H(48C) 116.7 C(37)-C(40)-H(40C) 110.0 H(48A)-C(48)-H(48C) 101.3 H(40A)-C(40)-H(40C) 109.4 H(48B)-C(48)-H(48C) 101.6 H(40B)-C(40)-H(40C) 109.4 N(20)-C(49)-C(50) 98(2) N(17)-C(41)-C(42) 109.9(12) C(51)-C(50)-C(52) 129(5) N(17)-C(41)-H(41) 125.1 C(51)-C(50)-C(49) 119(4) C(42)-C(41)-H(41) 125.0 C(52)-C(50)-C(49) 108(2) C(41)-C(42)-C(44) 103.0(12) C(4)-N(1)-N(2) 104.3(9) C(41)-C(42)-C(43) 123.6(15) C(1)-N(2)-N(1) 110.5(8) C(44)-C(42)-C(43) 133.4(17) C(1)-N(2)-B(1) 127.2(9) N(18)-C(43)-C(42) 177(2) N(1)-N(2)-B(1) 120.6(8) N(16)-C(44)-C(42) 109.9(12) C(12)-N(4)-N(5) 106.5(8) N(16)-C(44)-C(45) 121.9(11) C(12)-N(4)-Ag(1) 135.3(7) C(42)-C(44)-C(45) 128.2(14) N(5)-N(4)-Ag(1) 118.2(6) C(48)-C(45)-C(47) 116(3) C(9)-N(5)-N(4) 109.4(8) C(48)-C(45)-C(44) 106.8(13) C(9)-N(5)-B(1) 129.6(8) C(47)-C(45)-C(44) 105.9(15) N(4)-N(5)-B(1) 119.7(8) C(11)-N(6)-Ag(2)#3 160.2(16) C(48)-C(45)-C(46) 88(2) C(47)-C(45)-C(46) 126(2) C(20)-N(7)-N(8) 107.5(7) C(44)-C(45)-C(46) 112.6(15) C(20)-N(7)-Ag(1) 137.0(6) C(45)-C(46)-H(46A) 122.8 N(8)-N(7)-Ag(1) 114.6(5) C(45)-C(46)-H(46B) 123.5 C(17)-N(8)-N(7) 109.7(7) 93.0 C(17)-N(8)-B(1) 126.3(8) H(46A)-C(46)-H(46B) 188 N(7)-N(8)-B(1) 124.0(6) N(16)-N(17)-B(2) 122.0(11) C(28)-N(10)-N(11) 106.6(8) C(52)-N(19)-N(20) 113(2) C(25)-N(11)-N(10) 110.6(7) C(52)-N(19)-Ag(2) 130(2) C(25)-N(11)-B(1)#2 131.3(7) N(20)-N(19)-Ag(2) 116.3(11) N(10)-N(11)-B(1)#2 117.9(8) N(19)-N(20)-C(49) 114(2) C(27)-N(12)-Ag(1) 163.9(8) N(19)-N(20)-B(2) 122.1(14) C(36)-N(13)-N(14) 105.6(10) C(49)-N(20)-B(2) 124(2) C(36)-N(13)-Ag(2) 141.4(9) N(21)-C(51)-C(50) 128(9) N(14)-N(13)-Ag(2) 113.0(7) C(54)-C(53)-C(55) 118(4) C(33)-N(14)-N(13) 111.0(9) C(54)-C(53)-C(56) 93(5) C(33)-N(14)-B(2) 126.7(11) C(55)-C(53)-C(56) 126(5) N(13)-N(14)-B(2) 122.3(10) C(54)-C(53)-C(52) 120(4) C(35)-N(15)-Ag(1) 160.0(10) C(55)-C(53)-C(52) 93(3) C(44)-N(16)-N(17) 106.2(9) C(56)-C(53)-C(52) 108(3) C(44)-N(16)-Ag(2) 138.9(8) N(19)-C(52)-C(50) 106(3) N(17)-N(16)-Ag(2) 114.8(8) N(19)-C(52)-C(53) 127(3) C(41)-N(17)-N(16) 110.9(11) C(50)-C(52)-C(53) 125(4) C(41)-N(17)-B(2) 127.1(12) Table A.58: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for Ag-4 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ Ag(1) 1454(1) 7192(1) 1836(1) 41(1) B(1) 856(4) 9068(8) 1383(7) 35(3) C(1) 1748(5) 9974(7) 1790(6) 40(3) C(2) 2321(4) 9848(7) 2160(6) 42(3) C(3) 2725(5) 10499(8) 2400(7) 49(3) C(4) 2384(4) 8945(6) 2263(6) 42(3) C(5) 2946(4) 8435(8) 2640(8) 72(4) C(6) 3292(8) 8702(13) 2141(14) 91(7) C(7) 3322(7) 8853(13) 3574(11) 107(8) 189 C(8) 2853(7) 7524(12) 2800(20) 167(17) C(9) 705(4) 9178(7) 2724(7) 44(3) C(10) 762(4) 8678(8) 3395(7) 51(3) C(11) 776(5) 8985(9) 4180(8) 64(4) C(12) 870(4) 7844(7) 3179(8) 50(3) C(13) 987(6) 7002(9) 3683(8) 78(4) C(14) 1617(7) 7038(13) 4317(10) 140(8) C(15) 627(6) 6967(9) 4182(9) 94(5) C(16) 867(7) 6225(9) 3107(10) 108(6) C(17) 224(4) 8738(6) -169(7) 38(3) C(18) 109(4) 8059(7) -730(6) 39(3) C(19) -300(5) 8096(8) -1591(8) 56(3) C(20) 465(4) 7384(7) -243(6) 38(3) C(21) 531(4) 6483(6) -529(6) 48(3) C(22) 762(8) 6539(10) -1195(11) 94(7) C(23) -93(7) 6057(11) -1009(12) 95(7) C(24) 906(8) 5874(10) 227(9) 75(6) C(101) 2240(14) 110(20) 4840(20) 251(13) C(102) 2448(16) 1370(30) 4530(30) 300(18) C(103) 1987(18) 440(30) 3910(30) 317(19) C(6A) 2864(18) 7670(30) 1880(30) 16(16) C(7A) 3430(40) 8890(60) 2710(60) 80(30) C(8A) 2950(20) 7930(40) 3320(30) 34(19) C(22A) 1220(20) 6400(40) -310(40) 40(20) C(23A) 150(20) 6400(30) -1540(30) 31(19) C(24A) 500(30) 5880(40) 100(40) 35(19) N(1) 1885(3) 8572(5) 1975(5) 41(2) N(2) 1493(3) 9219(5) 1686(4) 35(2) N(3) 3056(4) 11044(6) 2630(6) 59(3) N(4) 874(3) 7861(5) 2412(5) 42(2) N(5) 772(3) 8700(5) 2142(5) 36(2) N(6) 790(5) 9230(9) 4798(7) 96(4) N(7) 762(3) 7651(5) 553(5) 34(2) N(8) 605(3) 8489(5) 588(5) 34(2) N(9) -633(5) 8160(8) -2275(7) 88(4) 190 O(101) 1745(10) 1090(16) 4593(15) 283(10) ________________________________________________________________________________ TableA.59: Anisotropic displacement parameters (Å2x 103) for Ag-4. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ] ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ Ag(1) 38(1) 34(1) 46(1) 6(1) 14(1) 7(1) B(1) 23(7) 39(7) 36(7) -1(6) 8(6) 8(6) C(1) 47(8) 24(7) 42(7) 0(5) 13(6) -2(6) C(2) 39(8) 45(8) 36(6) -1(5) 12(6) -3(6) C(3) 52(8) 44(8) 47(7) -11(6) 18(6) -9(7) C(4) 41(8) 31(7) 45(7) -2(5) 11(6) 3(6) C(5) 27(7) 67(9) 102(11) -6(8) 9(7) 1(7) C(6) 65(12) 129(17) 101(16) -4(13) 57(12) 20(11) C(7) 66(12) 118(17) 89(14) 31(12) -13(11) 11(11) C(8) 34(11) 36(12) 330(40) 30(18) -14(16) 19(9) C(9) 34(6) 48(7) 48(7) -5(7) 15(6) -1(5) C(10) 28(6) 80(10) 43(8) -6(8) 15(5) 0(6) C(11) 43(7) 104(11) 49(9) -11(8) 25(7) -14(7) C(12) 39(7) 54(9) 57(8) 17(7) 21(6) 6(6) C(13) 88(11) 96(11) 71(9) 38(9) 55(9) 22(8) C(14) 85(13) 230(20) 104(13) 112(14) 40(11) 52(13) C(15) 122(13) 104(11) 88(10) 17(8) 77(10) -6(9) C(16) 183(17) 65(10) 139(14) 42(10) 128(13) 26(10) C(17) 32(6) 38(7) 40(7) 11(6) 12(6) 15(5) C(18) 32(6) 47(7) 29(7) -1(6) 6(6) 4(5) C(19) 50(8) 70(9) 41(9) -6(6) 14(8) 7(6) C(20) 33(6) 49(8) 30(7) -7(6) 13(6) -10(6) C(21) 49(7) 42(7) 52(7) -11(6) 20(6) -2(6) C(22) 149(19) 78(12) 110(16) -10(10) 108(16) 8(12) C(23) 65(11) 84(13) 120(16) -49(11) 26(11) -25(9) C(24) 77(15) 58(11) 64(11) 2(8) 8(10) 20(9) 191 N(1) 30(6) 33(5) 53(5) -3(4) 11(4) -6(5) N(2) 40(6) 26(6) 36(5) 3(4) 14(4) 10(5) N(3) 48(6) 45(6) 74(7) -12(5) 15(5) -12(5) N(4) 57(6) 39(6) 38(6) 8(4) 28(5) 4(4) N(5) 38(5) 40(6) 34(5) 0(5) 18(4) 6(4) N(6) 90(9) 149(12) 69(8) -43(8) 53(7) -44(8) N(7) 30(5) 33(6) 37(6) -3(4) 12(4) 2(4) N(8) 34(5) 33(6) 34(6) 0(4) 14(5) 3(4) N(9) 75(8) 104(9) 48(7) 4(6) -9(7) 13(7) _______________________________________________________________________________ Table A.60: Bond distances [Å] for Ag-4. Ag(1)-N(3)#1 2.158(10) C(11)-N(6) 1.128(14) Ag(1)-N(7) 2.300(8) C(12)-C(13) 1.529(16) Ag(1)-N(1) 2.385(8) C(13)-C(16) 1.512(18) Ag(1)-N(4) 2.396(8) C(13)-C(15) 1.538(16) B(1)-N(8) 1.538(13) C(13)-C(14) 1.55(2) B(1)-N(2) 1.540(13) C(17)-N(8) 1.322(11) B(1)-N(5) 1.543(13) C(17)-C(18) 1.379(13) C(1)-N(2) 1.322(12) C(18)-C(20) 1.416(13) C(1)-C(2) 1.373(13) C(18)-C(19) 1.418(16) C(2)-C(3) 1.392(16) C(19)-N(9) 1.137(14) C(2)-C(4) 1.412(14) C(20)-N(7) 1.329(11) C(3)-N(3) 1.153(13) C(20)-C(21) 1.520(14) C(4)-N(1) 1.318(12) C(21)-C(22) 1.526(17) C(4)-C(5) 1.550(15) C(21)-C(24) 1.572(18) C(5)-C(8) 1.48(2) C(21)-C(23) 1.626(18) C(5)-C(6) 1.56(2) C(101)-C(103) 1.55(5) C(5)-C(7) 1.63(2) C(12)-N(4) 1.341(13) C(9)-N(5) 1.328(12) C(101)-O(101) 1.92(4) C(9)-C(10) 1.356(14) C(102)-C(103) 1.90(5) C(10)-C(12) 1.409(14) C(103)-O(101) 1.87(4) C(10)-C(11) 1.435(17) N(1)-N(2) 1.370(10) 192 N(3)-Ag(1)#2 2.158(10) N(4)-N(5) 1.369(10) N(7)-N(8) 1.372(10) Table A.61: Bond angles [°] for Ag-4. (3)#1-Ag(1)-N(7) 138.4(3) N(4)-C(12)-C(13) 120.2(11) N(3)#1-Ag(1)-N(1) 121.8(3) C(10)-C(12)-C(13) 130.0(12) 87.8(3) C(16)-C(13)-C(12) 111.5(11) 123.1(3) C(16)-C(13)-C(15) 110.2(12) N(7)-Ag(1)-N(4) 83.9(3) C(12)-C(13)-C(15) 109.7(11) N(1)-Ag(1)-N(4) 86.0(3) C(16)-C(13)-C(14) 110.7(13) N(8)-B(1)-N(2) 112.1(8) C(12)-C(13)-C(14) 105.4(11) N(8)-B(1)-N(5) 113.0(8) C(15)-C(13)-C(14) 109.3(11) N(2)-B(1)-N(5) 107.6(7) N(8)-C(17)-C(18) 108.9(8) N(2)-C(1)-C(2) 109.1(9) C(17)-C(18)-C(20) 104.7(8) C(1)-C(2)-C(3) 125.3(10) C(17)-C(18)-C(19) 123.6(10) C(1)-C(2)-C(4) 104.2(9) C(20)-C(18)-C(19) 131.7(10) C(3)-C(2)-C(4) 130.5(10) N(9)-C(19)-C(18) 177.0(13) N(3)-C(3)-C(2) 177.0(11) N(7)-C(20)-C(18) 109.4(8) N(1)-C(4)-C(2) 110.2(9) N(7)-C(20)-C(21) 122.0(9) N(1)-C(4)-C(5) 123.1(9) C(18)-C(20)-C(21) 128.5(9) C(2)-C(4)-C(5) 126.7(10) C(20)-C(21)-C(22) 109.7(9) C(8)-C(5)-C(4) 111.2(10) C(20)-C(21)-C(24) 113.3(9) C(8)-C(5)-C(6) 122.7(17) C(22)-C(21)-C(24) 111.2(12) C(4)-C(5)-C(6) 107.9(11) C(20)-C(21)-C(23) 107.9(9) C(8)-C(5)-C(7) 105.7(17) C(22)-C(21)-C(23) 106.2(11) C(4)-C(5)-C(7) 105.9(11) C(24)-C(21)-C(23) 108.2(12) C(6)-C(5)-C(7) 101.7(13) C(103)-C(101)-O(101) 64(2) N(5)-C(9)-C(10) 109.7(10) C(101)-C(103)-O(101) 68(2) C(9)-C(10)-C(12) 104.7(9) C(101)-C(103)-C(102) 77(3) C(9)-C(10)-C(11) 125.4(12) O(101)-C(103)-C(102) 62.1(18) C(12)-C(10)-C(11) 129.4(12) C(4)-N(1)-N(2) 106.6(8) N(6)-C(11)-C(10) 179.4(14) C(4)-N(1)-Ag(1) 141.6(7) N(4)-C(12)-C(10) 109.7(9) N(2)-N(1)-Ag(1) 111.7(6) N(7)-Ag(1)-N(1) N(3)#1-Ag(1)-N(4) 193 C(1)-N(2)-N(1) 109.9(8) N(4)-N(5)-B(1) 124.5(8) C(1)-N(2)-B(1) 126.5(9) C(20)-N(7)-N(8) 106.9(7) N(1)-N(2)-B(1) 123.3(8) C(20)-N(7)-Ag(1) 141.0(7) C(3)-N(3)-Ag(1)#2 167.0(9) N(8)-N(7)-Ag(1) 112.1(5) C(12)-N(4)-N(5) 106.0(8) C(17)-N(8)-N(7) 110.1(7) C(12)-N(4)-Ag(1) 133.6(7) C(17)-N(8)-B(1) 124.9(8) N(5)-N(4)-Ag(1) 109.5(6) N(7)-N(8)-B(1) 124.9(8) C(9)-N(5)-N(4) 109.8(8) C(103)-O(101)-C(101) C(9)-N(5)-B(1) 124.3(9) 48.1(15) Table A.62: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for {(Hpz)4Cu(ClO4)}n. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ C(1) 3520(2) 8549(6) 7628(6) 44(2) C(2) 3392(2) 7558(6) 7575(6) 43(2) C(3) 3261(2) 7054(7) 6653(7) 60(3) C(4) 3444(2) 7155(6) 8573(6) 38(2) C(5) 3362(2) 6141(6) 9021(7) 47(2) C(6) 3433(2) 6181(7) 10198(8) 83(3) C(7) 3534(3) 5258(7) 8632(10) 106(4) C(8) 3038(2) 5965(8) 8727(9) 98(4) C(9) 3294(2) 11416(6) 8378(6) 44(2) C(10) 3000(2) 11370(7) 8514(6) 52(2) C(11) 2771(2) 11983(8) 7944(7) 67(3) C(12) 2982(2) 10650(7) 9283(6) 46(2) C(13) 2732(2) 10230(8) 9777(6) 62(3) C(14) 2788(3) 9146(16) 10087(16) 265(15) C(15) 2711(5) 10830(20) 10662(17) 390(20) C(16) 2464(2) 10183(12) 9037(11) 146(6) C(17) 4122(1) 12398(6) 8897(6) 35(2) 194 C(18) 4212(2) 13232(6) 9559(5) 35(2) C(19) 4306(2) 14211(7) 9264(6) 48(2) C(20) 4198(1) 12881(6) 10539(5) 30(2) C(21) 4255(2) 13437(5) 11567(5) 34(2) C(22) 4204(2) 12705(6) 12434(5) 40(2) C(23) 4035(2) 14349(6) 11507(6) 51(2) C(24) 4567(2) 13862(6) 11781(6) 46(2) C(25) 4487(2) 9671(5) 8693(5) 30(2) C(26) 4727(2) 9057(6) 9083(5) 34(2) C(27) 5014(2) 9100(6) 8808(5) 40(2) C(28) 4639(2) 8434(6) 9839(5) 32(2) C(29) 4796(2) 7592(6) 10529(6) 38(2) C(30) 5060(2) 8097(6) 11177(6) 50(2) C(31) 4906(2) 6763(6) 9827(6) 51(2) C(32) 4594(2) 7089(6) 11175(6) 48(2) Cl(1) 3808(1) 9153(2) 11400(1) 40(1) Cu(1) 3859(1) 10153(1) 9056(1) 35(1) N(1) 3651(1) 8764(5) 8578(4) 33(2) N(2) 3600(1) 7906(5) 9128(5) 38(2) N(3) 3175(2) 6649(6) 5904(7) 78(3) N(4) 3450(1) 10780(5) 9030(4) 37(2) N(5) 3255(1) 10326(5) 9565(4) 39(2) N(6) 2598(2) 12463(8) 7463(7) 104(3) N(7) 4053(1) 11591(5) 9430(4) 33(1) N(8) 4100(1) 11910(4) 10430(4) 32(1) N(9) 4376(2) 15019(6) 9033(6) 77(3) N(10) 4265(1) 9466(4) 9169(4) 29(1) N(11) 4358(1) 8705(4) 9857(4) 30(1) N(12) 5246(2) 9129(5) 8607(5) 51(2) O(1) 3896(1) 10026(3) 10773(4) 38(1) O(2) 3942(1) 8178(3) 11070(4) 36(1) O(3) 3907(1) 9370(4) 12482(3) 44(1) O(4) 3489(1) 9051(4) 11185(4) 40(1) ________________________________________________________________________________ 195 Anisotropic displacement parameters (Å2x 103) for {(Hpz)4Cu(ClO4)}n. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. Table A.63: ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ C(1) 31(5) 58(6) 40(5) 4(4) -4(4) -4(4) C(2) 25(4) 51(6) 51(6) 0(4) 1(4) -8(4) C(3) 55(6) 60(7) 60(7) -2(5) -11(5) -19(5) C(4) 24(4) 39(5) 52(5) 0(4) 4(4) -2(4) C(5) 32(5) 42(6) 64(6) 8(4) -2(4) -7(4) C(6) 114(9) 47(6) 87(8) 20(5) 6(7) -22(6) C(7) 114(10) 46(7) 171(12) 20(7) 62(9) 8(6) C(8) 41(6) 109(9) 139(11) 37(8) -7(6) -29(6) C(9) 48(5) 52(6) 35(5) 8(4) 11(4) 9(4) C(10) 39(5) 78(7) 37(5) 3(5) -3(4) 25(5) C(11) 50(6) 95(8) 54(6) 18(6) 5(5) 29(6) C(12) 30(5) 73(6) 35(5) 10(4) 5(4) 9(4) C(13) 25(5) 110(8) 50(6) 19(6) 9(4) 0(5) C(14) 45(8) 340(30) 410(30) 320(30) 37(12) 9(12) C(15) 370(30) 560(40) 320(30) -350(30) 330(30) -400(30) C(16) 56(8) 206(16) 164(13) 82(12) -23(8) -32(9) C(17) 30(4) 39(5) 35(5) 9(4) 3(3) 8(4) C(18) 38(5) 35(5) 33(5) 3(4) 4(4) 0(4) C(19) 61(6) 43(6) 35(5) 9(4) -8(4) -9(5) C(20) 27(4) 27(5) 35(5) 0(4) -1(3) 6(3) C(21) 41(5) 27(4) 34(4) 8(3) 5(4) 5(4) C(22) 49(5) 39(5) 28(4) 3(4) 1(4) -5(4) C(23) 54(5) 39(5) 55(6) 0(4) -2(4) 13(4) C(24) 47(5) 53(6) 38(5) 2(4) 4(4) 1(4) C(25) 32(4) 30(4) 27(4) 1(3) 4(3) -7(3) C(26) 24(4) 47(5) 29(4) -2(4) 0(3) -8(4) C(27) 40(5) 49(5) 31(5) -1(4) 2(4) -6(4) C(28) 27(4) 35(5) 33(4) -11(4) 2(3) -10(3) C(29) 36(5) 36(5) 42(5) -1(4) 4(4) 5(4) C(30) 41(5) 61(6) 45(5) 7(4) -2(4) 0(4) 196 C(31) 44(5) 51(6) 57(6) 3(4) 4(4) 5(4) C(32) 38(5) 51(6) 53(5) 16(4) 4(4) -3(4) Cl(1) 35(1) 41(1) 45(1) 5(1) 7(1) 1(1) Cu(1) 29(1) 39(1) 37(1) 0(1) 4(1) -1(1) N(1) 29(3) 35(4) 35(4) 1(3) 5(3) -7(3) N(2) 31(4) 39(4) 43(4) 4(3) 6(3) -1(3) N(3) 73(6) 75(6) 81(6) -22(5) -8(5) -16(5) N(4) 28(3) 42(4) 40(4) 8(3) 4(3) 2(3) N(5) 30(4) 48(4) 40(4) 14(3) 7(3) 4(3) N(6) 76(6) 145(10) 88(7) 42(6) 5(5) 46(6) N(7) 34(4) 35(4) 28(4) 0(3) 1(3) 1(3) N(8) 40(4) 28(4) 28(4) 5(3) 7(3) 2(3) N(9) 105(7) 59(6) 57(5) 17(4) -15(4) -31(5) N(10) 32(4) 27(4) 28(3) -1(3) 3(3) -5(3) N(11) 28(4) 32(4) 31(4) 2(3) 5(3) -2(3) N(12) 36(4) 68(5) 49(4) 0(4) 4(3) -7(4) O(1) 37(3) 29(3) 48(3) 12(2) 8(2) -2(2) O(2) 34(3) 23(3) 54(3) 9(2) 19(2) 7(2) O(3) 38(3) 65(4) 27(3) -8(3) -1(2) 3(3) O(4) 23(3) 50(3) 44(3) 10(3) 1(2) -5(2) ______________________________________________________________________________ Table A.64: Bond distances [Å] for {(Hpz)4Cu(ClO4)}n. C(1)-N(1) 1.334(8) C(6)-H(30A) 0.9800 C(1)-C(2) 1.400(10) C(6)-H(30B) 0.9800 C(1)-H(22) 0.9500 C(6)-H(30C) 0.9800 C(2)-C(4) 1.401(10) C(7)-H(33A) 0.9800 C(2)-C(3) 1.426(12) C(7)-H(33B) 0.9800 C(3)-N(3) 1.134(10) C(7)-H(33C) 0.9800 C(4)-N(2) 1.349(9) C(8)-H(29A) 0.9800 C(4)-C(5) 1.501(10) C(8)-H(29B) 0.9800 C(5)-C(8) 1.509(10) C(8)-H(29C) 0.9800 C(5)-C(7) 1.517(12) C(9)-N(4) 1.317(9) C(5)-C(6) 1.539(12) C(9)-C(10) 1.403(10) 197 C(9)-H(19) 0.9500 C(24)-H(24A) 0.9800 C(10)-C(12) 1.383(11) C(24)-H(24B) 0.9800 C(10)-C(11) 1.435(11) C(24)-H(24C) 0.9800 C(11)-N(6) 1.125(10) C(25)-N(10) 1.312(8) C(12)-N(5) 1.330(9) C(25)-C(26) 1.392(9) C(12)-C(13) 1.515(11) C(25)-H(1) 0.9500 C(13)-C(15) 1.410(15) C(26)-C(28) 1.388(9) C(13)-C(16) 1.457(13) C(26)-C(27) 1.433(10) C(13)-C(14) 1.461(17) C(27)-N(12) 1.145(9) C(14)-H(31A) 0.9800 C(28)-N(11) 1.351(8) C(14)-H(31B) 0.9800 C(28)-C(29) 1.522(10) C(14)-H(31C) 0.9800 C(29)-C(32) 1.504(10) C(15)-H(19A) 0.9871 C(29)-C(30) 1.525(10) C(15)-H(19B) 0.9871 C(29)-C(31) 1.547(10) C(15)-H(19C) 0.9874 C(30)-H(6A) 0.9800 C(16)-H(18A) 0.9800 C(30)-H(6B) 0.9800 C(16)-H(18B) 0.9800 C(30)-H(6C) 0.9800 C(16)-H(18C) 0.9800 C(31)-H(7A) 0.9800 C(17)-N(7) 1.318(8) C(31)-H(7B) 0.9800 C(17)-C(18) 1.402(10) C(31)-H(7C) 0.9800 C(17)-H(20) 0.9500 C(32)-H(8A) 0.9800 C(18)-C(20) 1.380(9) C(32)-H(8B) 0.9800 C(18)-C(19) 1.404(11) C(32)-H(8C) 0.9800 C(19)-N(9) 1.139(9) Cl(1)-O(3) 1.457(5) C(20)-N(8) 1.323(8) Cl(1)-O(4) 1.467(4) C(20)-C(21) 1.520(9) Cl(1)-O(1) 1.486(5) C(21)-C(22) 1.527(9) Cl(1)-O(2) 1.489(5) C(21)-C(24) 1.530(9) Cu(1)-N(4) 2.052(6) C(21)-C(23) 1.546(9) Cu(1)-N(10) 2.062(6) C(22)-H(26A) 0.9800 Cu(1)-N(1) 2.074(6) C(22)-H(26B) 0.9800 Cu(1)-N(7) 2.077(6) C(22)-H(26C) 0.9800 Cu(1)-O(3)#1 2.210(5) C(23)-H(25A) 0.9800 Cu(1)-O(1) 2.252(5) C(23)-H(25B) 0.9800 N(1)-N(2) 1.359(7) C(23)-H(25C) 0.9800 N(2)-H(2) 0.8800 198 N(4)-N(5) 1.359(7) N(10)-N(11) 1.356(7) N(5)-H(5) 0.8800 N(11)-H(11) 0.8800 N(7)-N(8) 1.367(7) O(3)-Cu(1)#2 2.210(5) N(8)-H(8) 0.8800 Table A.65: Bond angles [°] for {(Hpz)4Cu(ClO4)}n. N(1)-C(1)-C(2) 111.2(7) H(33B)-C(7)-H(33C) 109.5 N(1)-C(1)-H(22) 124.4 C(5)-C(8)-H(29A) 109.5 C(2)-C(1)-H(22) 124.4 C(5)-C(8)-H(29B) 109.5 C(1)-C(2)-C(4) 106.1(7) H(29A)-C(8)-H(29B) 109.5 C(1)-C(2)-C(3) 125.0(8) C(5)-C(8)-H(29C) 109.5 C(4)-C(2)-C(3) 128.6(8) H(29A)-C(8)-H(29C) 109.5 N(3)-C(3)-C(2) 175.6(10) H(29B)-C(8)-H(29C) 109.5 N(2)-C(4)-C(2) 104.4(7) N(4)-C(9)-C(10) 109.6(7) N(2)-C(4)-C(5) 123.3(7) N(4)-C(9)-H(19) 125.2 C(2)-C(4)-C(5) 132.3(7) C(10)-C(9)-H(19) 125.2 C(4)-C(5)-C(8) 109.2(7) C(12)-C(10)-C(9) 106.9(7) C(4)-C(5)-C(7) 109.6(7) C(12)-C(10)-C(11) 128.8(8) C(8)-C(5)-C(7) 110.7(8) C(9)-C(10)-C(11) 124.3(8) C(4)-C(5)-C(6) 110.0(7) N(6)-C(11)-C(10) 177.1(11) C(8)-C(5)-C(6) 108.2(8) N(5)-C(12)-C(10) 104.6(6) C(7)-C(5)-C(6) 109.0(8) N(5)-C(12)-C(13) 121.8(7) C(5)-C(6)-H(30A) 109.5 C(10)-C(12)-C(13) 133.5(7) C(5)-C(6)-H(30B) 109.5 C(15)-C(13)-C(16) 114.7(15) H(30A)-C(6)-H(30B) 109.5 C(15)-C(13)-C(14) 108.4(15) C(5)-C(6)-H(30C) 109.5 C(16)-C(13)-C(14) 104.2(11) H(30A)-C(6)-H(30C) 109.5 C(15)-C(13)-C(12) 108.6(9) H(30B)-C(6)-H(30C) 109.5 C(16)-C(13)-C(12) 110.8(8) C(5)-C(7)-H(33A) 109.5 C(14)-C(13)-C(12) 110.0(8) C(5)-C(7)-H(33B) 109.5 C(13)-C(14)-H(31A) 109.4 H(33A)-C(7)-H(33B) 109.5 C(13)-C(14)-H(31B) 109.6 C(5)-C(7)-H(33C) 109.5 H(31A)-C(14)-H(31B) 109.5 H(33A)-C(7)-H(33C) 109.5 C(13)-C(14)-H(31C) 109.4 199 H(31A)-C(14)-H(31C) 109.5 H(26B)-C(22)-H(26C) 109.5 H(31B)-C(14)-H(31C) 109.5 C(21)-C(23)-H(25A) 109.5 C(13)-C(15)-H(19A) 110.2 C(21)-C(23)-H(25B) 109.5 C(13)-C(15)-H(19B) 110.1 H(25A)-C(23)-H(25B) 109.5 H(19A)-C(15)-H(19B) 108.7 C(21)-C(23)-H(25C) 109.5 C(13)-C(15)-H(19C) 110.5 H(25A)-C(23)-H(25C) 109.5 H(19A)-C(15)-H(19C) 108.7 H(25B)-C(23)-H(25C) 109.5 H(19B)-C(15)-H(19C) 108.6 C(21)-C(24)-H(24A) 109.5 C(13)-C(16)-H(18A) 109.5 C(21)-C(24)-H(24B) 109.5 C(13)-C(16)-H(18B) 109.5 H(24A)-C(24)-H(24B) 109.5 H(18A)-C(16)-H(18B) 109.5 C(21)-C(24)-H(24C) 109.5 C(13)-C(16)-H(18C) 109.5 H(24A)-C(24)-H(24C) 109.5 H(18A)-C(16)-H(18C) 109.5 H(24B)-C(24)-H(24C) 109.5 H(18B)-C(16)-H(18C) 109.5 N(10)-C(25)-C(26) 110.5(6) N(7)-C(17)-C(18) 109.8(7) N(10)-C(25)-H(1) 124.8 N(7)-C(17)-H(20) 125.1 C(26)-C(25)-H(1) 124.8 C(18)-C(17)-H(20) 125.1 C(28)-C(26)-C(25) 106.6(6) C(20)-C(18)-C(17) 106.4(7) C(28)-C(26)-C(27) 126.3(7) C(20)-C(18)-C(19) 127.9(7) C(25)-C(26)-C(27) 127.1(7) C(17)-C(18)-C(19) 125.7(7) N(12)-C(27)-C(26) 178.7(8) N(9)-C(19)-C(18) 177.9(10) N(11)-C(28)-C(26) 104.8(6) N(8)-C(20)-C(18) 105.7(6) N(11)-C(28)-C(29) 123.0(6) N(8)-C(20)-C(21) 123.2(6) C(26)-C(28)-C(29) 132.2(7) C(18)-C(20)-C(21) 131.1(7) C(32)-C(29)-C(28) 111.3(6) C(20)-C(21)-C(22) 110.8(6) C(32)-C(29)-C(30) 112.3(6) C(20)-C(21)-C(24) 111.2(6) C(28)-C(29)-C(30) 107.6(6) C(22)-C(21)-C(24) 109.4(6) C(32)-C(29)-C(31) 109.7(6) C(20)-C(21)-C(23) 106.6(6) C(28)-C(29)-C(31) 107.4(6) C(22)-C(21)-C(23) 109.0(6) C(30)-C(29)-C(31) 108.5(6) C(24)-C(21)-C(23) 109.7(6) C(29)-C(30)-H(6A) 109.5 C(21)-C(22)-H(26A) 109.5 C(29)-C(30)-H(6B) 109.5 C(21)-C(22)-H(26B) 109.5 H(6A)-C(30)-H(6B) 109.5 H(26A)-C(22)-H(26B) 109.5 C(29)-C(30)-H(6C) 109.5 C(21)-C(22)-H(26C) 109.5 H(6A)-C(30)-H(6C) 109.5 H(26A)-C(22)-H(26C) 109.5 H(6B)-C(30)-H(6C) 109.5 200 C(29)-C(31)-H(7A) 109.5 N(1)-Cu(1)-O(1) 101.8(2) C(29)-C(31)-H(7B) 109.5 N(7)-Cu(1)-O(1) 82.0(2) H(7A)-C(31)-H(7B) 109.5 O(3)#1-Cu(1)-O(1) 164.29(18) C(29)-C(31)-H(7C) 109.5 C(1)-N(1)-N(2) 104.2(6) H(7A)-C(31)-H(7C) 109.5 C(1)-N(1)-Cu(1) 125.7(5) H(7B)-C(31)-H(7C) 109.5 N(2)-N(1)-Cu(1) 130.0(5) C(29)-C(32)-H(8A) 109.5 C(4)-N(2)-N(1) 114.1(6) C(29)-C(32)-H(8B) 109.5 C(4)-N(2)-H(2) 122.9 H(8A)-C(32)-H(8B) 109.5 N(1)-N(2)-H(2) 122.9 C(29)-C(32)-H(8C) 109.5 C(9)-N(4)-N(5) 105.3(6) H(8A)-C(32)-H(8C) 109.5 C(9)-N(4)-Cu(1) 131.7(5) H(8B)-C(32)-H(8C) 109.5 N(5)-N(4)-Cu(1) 120.5(4) O(3)-Cl(1)-O(4) 111.2(3) C(12)-N(5)-N(4) 113.5(6) O(3)-Cl(1)-O(1) 109.3(3) C(12)-N(5)-H(5) 123.2 O(4)-Cl(1)-O(1) 108.4(3) N(4)-N(5)-H(5) 123.2 O(3)-Cl(1)-O(2) 111.3(3) C(17)-N(7)-N(8) 105.3(6) O(4)-Cl(1)-O(2) 108.7(3) C(17)-N(7)-Cu(1) 134.6(5) O(1)-Cl(1)-O(2) 107.9(3) N(8)-N(7)-Cu(1) 119.6(4) N(4)-Cu(1)-N(10) 176.1(2) C(20)-N(8)-N(7) 112.8(6) N(4)-Cu(1)-N(1) 87.0(2) C(20)-N(8)-H(8) 123.6 N(10)-Cu(1)-N(1) 91.8(2) N(7)-N(8)-H(8) 123.6 N(4)-Cu(1)-N(7) 91.2(2) C(25)-N(10)-N(11) 105.8(5) N(10)-Cu(1)-N(7) 90.2(2) C(25)-N(10)-Cu(1) 130.9(5) N(1)-Cu(1)-N(7) 175.7(2) N(11)-N(10)-Cu(1) 123.2(4) N(4)-Cu(1)-O(3)#1 95.9(2) C(28)-N(11)-N(10) 112.4(6) N(10)-Cu(1)-O(3)#1 87.9(2) C(28)-N(11)-H(11) 123.8 N(1)-Cu(1)-O(3)#1 93.5(2) N(10)-N(11)-H(11) 123.8 N(7)-Cu(1)-O(3)#1 82.8(2) Cl(1)-O(1)-Cu(1) 129.0(3) N(4)-Cu(1)-O(1) 88.4(2) Cl(1)-O(3)-Cu(1)#2 155.7(3) N(10)-Cu(1)-O(1) 88.21(19) 201 Table A.66: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for {(Hpzt-Bu,4CN)4Cu(PF6)}n. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ C(1) 4243(2) 1685(2) 4227(4) 27(1) C(2) 5045(2) 1369(2) 4912(4) 28(1) C(3) 5727(2) 900(2) 4038(4) 33(1) C(4) 5014(2) 1558(2) 6628(4) 25(1) C(5) 5676(2) 1375(2) 8014(4) 31(1) C(6) 5347(2) 1750(2) 9680(5) 44(1) C(7) 5800(2) 366(2) 8179(5) 37(1) C(8) 6574(2) 1798(2) 7542(5) 48(1) Cu(1) 2500 2500 5372(1) 17(1) F(1) 2500 2500 2450(4) 49(1) F(2) 2864(2) 1468(1) 294(4) 72(1) F(3) 2500 2500 -1779(5) 82(2) N(1) 3752(1) 2033(1) 5437(3) 23(1) N(2) 4231(1) 1950(1) 6886(3) 24(1) N(3) 6259(2) 499(2) 3352(4) 46(1) P(1) 2500 372(2) 27(1) 2500 ________________________________________________________________________________ Anisotropic displacement parameters (Å2x 103) for {(Hpzt-Bu,4CN)4Cu(PF6)}n. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ] Table A.67: ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ C(1) 19(1) 22(1) 40(2) 1(1) 0(1) 1(1) C(2) 16(1) 21(1) 46(2) 1(1) 2(1) 0(1) C(3) 19(1) 31(2) 49(2) 2(1) -1(1) 2(1) C(4) 17(1) 14(1) 45(2) 2(1) -5(1) -3(1) C(5) 24(1) 19(1) 49(2) 3(1) -13(1) -2(1) C(6) 47(2) 34(2) 52(2) -5(2) -22(2) 5(1) 202 C(7) 32(2) 22(2) 56(2) 4(1) -14(2) 2(1) C(8) 26(2) 35(2) 83(3) 15(2) -24(2) -9(1) Cu(1) 14(1) 14(1) 23(1) 0 0 0 F(1) 63(2) 63(2) 19(2) 0 0 0 F(2) 72(2) 30(1) 113(2) -9(1) 10(2) 15(1) F(3) 113(3) 113(3) 22(2) 0 0 0 N(1) 17(1) 19(1) 34(1) -1(1) -1(1) 0(1) N(2) 18(1) 19(1) 34(1) 0(1) -4(1) 0(1) N(3) 25(1) 47(2) 65(2) -4(2) 5(1) 7(1) P(1) 26(1) 26(1) 27(1) 0 0 0 ______________________________________________________________________________ Table A.68: Bond distances [Å] for {(Hpzt-Bu,4CN)4Cu(PF6)}n. C(1)-N(1) 1.320(4) (C(8)-H(4B) 0.9800 C(1)-C(2) 1.409(4) C(8)-H(4C) 0.9800 C(1)-H(8) 0.9500 Cu(1)-N(1)#1 2.016(2) C(2)-C(4) 1.390(4) Cu(1)-N(1)#2 2.016(2) C(2)-C(3) 1.426(4) Cu(1)-N(1) 2.016(2) C(3)-N(3) 1.142(4) Cu(1)-N(1)#3 2.016(2) C(4)-N(2) 1.336(3) Cu(1)-F(3)#4 2.257(4) C(4)-C(5) 1.510(4) Cu(1)-F(1) 2.315(4) C(5)-C(6) 1.519(5) F(1)-P(1) 1.646(4) C(5)-C(7) 1.538(4) F(2)-P(1) 1.651(2) C(5)-C(8) 1.543(4) F(3)-P(1) 1.705(5) C(6)-H(2A) 0.9800 F(3)-Cu(1)#5 2.257(4) C(6)-H(2B) 0.9800 N(1)-N(2) 1.361(3) C(6)-H(2C) 0.9800 N(2)-H(2) 0.8800 C(7)-H(3A) 0.9800 P(1)-F(2)#1 1.651(2) C(7)-H(3B) 0.9800 P(1)-F(2)#2 1.651(2) C(7)-H(3C) 0.9800 P(1)-F(2)#3 1.651(2) C(8)-H(4A) 0.9800 203 Table A.69: Bond angles [°] for {(Hpzt-Bu,4CN)4Cu(PF6)}n. N(1)-C(1)-C(2) 109.6(3) H(4B)-C(8)-H(4C) 109.5 N(1)-C(1)-H(8) 125.2 N(1)#1-Cu(1)-N(1)#2 177.06(14) C(2)-C(1)-H(8) 125.2 N(1)#1-Cu(1)-N(1) 89.962(4) C(4)-C(2)-C(1) 106.1(2) N(1)#2-Cu(1)-N(1) 89.962(4) C(4)-C(2)-C(3) 126.9(3) N(1)#1-Cu(1)-N(1)#3 89.962(4) C(1)-C(2)-C(3) 126.8(3) N(1)#2-Cu(1)-N(1)#3 89.962(4) N(3)-C(3)-C(2) 177.7(3) N(1)-Cu(1)-N(1)#3 N(2)-C(4)-C(2) 105.7(2) N(1)#1-Cu(1)-F(3)#4 88.53(7) N(2)-C(4)-C(5) 123.6(3) N(1)#2-Cu(1)-F(3)#4 88.53(7) C(2)-C(4)-C(5) 130.6(3) N(1)-Cu(1)-F(3)#4 88.53(7) C(4)-C(5)-C(6) 110.4(2) N(1)#3-Cu(1)-F(3)#4 88.53(7) C(4)-C(5)-C(7) 108.9(2) N(1)#1-Cu(1)-F(1) 91.47(7) C(6)-C(5)-C(7) 109.5(3) N(1)#2-Cu(1)-F(1) 91.47(7) C(4)-C(5)-C(8) 109.2(3) N(1)-Cu(1)-F(1) 91.47(7) C(6)-C(5)-C(8) 110.1(3) N(1)#3-Cu(1)-F(1) 91.47(7) C(7)-C(5)-C(8) 108.8(2) F(3)#4-Cu(1)-F(1) 180.000(1) C(5)-C(6)-H(2A) 109.5 P(1)-F(1)-Cu(1) 180.0 C(5)-C(6)-H(2B) 109.5 P(1)-F(3)-Cu(1)#5 180.0 H(2A)-C(6)-H(2B) 109.5 C(1)-N(1)-N(2) 106.2(2) C(5)-C(6)-H(2C) 109.5 C(1)-N(1)-Cu(1) 130.2(2) H(2A)-C(6)-H(2C) 109.5 N(2)-N(1)-Cu(1) 123.36(17) H(2B)-C(6)-H(2C) 109.5 C(4)-N(2)-N(1) 112.3(2) C(5)-C(7)-H(3A) 109.5 C(4)-N(2)-H(2) 123.8 C(5)-C(7)-H(3B) 109.5 N(1)-N(2)-H(2) 123.8 H(3A)-C(7)-H(3B) 109.5 F(1)-P(1)-F(2)#1 92.15(11) C(5)-C(7)-H(3C) 109.5 F(1)-P(1)-F(2)#2 92.15(11) H(3A)-C(7)-H(3C) 109.5 F(2)#1-P(1)-F(2)#2 H(3B)-C(7)-H(3C) 109.5 F(1)-P(1)-F(2) 92.15(11) C(5)-C(8)-H(4A) 109.5 F(2)#1-P(1)-F(2) 89.920(9) C(5)-C(8)-H(4B) 109.5 F(2)#2-P(1)-F(2) 89.920(9) H(4A)-C(8)-H(4B) 109.5 F(1)-P(1)-F(2)#3 92.15(11) C(5)-C(8)-H(4C) 109.5 F(2)#1-P(1)-F(2)#3 89.919(9) H(4A)-C(8)-H(4C) 109.5 F(2)#2-P(1)-F(2)#3 89.919(9) 204 177.06(14) 175.7(2) F(2)-P(1)-F(2)#3 175.7(2) F(2)#2-P(1)-F(3) 87.85(11) F(1)-P(1)-F(3) 180.000(1) F(2)-P(1)-F(3) 87.85(11) F(2)#3-P(1)-F(3) 87.85(11) F(2)#1-P(1)-F(3) 87.85(11) Table A.70: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for {(HpztBu,4CN)2Mn(CF3COO)2}n·C7H8. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ C(1) 5150(4) 6252(2) 8855(3) 36(1) C(2) 5062(3) 8212(2) 6813(3) 34(1) C(3) 5787(3) 7748(2) 7964(3) 32(1) C(4) 5436(4) 6919(3) 8467(3) 39(1) C(5) 6888(3) 8268(3) 8492(3) 36(1) C(6) 8021(4) 8116(4) 9713(4) 61(1) C(7) 8534(6) 7083(7) 9658(6) 127(4) C(8) 7663(4) 8117(4) 10785(4) 56(1) C(9) 8946(6) 8905(8) 9884(6) 172(5) C(10) 2232(4) 9362(4) 3759(4) 71(2) C(11) 1336(6) 8747(9) 4075(6) 123(4) C(101) 5360(20) 24(9) 1242(17) 227(12) C(102) 5980(20) 596(12) 748(18) 306(17) C(103) 5610(20) 551(10) -561(16) 220(12) C(105) 7250(40) 980(30) 1520(50) 530(30) F(1) 1811(5) 8243(7) 5040(5) 259(5) F(2) 523(10) 9370(6) 4145(14) 325(7) F(3) 680(5) 8156(5) 3244(5) 191(4) Mn(1) 5000 N(1) 6766(3) N(2) 10000 5000 21(1) 8979(2) 7667(3) 35(1) 5661(3) 8963(2) 6638(2) 28(1) O(1) 1857(3) 9599(4) 2652(3) 106(2) O(2) 3219(2) 9509(2) 4652(3) 205 51(1)________________ Table A.71: Anisotropic displacement parameters (Å2x 103) for {(HpztBu,4CN )2Mn(CF3COO)2}n·C7H8. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ C(1) 69(2) 16(2) 22(2) 4(1) 22(2) -10(2) C(2) 45(2) 24(2) 27(2) 4(1) 12(2) -8(1) C(3) 45(2) 24(2) 28(2) 6(1) 18(2) 2(1) C(4) 59(2) 29(2) 27(2) 1(1) 19(2) 2(2) C(5) 36(2) 45(2) 31(2) 15(2) 18(2) 8(2) C(6) 32(2) 102(4) 41(2) 37(2) 11(2) 5(2) C(7) 103(5) 215(9) 73(4) 70(5) 49(4) 118(6) C(8) 52(2) 74(3) 30(2) 8(2) 8(2) -4(2) C(9) 64(4) 294(12) 80(4) 112(6) -37(3) -91(6) C(10) 44(2) 101(4) 51(3) 31(3) 4(2) -33(3) C(11) 49(3) 235(11) 61(4) 49(5) 2(3) -50(5) C(101) 520(30) 103(8) 218(16) 99(9) 310(20) 173(14) C(102) 590(40) 213(15) 340(20) 191(16) 410(30) 290(20) C(103) 470(30) 107(9) 181(14) 86(9) 230(20) 165(15) C(105) 510(60) 420(50) 690(80) 10(50) 280(60) 110(50) F(1) 129(4) 419(11) 132(4) 172(6) -30(3) -161(6) F(2) 355(12) 164(6) 700(20) 28(10) 456(16) -31(8) F(3) 136(4) 243(7) 128(4) 70(4) -2(3) -138(5) Mn(1) 28(1) 14(1) 19(1) 0(1) 11(1) -1(1) N(1) 30(1) 43(2) 28(1) 11(1) 10(1) -5(1) N(2) 33(1) 23(1) 24(1) 4(1) 10(1) -2(1) O(1) 63(2) 164(4) 52(2) 51(2) -11(2) -68(3) O(2) 32(1) 71(2) 44(2) 22(1) 10(1) -12(1) ______________________________________________________________________________ 206 Table A.72: Bond distances [Å] for {(HpztBu,4CN)2Mn(CF3COO)2}n·C7H8. C(1)-C(4) 1.135(5) C(11)-F(1) 1.235(8) C(1)-Mn(1)#1 2.229(3) C(11)-F(2) 1.329(12) C(2)-N(2) 1.317(4) C(101)-C(103)#2 1.35(3) C(2)-C(3) 1.406(5) C(101)-C(102) 1.38(2) C(3)-C(5) 1.391(5) C(102)-C(103) 1.42(2) C(3)-C(4) 1.421(5) C(102)-C(105) 1.50(5) C(5)-N(1) 1.334(4) C(103)-C(101)#2 1.35(3) C(5)-C(6) 1.508(5) Mn(1)-O(2)#3 2.124(3) C(6)-C(9) 1.496(8) Mn(1)-O(2) 2.124(3) C(6)-C(8) 1.524(6) Mn(1)-C(1)#4 2.229(3) C(6)-C(7) 1.539(9) Mn(1)-C(1)#5 2.229(3) C(10)-O(2) 1.215(5) Mn(1)-N(2)#3 2.240(3) C(10)-O(1) 1.231(5) Mn(1)-N(2) 2.240(3) C(10)-C(11) 1.546(7) N(1)-N(2) 1.358(4) C(11)-F(3) 1.245(10) Table A.73: Bond angles [°] for {(HpztBu,4CN)2Mn(CF3COO)2}n·C7H8. C(4)-C(1)-Mn(1)#1 166.8(3) C(5)-C(6)-C(7) 107.3(5) N(2)-C(2)-C(3) 110.2(3) O(2)-C(10)-O(1) 130.3(4) C(5)-C(3)-C(2) 106.1(3) O(2)-C(10)-C(11) 113.8(4) C(5)-C(3)-C(4) 128.0(3) O(1)-C(10)-C(11) 115.8(4) C(2)-C(3)-C(4) 125.9(3) F(3)-C(11)-F(1) 104.9(9) C(1)-C(4)-C(3) 179.2(4) F(3)-C(11)-F(2) 102.9(8) N(1)-C(5)-C(3) 105.1(3) F(1)-C(11)-F(2) 110.0(9) N(1)-C(5)-C(6) 124.3(3) F(3)-C(11)-C(10) 114.9(6) C(3)-C(5)-C(6) 130.6(3) F(1)-C(11)-C(10) 115.7(5) C(9)-C(6)-C(8) 111.3(6) F(2)-C(11)-C(10) 107.6(8) C(9)-C(6)-C(5) 110.1(4) C(103)#2-C(101)-C(102) 124.5(17) C(8)-C(6)-C(5) 109.2(3) C(101)-C(102)-C(103) 119(2) C(9)-C(6)-C(7) 110.8(6) C(101)-C(102)-C(105) 123(2) C(8)-C(6)-C(7) 108.0(4) C(103)-C(102)-C(105) 115(2) 207 C(101)#2-C(103)-C(102) 117(2) O(2)#3-Mn(1)-N(2) 94.88(10) O(2)#3-Mn(1)-O(2) O(2)-Mn(1)-N(2) 85.11(10) 180.00(16) O(2)#3-Mn(1)-C(1)#4 90.07(14) C(1)#4-Mn(1)-N(2) 88.01(11) O(2)-Mn(1)-C(1)#4 89.93(14) C(1)#5-Mn(1)-N(2) 91.99(11) O(2)#3-Mn(1)-C(1)#5 89.93(14) N(2)#3-Mn(1)-N(2) 180.0 O(2)-Mn(1)-C(1)#5 90.07(14) C(5)-N(1)-N(2) 113.2(3) C(1)#4-Mn(1)-C(1)#5 180.00(14) C(2)-N(2)-N(1) 105.4(3) O(2)#3-Mn(1)-N(2)#3 85.12(10) C(2)-N(2)-Mn(1) 127.5(2) O(2)-Mn(1)-N(2)#3 94.88(10) N(1)-N(2)-Mn(1) 127.1(2) C(1)#4-Mn(1)-N(2)#3 91.99(11) C(10)-O(2)-Mn(1) 138.3(3) C(1)#5-Mn(1)-N(2)#3 88.01(11) Table A.74: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for [(Hpzt-Bu,4CN)2CuCl(η-Cl)]2 . U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ C(1) -4352(3) -352(1) 8194(2) 18(1) C(2) -5344(3) -713(1) 7373(2) 17(1) C(3) -7195(3) -996(1) 7366(2) 21(1) C(4) -4176(3) -736(1) 6602(2) 17(1) C(5) -4463(3) -1040(1) 5522(2) 20(1) C(6) -2799(5) -884(2) 4952(2) 59(1) C(7) -4329(5) -1632(1) 5779(2) 40(1) C(8) -6574(5) -904(1) 4774(2) 47(1) C(9) 1375(3) 1268(1) 10315(2) 18(1) C(10) 2756(3) 1689(1) 10338(2) 19(1) C(11) 3203(3) 2107(1) 11141(2) 23(1) C(12) 3503(3) 1627(1) 9404(2) 20(1) 208 C(13) 5006(4) 1951(1) 8955(2) 25(1) C(14) 4004(4) 2487(1) 8552(3) 41(1) C(15) 6956(4) 2036(1) 9883(2) 35(1) C(16) 5561(6) 1649(1) 8008(3) 56(1) Cl(1) -2106(1) 405(1) 10149(1) 17(1) Cl(2) 890(1) 352(1) 7252(1) 19(1) Cu(1) -484(1) 340(1) 8759(1) 14(1) N(1) -2678(3) -164(1) 7957(1) 16(1) N(2) -2607(3) -405(1) 6990(1) 17(1) N(3) -8666(3) -1218(1) 7382(2) 30(1) N(4) 1262(3) 967(1) 9423(2) 18(1) N(5) 2578(3) 1192(1) 8895(2) 20(1) N(6) 3538(3) 2443(1) 11781(2) 36(1) ________________________________________________________________________________ Anisotropic displacement parameters (Å2x 103) for [(Hpzt-Bu,4CN)2CuCl(η-Cl)]2. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. Table A.75: ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ C(1) 15(1) 21(1) 20(1) -1(1) 6(1) -1(1) C(2) 15(1) 16(1) 20(1) -1(1) 4(1) -1(1) C(3) 21(1) 22(1) 22(1) -9(1) 7(1) -1(1) C(4) 17(1) 16(1) 16(1) 2(1) 1(1) 0(1) C(5) 21(1) 24(1) 15(1) -4(1) 4(1) -3(1) C(6) 65(2) 90(3) 34(2) -37(2) 33(2) -47(2) C(7) 61(2) 25(1) 34(2) -7(1) 12(1) 7(1) C(8) 48(2) 57(2) 26(1) -13(1) -11(1) 20(2) C(9) 16(1) 17(1) 20(1) -1(1) 5(1) 2(1) C(10) 18(1) 16(1) 22(1) -1(1) 3(1) 1(1) C(11) 21(1) 23(1) 25(1) -2(1) 7(1) -1(1) C(12) 21(1) 15(1) 22(1) -1(1) 5(1) -2(1) C(13) 29(1) 18(1) 30(1) -1(1) 12(1) -8(1) 209 C(14) 29(1) 34(2) 53(2) 22(1) 0(1) -8(1) C(15) 19(1) 31(1) 52(2) 9(1) 9(1) -2(1) C(16) 83(2) 47(2) 59(2) -20(2) 54(2) -38(2) Cl(1) 16(1) 19(1) 16(1) -2(1) 7(1) -2(1) Cl(2) 20(1) 23(1) 15(1) -1(1) 7(1) -6(1) Cu(1) 14(1) 16(1) 13(1) -1(1) 5(1) -3(1) N(1) 16(1) 20(1) 14(1) -2(1) 4(1) -1(1) N(2) 18(1) 23(1) 13(1) -1(1) 6(1) -3(1) N(3) 24(1) 30(1) 39(1) -14(1) 14(1) -9(1) N(4) 17(1) 17(1) 20(1) 1(1) 8(1) -2(1) N(5) 23(1) 19(1) 21(1) -2(1) 11(1) -7(1) N(6) 37(1) 33(1) 39(1) -13(1) 12(1) -4(1) ______________________________________________________________________________ Table A.76: Bond distances [Å] for [(Hpzt-Bu,4CN)2CuCl(η-Cl)]2. C(1)-N(1) 1.325(3) C(8)-H(8C) 0.9800 C(1)-C(2) 1.400(3) C(9)-N(4) 1.329(3) C(1)-H(1) 0.9500 C(9)-C(10) 1.403(3) C(2)-C(4) 1.391(3) C(9)-H(16) 0.9500 C(2)-C(3) 1.434(3) C(10)-C(12) 1.390(3) C(3)-N(3) 1.143(3) C(10)-C(11) 1.427(3) C(4)-N(2) 1.333(3) C(11)-N(6) 1.142(3) C(4)-C(5) 1.514(3) C(12)-N(5) 1.334(3) C(5)-C(7) 1.519(3) C(12)-C(13) 1.514(3) C(5)-C(8) 1.524(3) C(13)-C(15) 1.524(3) C(5)-C(6) 1.524(3) C(13)-C(16) 1.526(4) C(6)-H(6A) 0.9800 C(13)-C(14) 1.531(3) C(6)-H(6B) 0.9800 C(14)-H(10A) 0.9800 C(6)-H(6C) 0.9800 C(14)-H(10B) 0.9800 C(7)-H(7A) 0.9800 C(14)-H(10C) 0.9800 C(7)-H(7B) 0.9800 C(15)-H(11A) 0.9800 C(7)-H(7C) 0.9800 C(15)-H(11B) 0.9800 C(8)-H(8A) 0.9800 C(15)-H(11C) 0.9800 C(8)-H(8B) 0.9800 C(16)-H(9A) 0.9800 210 C(16)-H(9B) 0.9800 Cu(1)-N(4) 2.0115(18) C(16)-H(9C) 0.9800 Cu(1)-Cl(1)#1 2.6779(6) Cl(1)-Cu(1) 2.2787(5) N(1)-N(2) 1.358(2) Cl(1)-Cu(1)#1 2.6779(6) N(2)-H(2) 0.8800 Cl(2)-Cu(1) 2.2965(6) N(4)-N(5) 1.356(2) Cu(1)-N(1) 2.0060(17) N(5)-H(5) 0.8800 Table A.77: Bond angles [°] for [(Hpzt-Bu,4CN)2CuCl(η-Cl)]2. N(1)-C(1)-C(2) 110.03(19) C(5)-C(7)-H(7C) 109.5 N(1)-C(1)-H(1) 125.0 H(7A)-C(7)-H(7C) 109.5 C(2)-C(1)-H(1) 125.0 H(7B)-C(7)-H(7C) 109.5 C(4)-C(2)-C(1) 106.24(18) C(5)-C(8)-H(8A) 109.5 C(4)-C(2)-C(3) 128.6(2) C(5)-C(8)-H(8B) 109.5 C(1)-C(2)-C(3) 125.2(2) H(8A)-C(8)-H(8B) 109.5 N(3)-C(3)-C(2) 178.6(2) C(5)-C(8)-H(8C) 109.5 N(2)-C(4)-C(2) 105.27(18) H(8A)-C(8)-H(8C) 109.5 N(2)-C(4)-C(5) 122.87(19) H(8B)-C(8)-H(8C) 109.5 C(2)-C(4)-C(5) 131.85(19) N(4)-C(9)-C(10) 109.87(19) C(4)-C(5)-C(7) 108.64(19) N(4)-C(9)-H(16) 125.1 C(4)-C(5)-C(8) 108.30(19) C(10)-C(9)-H(16) 125.1 C(7)-C(5)-C(8) 110.0(2) C(12)-C(10)-C(9) 106.35(19) C(4)-C(5)-C(6) 110.07(19) C(12)-C(10)-C(11) 127.7(2) C(7)-C(5)-C(6) 109.7(2) C(9)-C(10)-C(11) 125.9(2) C(8)-C(5)-C(6) 110.1(2) N(6)-C(11)-C(10) 179.2(3) C(5)-C(6)-H(6A) 109.5 N(5)-C(12)-C(10) 105.14(19) C(5)-C(6)-H(6B) 109.5 N(5)-C(12)-C(13) 122.7(2) H(6A)-C(6)-H(6B) 109.5 C(10)-C(12)-C(13) 132.1(2) C(5)-C(6)-H(6C) 109.5 C(12)-C(13)-C(15) 108.9(2) H(6A)-C(6)-H(6C) 109.5 C(12)-C(13)-C(16) 109.85(19) H(6B)-C(6)-H(6C) 109.5 C(15)-C(13)-C(16) 108.5(2) C(5)-C(7)-H(7A) 109.5 C(12)-C(13)-C(14) 108.2(2) C(5)-C(7)-H(7B) 109.5 C(15)-C(13)-C(14) 110.3(2) H(7A)-C(7)-H(7B) 109.5 C(16)-C(13)-C(14) 111.1(2) 211 C(13)-C(14)-H(10A) 109.5 N(4)-Cu(1)-Cl(1) 88.69(5) C(13)-C(14)-H(10B) 109.5 N(1)-Cu(1)-Cl(2) 90.21(5) H(10A)-C(14)-H(10B) 109.5 N(4)-Cu(1)-Cl(2) 90.45(5) C(13)-C(14)-H(10C) 109.5 Cl(1)-Cu(1)-Cl(2) 173.22(2) H(10A)-C(14)-H(10C) 109.5 N(1)-Cu(1)-Cl(1)#1 96.38(5) H(10B)-C(14)-H(10C) 109.5 N(4)-Cu(1)-Cl(1)#1 95.93(5) C(13)-C(15)-H(11A) 109.5 Cl(1)-Cu(1)-Cl(1)#1 92.493(18) C(13)-C(15)-H(11B) 109.5 Cl(2)-Cu(1)-Cl(1)#1 94.290(19) H(11A)-C(15)-H(11B) 109.5 C(1)-N(1)-N(2) 105.41(17) C(13)-C(15)-H(11C) 109.5 C(1)-N(1)-Cu(1) 132.46(15) H(11A)-C(15)-H(11C) 109.5 N(2)-N(1)-Cu(1) 122.09(13) H(11B)-C(15)-H(11C) 109.5 C(4)-N(2)-N(1) 113.05(17) C(13)-C(16)-H(9A) 109.5 C(4)-N(2)-H(2) 123.5 C(13)-C(16)-H(9B) 109.5 N(1)-N(2)-H(2) 123.5 H(9A)-C(16)-H(9B) 109.5 C(9)-N(4)-N(5) 105.29(17) C(13)-C(16)-H(9C) 109.5 C(9)-N(4)-Cu(1) 133.60(15) H(9A)-C(16)-H(9C) 109.5 N(5)-N(4)-Cu(1) 120.95(13) H(9B)-C(16)-H(9C) 109.5 C(12)-N(5)-N(4) 113.34(18) C(12)-N(5)-H(5) 123.3 N(4)-N(5)-H(5) 123.3 Cu(1)-Cl(1)-Cu(1)#1 87.507(18) N(1)-Cu(1)-N(4) 167.59(7) N(1)-Cu(1)-Cl(1) 89.20(5) Table A.78: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for {[(pzt-Bu,4CN)3Ag3]}n·CH3CN. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x y z U(eq) ________________________________________________________________________________ Ag(1) 9636(1) 3507(1) 4519(1) 24(1) Ag(2) 8986(1) 4412(1) 6795(1) 24(1) Ag(3) 11651(1) 2126(1) 5988(1) 22(1) C(1) 6999(6) 5531(4) 4668(4) 22(1) C(2) 5849(5) 6134(4) 5392(4) 21(1) C(3) 4576(6) 6850(4) 5262(4) 25(1) C(4) 6220(5) 5901(4) 6253(4) 20(1) 212 C(5) 5339(6) 6320(5) 7263(4) 27(1) C(6) 6044(7) 5782(6) 8043(4) 48(2) C(7) 3845(6) 5942(5) 7512(4) 35(2) C(8) 5144(7) 7706(5) 7277(5) 45(2) C(9) 10574(6) 4324(4) 8355(4) 22(1) C(10) 11691(5) 3610(4) 8629(4) 20(1) C(11) 12114(6) 3815(5) 9461(4) 28(1) C(12) 12284(5) 2722(4) 7924(4) 17(1) C(13) 13533(5) 1699(4) 7895(4) 22(1) C(14) 13984(6) 982(5) 6959(4) 29(1) C(15) 14847(6) 2219(5) 7945(5) 42(2) C(16) 13052(7) 856(5) 8777(4) 43(2) C(17) 11935(5) 102(4) 4590(4) 21(1) C(18) 11554(5) -110(4) 3774(4) 18(1) C(19) 11607(5) -1268(5) 3425(4) 21(1) C(20) 10967(5) 1033(4) 3465(4) 17(1) C(21) 10458(5) 1310(4) 2599(4) 19(1) C(22) 10045(7) 2663(5) 2441(4) 32(1) C(23) 9159(6) 710(5) 2706(4) 33(1) C(24) 11695(7) 831(6) 1691(4) 39(2) C(101) 7278(9) 2916(7) 9364(6) 65(2) C(102) 8215(9) 2374(7) 9897(6) 60(2) N(1) 8011(4) 4980(4) 5056(3) 20(1) N(2) 7527(4) 5211(3) 6035(3) 21(1) N(3) 3566(5) 7421(4) 5167(4) 38(1) N(4) 10497(4) 3892(4) 7555(3) 21(1) N(5) 11561(4) 2898(3) 7284(3) 20(1) N(6) 12427(6) 3987(5) 10127(4) 49(2) N(7) 11607(4) 1268(3) 4774(3) 20(1) N(8) 10998(4) 1836(3) 4082(3) 19(1) N(9) 11617(5) -2203(4) 3166(4) 31(1) 1949(9) 10316(7) 113(3) N(101) 8971(10) ________________________________________________________________________________ 213 Table A.79: Anisotropic displacement parameters (Å2x 103) for {[(pzt-Bu,4CN)3Ag3]}n·CH3CN. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ______________________________________________________________________________ U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ Ag(1) 24(1) 17(1) 29(1) -4(1) -9(1) 4(1) Ag(2) 19(1) 24(1) 31(1) -1(1) -13(1) 3(1) Ag(3) 24(1) 21(1) 24(1) -5(1) -11(1) -1(1) C(1) 26(3) 23(3) 20(3) 4(2) -12(3) -4(2) C(2) 15(3) 15(2) 32(3) 1(2) -11(3) 3(2) C(3) 24(3) 20(3) 30(3) 7(2) -10(3) -4(2) C(4) 14(3) 11(2) 33(3) -1(2) -7(2) -1(2) C(5) 21(3) 28(3) 32(3) -3(2) -6(3) -1(2) C(6) 34(4) 72(5) 32(4) -17(3) -12(3) 15(3) C(7) 22(3) 43(4) 34(4) -1(3) -1(3) -4(3) C(8) 42(4) 27(3) 63(5) -19(3) -9(4) -2(3) C(9) 21(3) 23(3) 20(3) -7(2) -3(2) 0(2) C(10) 14(3) 24(3) 24(3) -5(2) -6(2) -2(2) C(11) 27(3) 29(3) 25(3) -8(3) -7(3) 6(2) C(12) 10(3) 18(2) 22(3) -2(2) -3(2) -2(2) C(13) 14(3) 24(3) 26(3) -2(2) -8(2) 2(2) C(14) 22(3) 28(3) 35(4) -7(3) -11(3) 7(2) C(15) 20(3) 43(4) 64(5) -17(3) -19(3) 5(3) C(16) 49(4) 38(3) 36(4) 8(3) -16(3) 10(3) C(17) 16(3) 19(3) 28(3) -3(2) -10(2) 3(2) C(18) 11(3) 18(2) 23(3) -4(2) -2(2) 0(2) C(19) 15(3) 22(3) 24(3) -2(2) -2(2) -1(2) C(20) 13(3) 15(2) 19(3) -2(2) -2(2) 1(2) C(21) 21(3) 20(3) 18(3) -2(2) -9(2) -3(2) C(22) 45(4) 28(3) 32(4) 7(3) -24(3) -7(3) C(23) 36(4) 37(3) 36(4) 7(3) -22(3) -15(3) C(24) 40(4) 48(4) 23(3) -2(3) -9(3) 2(3) C(101) 74(6) 72(5) 60(5) -2(4) -38(5) -12(4) C(102) 65(6) 78(6) 42(5) 7(4) -23(4) -14(4) 214 N(1) 17(2) 21(2) 22(3) -1(2) -7(2) 0(2) N(2) 14(2) 19(2) 29(3) -2(2) -7(2) 1(2) N(3) 28(3) 35(3) 50(4) 8(2) -17(3) 5(2) N(4) 19(2) 19(2) 24(3) -4(2) -11(2) 4(2) N(5) 18(2) 19(2) 23(3) -3(2) -11(2) 2(2) N(6) 53(4) 59(4) 39(4) -17(3) -30(3) 14(3) N(7) 19(2) 19(2) 20(2) -2(2) -6(2) 1(2) N(8) 19(2) 14(2) 23(3) -4(2) -7(2) 4(2) N(9) 30(3) 23(3) 39(3) -4(2) -11(2) -3(2) N(101) 101(7) 153(9) 92(7) 30(6) -49(6) -19(6) ______________________________________________________________________________ Table A.80: Bond distances [Å] for {[(pzt-Bu,4CN)3Ag3]}n·CH3CN. Ag(1)-N(1) 2.101(4) C(6)-H(23C) 0.9800 Ag(1)-N(8) 2.125(4) C(7)-H(25A) 0.9800 Ag(1)-Ag(2)#1 3.1493(7) C(7)-H(25B) 0.9800 Ag(2)-N(4) 2.109(4) C(7)-H(25C) 0.9800 Ag(2)-N(2) 2.128(4) C(8)-H(22A) 0.9800 Ag(2)-Ag(1)#1 3.1493(7) C(8)-H(22B) 0.9800 Ag(3)-N(7) 2.091(4) C(8)-H(22C) 0.9800 Ag(3)-N(5) 2.104(4) C(9)-N(4) 1.322(7) C(1)-N(1) 1.340(6) C(9)-C(10) 1.397(7) C(1)-C(2) 1.393(7) C(9)-H(9) 0.9500 C(1)-H(1) 0.9500 C(10)-C(12) 1.400(7) C(2)-C(4) 1.408(7) C(10)-C(11) 1.446(8) C(2)-C(3) 1.431(7) C(11)-N(6) 1.145(7) C(3)-N(3) 1.132(6) C(12)-N(5) 1.328(6) C(4)-N(2) 1.342(6) C(12)-C(13) 1.528(6) C(4)-C(5) 1.513(8) C(13)-C(14) 1.535(7) C(5)-C(7) 1.540(8) C(13)-C(16) 1.543(7) C(5)-C(8) 1.545(7) C(13)-C(15) 1.546(8) C(5)-C(6) 1.548(8) C(14)-H(19A) 0.9800 C(6)-H(23A) 0.9800 C(14)-H(19B) 0.9800 C(6)-H(23B) 0.9800 C(14)-H(19C) 0.9800 215 C(15)-H(20A) 0.9800 C(22)-H(13A) 0.9800 C(15)-H(20B) 0.9800 C(22)-H(13B) 0.9800 C(15)-H(20C) 0.9800 C(22)-H(13C) 0.9800 C(16)-H(21A) 0.9800 C(23)-H(14A) 0.9800 C(16)-H(21B) 0.9800 C(23)-H(14B) 0.9800 C(16)-H(21C) 0.9800 C(23)-H(14C) 0.9800 C(17)-N(7) 1.326(6) C(24)-H(17A) 0.9800 C(17)-C(18) 1.401(7) C(24)-H(17B) 0.9800 C(17)-H(17) 0.9500 C(24)-H(17C) 0.9800 C(18)-C(20) 1.423(6) C(101)-C(102) 1.422(10) C(18)-C(19) 1.425(7) C(101)-H(10A) 0.9800 C(19)-N(9) 1.144(6) C(101)-H(10B) 0.9800 C(20)-N(8) 1.332(6) C(101)-H(10C) 0.9800 C(20)-C(21) 1.492(7) C(102)-N(101) 1.132(10) C(21)-C(23) 1.521(7) N(1)-N(2) 1.380(6) C(21)-C(22) 1.532(7) N(4)-N(5) 1.382(5) C(21)-C(24) 1.545(7) N(7)-N(8) 1.393(5) Table A.81: Bond angles [°] for {[(pzt-Bu,4CN)3Ag3]}n·CH3CN. N(1)-Ag(1)-N(8) 170.19(16) N(3)-C(3)-C(2) 179.4(7) N(1)-Ag(1)-Ag(2)#1 79.85(11) N(2)-C(4)-C(2) 108.0(5) N(8)-Ag(1)-Ag(2)#1 109.32(11) N(2)-C(4)-C(5) 124.2(5) N(4)-Ag(2)-N(2) 171.12(16) C(2)-C(4)-C(5) 127.8(4) N(4)-Ag(2)-Ag(1)#1 99.74(12) C(4)-C(5)-C(7) 108.7(5) N(2)-Ag(2)-Ag(1)#1 72.99(11) C(4)-C(5)-C(8) 108.7(5) N(7)-Ag(3)-N(5) 174.97(16) C(7)-C(5)-C(8) 108.9(5) N(1)-C(1)-C(2) 109.2(5) C(4)-C(5)-C(6) 112.8(4) N(1)-C(1)-H(1) 125.4 C(7)-C(5)-C(6) 108.5(5) C(2)-C(1)-H(1) 125.4 C(8)-C(5)-C(6) 109.2(5) C(1)-C(2)-C(4) 105.7(4) C(5)-C(6)-H(23A) 109.5 C(1)-C(2)-C(3) 126.1(5) C(5)-C(6)-H(23B) 109.5 C(4)-C(2)-C(3) 128.2(5) H(23A)-C(6)-H(23B) 109.5 216 C(5)-C(6)-H(23C) 109.5 H(19A)-C(14)-H(19C) 109.5 H(23A)-C(6)-H(23C) 109.5 H(19B)-C(14)-H(19C) 109.5 H(23B)-C(6)-H(23C) 109.5 C(13)-C(15)-H(20A) 109.5 C(5)-C(7)-H(25A) 109.5 C(13)-C(15)-H(20B) 109.5 C(5)-C(7)-H(25B) 109.5 H(20A)-C(15)-H(20B) 109.5 H(25A)-C(7)-H(25B) 109.5 C(13)-C(15)-H(20C) 109.5 C(5)-C(7)-H(25C) 109.5 H(20A)-C(15)-H(20C) 109.5 H(25A)-C(7)-H(25C) 109.5 H(20B)-C(15)-H(20C) 109.5 H(25B)-C(7)-H(25C) 109.5 C(13)-C(16)-H(21A) 109.5 C(5)-C(8)-H(22A) 109.5 C(13)-C(16)-H(21B) 109.5 C(5)-C(8)-H(22B) 109.5 H(21A)-C(16)-H(21B) 109.5 H(22A)-C(8)-H(22B) 109.5 C(13)-C(16)-H(21C) 109.5 C(5)-C(8)-H(22C) 109.5 H(21A)-C(16)-H(21C) 109.5 H(22A)-C(8)-H(22C) 109.5 H(21B)-C(16)-H(21C) 109.5 H(22B)-C(8)-H(22C) 109.5 N(7)-C(17)-C(18) 109.2(4) N(4)-C(9)-C(10) 109.0(5) N(7)-C(17)-H(17) 125.4 N(4)-C(9)-H(9) 125.5 C(18)-C(17)-H(17) 125.4 C(10)-C(9)-H(9) 125.5 C(17)-C(18)-C(20) 106.0(4) C(9)-C(10)-C(12) 105.3(5) C(17)-C(18)-C(19) 125.0(4) C(9)-C(10)-C(11) 124.9(5) C(20)-C(18)-C(19) 128.6(5) C(12)-C(10)-C(11) 129.7(5) N(9)-C(19)-C(18) 178.1(6) N(6)-C(11)-C(10) 179.0(6) N(8)-C(20)-C(18) 106.9(4) N(5)-C(12)-C(10) 108.6(4) N(8)-C(20)-C(21) 125.7(4) N(5)-C(12)-C(13) 125.0(4) C(18)-C(20)-C(21) 127.4(5) C(10)-C(12)-C(13) 126.4(5) C(20)-C(21)-C(23) 110.2(4) C(12)-C(13)-C(14) 111.4(4) C(20)-C(21)-C(22) 112.4(4) C(12)-C(13)-C(16) 108.5(4) C(23)-C(21)-C(22) 108.7(4) C(14)-C(13)-C(16) 109.5(5) C(20)-C(21)-C(24) 108.6(4) C(12)-C(13)-C(15) 109.6(4) C(23)-C(21)-C(24) 109.6(5) C(14)-C(13)-C(15) 108.3(4) C(22)-C(21)-C(24) 107.3(4) C(16)-C(13)-C(15) 109.5(5) C(21)-C(22)-H(13A) 109.5 C(13)-C(14)-H(19A) 109.5 C(21)-C(22)-H(13B) 109.5 C(13)-C(14)-H(19B) 109.5 H(13A)-C(22)-H(13B) 109.5 H(19A)-C(14)-H(19B) 109.5 C(21)-C(22)-H(13C) 109.5 C(13)-C(14)-H(19C) 109.5 H(13A)-C(22)-H(13C) 109.5 217 H(13B)-C(22)-H(13C) 109.5 N(101)-C(102)-C(101) 179.4(11) C(21)-C(23)-H(14A) 109.5 C(1)-N(1)-N(2) 108.0(4) C(21)-C(23)-H(14B) 109.5 C(1)-N(1)-Ag(1) 128.2(4) H(14A)-C(23)-H(14B) 109.5 N(2)-N(1)-Ag(1) 119.9(3) C(21)-C(23)-H(14C) 109.5 C(4)-N(2)-N(1) 109.1(4) H(14A)-C(23)-H(14C) 109.5 C(4)-N(2)-Ag(2) 136.8(4) H(14B)-C(23)-H(14C) 109.5 N(1)-N(2)-Ag(2) 114.1(3) C(21)-C(24)-H(17A) 109.5 C(9)-N(4)-N(5) 108.5(4) C(21)-C(24)-H(17B) 109.5 C(9)-N(4)-Ag(2) 130.2(3) H(17A)-C(24)-H(17B) 109.5 N(5)-N(4)-Ag(2) 121.0(3) C(21)-C(24)-H(17C) 109.5 C(12)-N(5)-N(4) 108.5(4) H(17A)-C(24)-H(17C) 109.5 C(12)-N(5)-Ag(3) 137.6(3) H(17B)-C(24)-H(17C) 109.5 N(4)-N(5)-Ag(3) 113.8(3) C(102)-C(101)-H(10A) 109.5 C(17)-N(7)-N(8) 107.8(4) C(102)-C(101)-H(10B) 109.5 C(17)-N(7)-Ag(3) 127.8(3) H(10A)-C(101)-H(10B) 109.5 N(8)-N(7)-Ag(3) 123.8(3) C(102)-C(101)-H(10C) 109.5 C(20)-N(8)-N(7) 110.1(4) H(10A)-C(101)-H(10C) 109.5 C(20)-N(8)-Ag(1) 130.1(3) H(10B)-C(101)-H(10C) 109.5 N(7)-N(8)-Ag(1) 114.5(3) 218
© Copyright 2025 Paperzz