Optimizing Assembly U-line Balance: an Industrial Case Study* Laurent CHAN1, Felix T. CHAN2, Van-Dat CUNG3 and Gerd Finke3 1. Dextus – Schneider Electric Consulting 2. Univ. of Hong Kong, Dept. of Industrial and Manufacturing Systems Engineering 3. Laboratory G-SCOP, [email protected] Laboratoire G-SCOP 46, av Félix Viallet 38031 Grenoble Cedex www.g-scop.fr ■ * This work is partially supported by the Research Cluster GOSPI of the Rhône-Alpes region Centre National de la Recherche Scientifique ■ Institut Polytechnique de Grenoble (Grenoble-INP) ■ Université Joseph Fourier ■ A U-line implant achieved by Dextus • Line versus U-line • Context of Lean manufacturing and Just-In-Time production • Workspace saving • Reduce operators’ moving time • U-line more flexible (#operators, #workstations, diversity of the production) • U-line easier to supply 2 1 Three main objectives for Dextus Buffer capacities ? Takt & Cycle times Repetitive Strain Injuries/ Cumulative Trauma Disorder 3 Dextus’ U-line design approach I- Getting data & validation II- Synoptic (production procedure) III- Determine the line length (1) IV- Line balancing (5) (2) 1. Production rate/#WS 2. Additional constraints (technical, precedency, etc.) 3. Improve the production rate 4. Storage constraints 5. Ergonomic & RSI/CTD Contraints V- Production procedure validation VI- Determine the buffer capacities (3) VII- Flow simulation VIII- 3D implementation (4) 4 2 Step IV: (U-)line balancing 5 Vocabulary and definitions • • • • • • • • Processing task: an indivisible working unit i with a processing time. t , i ∈ 1,.., n Precedence relations: precedence constraints between tasks. i Workstation: line component where tasks are processed, one operator or robot per WS. S j , j ∈ {1,.., m} Workstation load: Subset of tasks assigned to WS j. T j = ti Wokstation time: sum of the times ti of all tasks assigned to WS j. i∈S j Cycle time: time interval between the processing of two CT = Max(T j ) j∈WS consecutive units. CT − T j Workstation idle time: { } ∑ Takt time: production rate (i.e. net available time to work/unit produced), closely related to cycle time. Classical objectives: minimize m for a desired CT minimize CT given m. 6 3 Classical line balancing problem [Salverson 1955] 6 6 1 4 2 Precedence constraint 7 X 2 8 4 3 5 4 4 10 9 1 10 Task Y with processing time X Y 5 5 6 S1 S2 S3 S4 S5 9 12 9 6 11 WS1 WS2 Cycle time=12 Idle time=13 Avg. time=9.4 12 10 8 6 4 2 0 WS3 WS4 WS5 7 Classical line balancing problem (cont.) 6 1 6 4 2 Precedence constraint 7 2 8 4 3 5 4 4 10 9 1 10 X Y Task Y with processing time X 5 5 6 Cycle time=12 Idle time=13 S1 S2 S3 S4 10 11 9 6 S5 11 Cycle time=11 Idle time=8 Avg. time=9.4 12 10 8 6 4 2 0 WS1 WS2 WS3 WS4 WS5 8 4 Taxonomy of ALBP Assembly Line Balancing Problem (ALBP) Assumtions: -Straight line SALBP -Mono-product -Precedence constraints only -Deterministic Param. -No buffer -Becker & Scholl(04) GALBP -Becker & Scholl(06) MALBP UALBP - Scholl(99) - Miltenburg & Wijngaard (DP)(94) MUALBP - Urban (MIP)(98) - Sparling & Miltenburg(98) 9 Line versus U-line 10 1 11 3 2 4 10 3 4 1 9 5 6 6 7 8 1 8 5 11 9 6 2 6 7 4 8 2 3 4 4 5 5 4 Cycle time=11 Idle time=8 10 6 2 10 1 9 10 5 6 10 7 10 9 10 8 9 Cycle time=10 Idle time=3 U-line increases possibilities by allowing crossing-WS. 10 5 General Methodology in O.R. • Management of Transport, Production, Inventories, Design, Ressource Planning , etc. in the areas such as Manufacturiing, Energy, Information Technology, Nanatechology, Hospitals, etc. • Mathematical Programming (linear or not, multiobjective or not) • Graph theory, combinatorial optimization • Discret Event Systems (Petri Net, Queueing systems) • Complexity analysis of the problems and the algorithms • Exact (Branch&X) or approximative (GA, TS, SA, Ants, epsilonapprox.) methods • Tests, benchmarking with the data instances of the literature • Simulations, average analysis • On-site evaluation of the solutions Applications Modelling Solving Analysis & evaluation 11 Adapted line ILP formulation [Urban 1998] • Binary assignement x ∈ {0,1}, ∀i ∈ {1,.., n}, ∀j ∈ {1,.., m} ij variables m • Task assignment xij = 1, ∀i ∈ {1,.., n} ∑ constraints j =1 n • Workstation time T j = ∑ ti xij ≤ CT , ∀j ∈ {1,.., m} constraints i =1 m • Precedence (m − j + 1)(xrj − xsj ) ≥ 0, ∀(r , s ) ∑ = 1 j constraints (r,s) • Adjacence constraints (u,v) xvj + xv ( j +1) ≥ xuj , ∀j ∈ {1,.., m − 1}, ∀(u , v ) 12 6 Adapted U-line ILP formulation [Urban 1998] • Adding a phantom reverse task graph y variables (lower-half of the U) x variables (upper-half of the U) Idea: a task must belong only to one half of the U, hence, either x or y is equal to 1. 13 Adapted U-line ILP formulation (cont.) • Adding y binary variables for the reverse task graph • Task assignment constraints • Workstation time constraints • Precedence constraints (r,s) • Adjacence constraints (u,v) yij ∈ {0,1}, ∀i ∈ {1,.., n}, ∀j ∈ {1,.., m} ∑ (x m j =1 ij + yij ) = 1, ∀i ∈ {1,.., n} T j = ∑ ti (xij + yij ) ≤ CT , ∀j ∈ {1,.., m} n i =1 ∑ (m − j + 1)(x ∑ (m − j + 1)(y rj − xsj ) ≥ 0, ∀(r , s ) sj − yrj ) ≥ 0, ∀(r , s ) m j =1 m j =1 xvj + xv ( j +1) ≥ xuj , ∀j ∈ {1,.., m − 1}, ∀(u , v ) yvj + yv ( j −1) ≥ yuj , ∀j ∈ {2,.., m}, ∀(u, v ) 14 7 Three balance objective functions (1/2) • Minimize the Cycle time (Max) Min(CT ) • Minimize the CT Min(CTmax + ε (CTmax − CTmin )) and the gap n between T j = ∑ ti (xij + yij ) ≥ CTmin , ∀j ∈ {1,.., m} workstation times in=1 T j = ∑ ti (xij + yij ) ≤ CTmax , ∀j ∈ {1,.., m} (Max-Min) i =1 15 Three balance objective functions (2/2) • Minimize the CT Min CT + ε ∑ (δ j+ + δ j− ) j =1 and the deltas to m the mean Tj ∑ workstation time j =1 − T j = δ j+ − δ j− , ∀j ∈ {1,.., m} m (SumDeltas) δ j+ ≥ 0, δ j− ≥ 0, ∀j ∈ {1,.., m} m 16 8 Preliminary empirical results • • • • OPL5.2+CPLEX10.2. Pentium4 CPU, 3Ghz, 2Gbytes RAM, 10’ time limit. Tests on given 2 to 11 workstations for S-line and U-line. Task graph: 27 tasks, 37 precedencies, 2 adjacencies, • The 3 objective functions give the same Cycle time in the S-line configuration, respectively U-line. • But…the U-line configuration can reduce Cycle time when using 3 to 8 workstations compared to the S-line. • The U-line allows to have better workstation times balanced around the mean values w.r.t. SumDeltas and Max-Min. • SumDeltas > Max-Min > Max 17 Line balance comparisons 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% (Max-Min)% Operator Dextus MIP S-line MIP U-line 83% 46% 11% 3% S-line balancing U-line balancing 18 9 Impact on the flexibility of the line 45 40 35 Cadence (pc/h) 30 25 20 15 Opérateur DEXTUS PLNE Equilibrage parfait 10 5 0 1 2 3 NbOpérateurs 4 5 6 7 The better the S/U-line is balanced, the closer is the performance of the S/U-line to the optimal one. 19 On-going works U-line optimization at Dextus Mono-product Present situation Coming-up MIP •Classical constraints •Specific constraints •Test in real line conditions •Integrating ergonomic constraints Buffer capacities Simulation •Mono-product •Better integrating ergonomic constraints •Batch mixed-product model Multi-product MIP •Batch mixed-product model •Looking for real cases 20 10 Ergonomic & RSI/CTD constraints • Ergonomic (exclusive) xuj + xvj constraints (u=sit down, v=stand up) not in the same WS • RSI/CTD constraints, several types of efforts in each WS according to the assigned operations ≤ 1, ∀j ∈ {1,.., m − 1}, ∀(u, v ) m Min ∑ ∑ EffortCoeff t .etj j =1 t∈EffortType n ∑ TaskEffort ( x + y ) ≤ e , ∀j ∈ {1,.., m}, ∀t ∈ {EffortType} etj ∈ {0,1}, ∀j ∈ {1,.., m}, ∀t ∈ {EffortType} i =1 it ij ij tj 21 Thank you for your attention 22 11
© Copyright 2026 Paperzz