GEOPHYSICAL RESEARCH LETTERS,VOL. 23,NO. 5, PAGES523-526,MARCH 1, 1996 Large amplitude solar modulation cycles of 0Be in Antarctica: implications for atmospheric mixing processesand interpretation of the ice core record. E. J.Steig, 1,2P. J.Polissar, 1,3M. Stuiver, 1P M. Grootes, TMandR. C. Finkel 5 Abstract. 10Be concentrations in an ice core at Taylor Dome, Antarcticashow greatervariationover the last 75 years in the low-latitude stratosphere. If so, then a strong geomagnetic signalis expectedin the ice-core10Berecord. Mazaud et al. [1994] approachedthis questionby optimizing the fit betweengeomagneticfield variationsestimatedfrom riodicity which follows expectedchangesin the production ocean sediment cores [Tric et al., 1992], and 10B e rate of 10Beover the l 1-year solarcycle. Noting that the am- concentrationsin the Vostok ice core [Raisbeck et al., 1987] plitude of production-ratevariationis both latitude and altitude over the last 150 ka. In this paper,we take a similar approach, than similar 10Be time-series from Greenland. Like the Greenland records, the new Antarctic data exhibit a strongpe- dependent, we estimatethe relativecontribution of 10Befrom but comparethe Antarctic10Beflux with estimatesof solar different atmosphericreservoirs.The calculationsyield a relatively small (<35 %) contributionfrom the low-to-mid latitude stratosphere,suggestinga weak coupling between Antarctic rather than geomagneticvariability. 10Beand geomagnetic field intensity. Relationship amongsolarvariability,•øBe concentrationsand atmosphericcirculation Our goalwasto obtainan estimate of the amplitude of the -l 1-yearsolarmodulationcycle of 10Be in Antarctica. Introduction Samples werecollected froma firn coreat 2 to 3-yearresolution and in a 4-meterdeep snowpitat -0.5 year resolutionat Modulation of the cosmicray flux by the geomagneticfield and the solar wind causesvariation in the productionrate of cosmogenic isotopes in the atmosphere. Records of TaylorDome,Antarctica (77ø50'S, 158040 ' E, 2400m).10Be analysesweremadeat the LawrenceLivermoreCenterfor cosmogenicløBe in Greenlandice coresexhibit variations AcceleratorMassSpectrometry [Daviset al., 1990;Southonet which coincide with known periodicities in solar activity al., 1990]; analyticalprecisionis betterthan5%. Dating was [Beer et al., 1988; 1990]. The identification of geomagnetic achievedby locatingbomb-radioactivity horizonsin the firn field changesin 10Berecordshasprovenmoredifficult,in part [Dibb et al., 1990] andassuming a constantaccumulation rate becausethe expectedlow-frequency variations axe masked by climatic effects [Yiou et al., 1985; Lal, 1987]. Interpretation (7.5 g cm'2a'l).Independent datingcontrolby oxygenisotope (ti180)stratigraphy indicatesthat the assumption of constant of low-frequency 10Bevariationsis furthercomplicated by the accumulationrate is reasonable(Figure 1). difficulty of isolating the separateeffects of geomagneticand solar variability [Beer et al., 1987; Raisbeck and Yiou, 1985]. a function of time. Also shown is the neutron counting rate at In Figure2, TaylorDomeløBeconcentrations areshownas Over the 11-yearsolarcycle,10Beproductionvariationsof about +20% are predicted for the high-latitude stratosphere [Lingenfelter, 1963; Lal and Peters, 1967; O'Brien, 1979; Lal, 1988], compared with variation of <5% at the geomagnetic equator. The modulation of cosmic rays by the geomagnetic field, on the other hand, is greatest at the equator. Atmosphericmixing thus plays a critical role in determining DeepRiver,Canada[NRC,1994].Theneutron counting rateis directlyrelatedto the cosmicray flux, and thereforeto the 10Beproductionrate at any point in the earth'satmosphere [O'Brien and Burke, 1973]. Comparison of the løBeandneutroncounterdatashowthat atmosphereto surface. A questionof particular importanceis whether or not there there is an --l 1-year periodicitycommonto both records. FollowingBeer et al. [1990], we attributethis periodicityto solar modulation of production. An alternate causal mechanismfor the observedl 1-year periodicityof 10Beis solarforcingof climate[Lal, 1987]. Thereis indeedevidence is significantdeposition,at polar latitudes,of 10Be produced for an approximately-11-year periodicity in ti180data local atmospheric10Beconcentrations and the 10Beflux from [Stuiver et al., 1995] from an ice core in central Greenland. thisperiodicity is absent in bothti180andelectrical 1Alsoat Quaternary Isotope Laboratory, University of Washington,However, Seattle,WA 98195 2 Now at Instituteof ArcticandAlpineResearch, University of Colorado,Boulder,CO 80309(email:[email protected]) 3 Hampshire College 4 Now at LeibnizC-14 Laboratory of the ChristianAlbrechts UniversitatKiel, LeibnizstraBe19, Kiel, Germany conductivitydata at Taylor Dome. Therefore,althoughlongterm climate changesand high-frequency'noise' may be superimposed on production-rate variations,thereis at present little evidence for a meteorologicalcontribution to the !l- yearperiodicity observed for 10Beat TaylorDome. 5 Lawrence Livermore National Laboratory Copyright1996by theAmericanGeophysical Union. Papernumber96GL00255 0094-853 4/9 6/96GL- 00255503.00 Amplitudeof the 11-yearcycleat Taylor Dome To quantifythe relationshipbetweencosmicray flux and 10Bedepositionrates,we applieda 9-13 year bandpass filter to the data. Taking autocorrelation into account,comparison 523 524 0 _ 204060 0 • 2 '" 1990 • 150- 1980 1.2 1.0 5 9641•964 61.9 , Baaivity -45 • (OH / kS) Figure 1. •80 1875 1900 1925 1950 1975 Figure 3. Lower:bandpass-filtered (9-13 year)løBe data -35 a• (•) and B radiationprofilesat Taylor Dome Ant•ctica. N•bers 0.8 show datesof countedye• (ass•g •at •180 pe•s •e annual)andof •own bomb-radiation pe•s. from Taylor Dome, Antarctica (--) and Dye 3, Greenland ( ......... [Beer et al. ,1990]). Dashed line shows filtered snow pit 10BefromTaylorDome.Dataareplottedrelativeto the average.For clarity, the Dye 3 data have been shifted forward by -0.5 years. Upper: filtered Deep River neutron counting rate (--) and Wolf mean annual sunspotnumbers( ..........). of the 11-year-periodiccomponents of the snow-pit10Beand the neutron data yields a correlation coefficient of r = 0.89 at lag 1 year (neff = 49). The 1-year lag is expectedfrom the -1- year residencetime of 10Bein the atmosphere [Raisbeckand atmospheric reservoirthan does 10Bedepositionat Dye 3 (latitude65øN). We used the calculations of O'Brien et al. [1991] to Yiou, 1981; Beer et al., 1990]. Before filtering, all data were numerically re-sampled, using low-degree cubic splines [Rasmussen, 1991], to obtain average values over identical one-year intervals. This procedure should underestimate the 11-year amplitudefor the fire-core at Taylor Dome, which was sampled at relatively low resolution. integratetotal productionover variouslatitude and altitude rangesas a functionof the Deep River neutroncountingrate. Figure3 showsa comparison of the filtered 10Bedata from Taylor Dome (A.D. 1920 - 1994) and from Dye 3, Greenland absoluteproductionrate of 10Be is not importanthere, tion at each site. Also shown are sunspot.numbers and the filtered Deep River neutroncounterdata. The amplitudeof the time) is constant,or at least non-periodic. O'Brien et al. 's calculationsagree closely with empirical observations of the neutron-flux/altitude relationship [Simpson et al., 1953], and with the earlier calculationsof Lingenfelter [1963] and Lal and Peters [1967]. Becausewe use ratios, the althoughimplicit in our model is that the scavengingratio (1860 - 1985),plottedrelativeto the average10Beconcentra- (theproportionof atmospheric 10Bethatis deposited per unit Figure 4 comparesthe neutron counting rate with the variation in 10Be at Taylor Dome for the years 1958-1994. Also shown are predicted variations integratedover l) the (1875-1985) as large as the largest observedat Taylor Dome whole atmosphere,2) stratosphereonly, and 3) the polar over the last 75 years. This suggestsa fundamentaldifference stratosphere.We estimate the uncertainty in the average between the northern and southern hemisphere sites. A slopesof the theoreticalcurvesto be +10%, basedon comparpossibleexplanation is that 10Bedeposition at TaylorDome ison amongdifferent calculationsof cosmogenicnuclidepro(77ø50'S) reflects 10Be production from a higher-latitude duction rates [Lal, 1988; Lingenfelter, 1963; O'Brien et al., 1991]. A best-fit straightor parabolicline to the Taylor Dome data is statisticallydistinct (>95% confidence)from both the whole atmosphereand whole stratosphere predictedvalues. løBe variationsat Taylor Dome is on averagelarger than at Dye 3. There are no variations in the entire Dye 3 data set Discussion '•30 ]ß, 25 •o I !\i:i ß •' lo /i 1.8• . 20 The data suggestthat there is some contribution,possibly significant,of polar stratospheric 10Beto the Antarctic10Be flux. This conflicts with the traditional view that at high latitudes there is little input of cosmogenicisotopesproduced in the stratosphere[Lal and Peters, 1967], but is consistent with 1925 1945 1965 1985 observations of ozone and aerosol concentrations in the Antarctic [Fox et al., 1995; Maenhaut et al., 1979; Manney et al., 1994; Santee et al., 1995; Toon et al., 1986; Crutzen and Arnold, 1986; Deshler et al., 1995; Gobbi et al., 1991]. To quantifythe relativecontributionof non-polar10Beto Figure 2. 10Beconcentrations at TaylorDomefroma firn polar 10Be,we calculatea sensitivityfactor, core (lower) and a snow pit (upper). Dashed line showsmean annualneutroncount(106/hr)at DeepRiver,Canadafor comparison. •)(10Be/10Bemean )•• 525 1.4 ' 5.0 '...... ''I'l'ay!•.r. '''IDome ß''I'''I''' 1.• + O. 8 1.8 •p 4.0 - 3.5 0.2 0.4 0.6 0.8 low-latitudestratosphere fraction 1.9 2 2.1 2.2 Riverneurons (1• •un•) Figure 5. Sensitivity of thepolar10Beflux to changes in the cosmic ray flux, as characterizedby the Ehmert potential, •, asa functionof thefractionof løBederivedfromthelowFigure4. Comparison of predicted andmeasured 10Bepro- latitude stratosphere. Curved lines show theoretical duction as a function of countingrates at the Deep River neutron monitor, 1958 - 1994. Crosses show 1-year mean data from bandpass-filteredTaylor Dome data shown in Figure 3. Lines show predicted values for entire atmosphere ( .... ), stratosphereonly (---), and polar stratosphereonly (--). where • is the Ehmert potential,a measureof solarmodulation of the cosmicray flux [Ehmert, 1960]. For a typical solar cycle,• variesfrom 300 to 600 MeV, with an averagevalueof sensitivities near a mean value of • = 450 MeV; bold line is from calculation of O'Brien et al. [1991]. Dotted lines denote estimated2(• uncertainty.Arrows show empirically determined values forTaylorDomeandDye3. Leastsquares 2ndorder polynomial fit gives 95% confidencelimits of -I- 0.4 keV for the Taylor Dome value. eta/., 1993] to achieve their best-fit match introduces errors, 3) the fraction of 'modulated'10Be in the ice core record is variable, or 4) the theoreticalproductionrate variationsare in 450 MeV [La/, 1988];• = 450 MeV corresponds to a counting error. The first three possibilities draw into question the rateatDeepRiverof 1.97X 106neutrons/hour [O'Brien and validity of using 10Be ice core recordsas proxiesfor the Burke, 1973]. geomagneticmodulationof cosmogenicisotopeproduction. We divide the atmospheric 10Beproductioninto geomagnetically 'modulated' and 'unmodulated'components,correspondingto the low latitude (0ø to 60ø) and high-latitude(60ø to 90ø) atmosphere.The boundary at 60ø correspondsto a break in slope in theoretical cosmogenicisotope production curves and is meaningful also from the perspective of atmosphericdynamics,since 60ø approximatesthe location of the polar vortex [e.g. Kakegawa et al., 1986]. Although geomagnetic and geographic latitudes are different, this difference is negligible becauseproductionrates are nearly independentof latitude poleward of 60ø [e.g. Lingenfelter, 1963]. Figure 5 depictsthe sensitivityof 10Be production to changes in Ehmert potential for different mixing ratios between10Bederivedfrom high latitudesand from the lowlatitude stratosphere.Comparison between the calculated and observed sensitivities shows that at most 35% of the Antarctic 10Beflux can be derived from low-latitude sources.In contrast, the amplitudeof variationof 10Beobserved in theDye 3 core [Beer et al., 1990] is consistent with a well-mixed stratosphere [Monaghan, 1987]. This conclusionis at odds with recent work of Mazaud et. al., [1994], who were able to produce a reasonablematch between the Vostok, Antarctica, Conclusions Evidently, a relatively small proportion of the Antarctic løBe flux is derivedfrom latitudesat whichvariationsin geomagneticfield strengthare important.If our 75-year recordis applicableto the distant past, then the 10Be record from Antarctic ice cores should contain only a small geomagnetic signal. The global average variation over the last 10 ka is on the order of -I-25%; assuming a maximum 35% contribution from the low-latitude stratosphere,geomagneticmodulation accountsfor variation of at most +10% at Taylor Dome. This conclusionis satisfying from the point of view of glaciology,becauseit suggeststhat 10Be concentrations can be used to determine accumulationrates in ice cores [Lorius et al., 1989; Raisbeck et al., 1987; 1992; Steig eta/., 1995; Yiou et al., 1985]. The rather minimal effect of geomagnetic modulation on the Antarctic 10Be flux makes reasonable the assumption of a "constant" 10Be flux over millennial timescales.The effect of solar variability, of course,must still be considered, but our resultssuggestthatcomparison of 10Be recordsamongAntarcticand Greenlandice coresmay allow us to separate the geomagnetic and solar contributions to 10Berecordandocean-sediment proxyrecordsof geomagnetic changesin cosmogenicisotope productionrates. field strength. As has been done here, Mazaud et al. [1994] dividedthe atmospheric 10Besourcesinto 'unmodulated' and 'modulated'components;they determined a value of 75% for the modulated component.The discrepancywith our value of <35% suggeststhat 1) ocean-sedimentgeomagneticrecords approximate geomagnetic field variations rather poorly [Raisbeck et al., 1994] 2) the slight adjustmentmade by Mazaud•t al. [1994]to theaccepted Vostoktimescale [Jouzel Acknowledgments. We are gratefulto J. Dibb for B-decaymeasuremerits,to K. Taylor for help with the electricalconductivity measurements, to E. Waddington,D. Morse and manyothersfor field support.,K. O'Brienfor tabulatedcosmogenic isotopeproductionrate data,and to J. Beer, M. Pavichand an anonymousreviewerfor constructivecriticsim. This studywas supportedby the U.S. Antarctic ProgramundergrantsNSF-OPP 9316162 and 89-15924,and by a U.S. DOE GlobalChangeFellowshipto EJS. 526 References Mazaud, A., C. Laj and M. Bender,A geomagneticchronologyfor Antarctic iceaccumulation, Geoph, y•s. Res.Lett.,21,337-340,1994. Monaghan, M. C., Greenland ice løBeconcentrations andaverage Beer, J., A. Blinov, G. Bonani,R. C. Finkel, H. J. Hofmann,B. Lehmann, H. Oeschger,A. Sigg,J. Schwander, T. Staffelback,B. Stauffer,M. precipitation ratesnorthof 40øNto 45øN,EarthPlanet.Sci.Lett.,84, 197-203, 1987. SuterandW. W/51fli,Useof løBein polariceto tracethe l 1-year NRC, CosmicRay NM-64 NeutronMonitorData, CosmicRay NM-64 NeutronMonitor Data,, HerzbergInstituteof Astrophysics, National ResearchCouncil of Canada(NRC), Ottawa, 1994. Oeschger, U. Siegenthaler andR.C.Finkel, løBemeasurements on O'Brien,K., Secularvariationsin the productionof cosmogenicisotopes in the Earth'satmosphere., J. Geophys. Res.,84, 423-431, 1979. polar ice: comparisonof arctic and antarcticrecords,Nucl. Instr. O'Brien, K. and G. Burke, Calculated cosmic ray neutron monitor Method.Phys.Res.,B29, 203-206, 1987. response to solarmodulationof galacticcosmicrays.,J. Geophys• Beer, J., F. Joos, C. Lukasczyk, W: Mende, J. Rodriguez, U. cycleof solaractivity,Nature,347, 164-166,1990. Beer, J., G. Bonani, H. F. Hofmann,M. Suter,A. Synal, W. W51fli, H. Siegenthaler andR. Stellmacher, løBeas an indicator of solar variabilityandclimate,in Nesme-Ribes, E., ed. TheSolarEngineand Its Influence on Terrestrial Atmosphereand Climate, SpringerVerlag, Berlin,221-233, 1994. Beer, J., U. Siegenthaler,G. Bonani, R. C. Finkel, O. H., M. Suter and W. W61fli, Informationon pastsolaractivityandgeomagnetism from løBeintheCampCentury icecore, Natura331,675-679, 1988. Crutzen, P. J. and F. Arnold, Nitric acid cloud formation in the cold Antarcticstratosphere: a major causefor the springtimeozonehole., Nature, 324, 651-654, 1986. Davis, J. C., I.D. Proctor, J. R. Southon, M. W. Caffee, D. W. Heikkinen, M. L. Roberts,T. L. Moore, K. W. Turteltaub,D.e. Nelsøn,D. H. Loyd and J. S. Vogel, LLNL/UC AMS facility and researchprogram,Nucl. Instr. Method. Phys. Res., B52, 269-272, 1990. ß Deshler, T., A. Adriani, G. P. Gobbi, D. J. Holmann, G. Di Donfrancesco and B. J. Johnsen, Volcanic aerosol and ozone depletionwithin the antarcticpolar vortexduringthe australspringof 1991,Geophys. Res.Lett.,19, 1819-1822,1995. Dibb, J. E., P. A. Mayewski, C. S. Buck and S. M. Drumracy,Beta radiation from snow, Nature, 345, 25, 1990. Res., 78, 1973. O'Brien,K., A. Lerner, M. A. Sheaand D. F. Smart,The productionof cosmogenic isotopesin the Earth'satmosphereandtheir inventories, in Sonnet,C. P., M. S. GiampapaandM. S. Matthews,eds.TheSunin Time,Universityof ArizonaPress,Tucson,990, 1991. Raisbeck, G. M. andF. Yiou, Cosmogenic 1øBe/7Be as a probeof atmospheric transportprocesses, GeOphys. Res.Lett.,8, 101501018, 1981. Raisbeck, G.M. andF.Yiou,løBeinpolariceandatmospheres, •Annals Glac. 7, 138-140, 1985. Raisebeck,G. M., F. Yiou, D. Bourles, C. Lorius, J. Jouzel and N. I. Barkov,Evidence for twointervals of enhanced løBedeposition in Antarcticice duringthe last glacialperiod,Nature, 326, 273 - 277, 1987. Raisbeck, G.M., F. YiouandS.Z. Zhou,Palaeointensity puz•e,Nature, 371, 207-208, 1994. Rasmussen,A., Piecewise integral splines of low degree, Comp. Geosci., 17, 1255-1263, 1991. Santee,M. L., W. G. Read,J. W. Waters,L. Froidevaux,G. L. Manney, D. A. Flower, R. F. Jarnot, R. S. Harword and G. E. Peckham, Interhemispheric differencesin polar stratosphericHNO3, H20, C10,and0 3, Science, 267, 849-852,1995. Ehmert,A., On the modulationof the primary spectrumof cosmicrays Shaw, G. E., Aerosoltransportfrom sourcesto ice sheets,in Oeschger, from solaractivity,Proc.!nt. CosmicRay Conf.,4, 140-152,1960. H. andC. C. Langway,eds.The EnvironmentalRecordin Glaciers Fox, L. E., D. R. Worsnop,M.S. ZahniserandS.C. Wofsy, Metastable and Ice Sheets,JohnWiley & Sons,New York, 13-27, 1989a. phases in polarstratospheric aerosols, Science, 267, 351-355,1995. Simpson,J. A., W. FongerandS. B. Treiman,CosmicradiationintensityGobbi, G. P., T. Deshler, A. Adriani and D. J. Hofmann, Evidence for time variationsand their origin. 1. Neutronintensityvariationmethod denitrificationin the 1990 Antarcticspringstratosphere: I Lidar and andmeteorological factors,Phys.Rev.,90, 934-950, 1953. temperature measurements,Geophys.Res. Lett., 18, 1995-1998, 1991. Southon, J. R., M. W. Ca_free,J.C.Davis, T. L. Moore, I.D. Proctor, B. Schumacherand J. S. Vogel, The new LLNL AMS spectrometer, Jouzel, J., N. I. Barkov, J. M. Barnola,M. Bender,J. Chappellaz,C. Nucl. Instr.Method.Phys.Res.,B52, 301-305, 1990. Genthon, V. M. Kotlyakov, V. Lipenkov, L. C, J. R. Petit, D. Raynaud,G. Raidbeck,C. Ritz, T. Sowers,M. Stievenard,F. Yiou Steig, E. J., P. J. Polissar and M. Stuiver, Cosmogenicisotope concentrations at Taylor Dome, Antarctica,Ant. Jour. U.S., in press, and P. Yiou, Extendingthe Vostok ice-corerecordof palaeoclimate 1995. to the penulitmateglacialperiod,Nature, 364, 407-412, 1993. Kakegawa, H., T. Yasunari and T. Kawamura, Seasonaland intra- Stuiver,M., T. Braziunasand P. Grootes,The GISP2 tSlSOclimate recordof the past 16,500 yearsand the role of the sun, ocean,and seasonalfluctuationsof polar anticycloneand circumpolarvortex volcanoes.,Quat. Res., 44, 341-354. over Antarctica,Merrc Nat. Inst. Polar Res., 45, 19-29, 1986. of HNO3 Lal, D., løBein polarice:datareflectchanges in cosmic ray flux or Toon,O. B., P. Hamill, R. P. TurcoandJ. Pinto,Condensation and HC1 in the winter polar stratospheres, Geophys.Res. Lett., 13, polarmeteorology, Geophys. Res.Lett.,14, 785-788,1987. 1284-1287, 1986. Lal, D., Theoreticallyexpectedvariationsin the terrestrialcosmic-ray productionratesof isotopes.,in Castagnoli,G. C., ed. International Tric, E., J.-P. Valet, P. Tucholka,M. Pateme,L. Labeyrie,F. Guichard, L. Tauxe and M. Fontugne,Palcointensityof the geomagneticfield Schoolof Physics"EnricoFermi", North-Holland,Varennasul Lago duringthelast80,000years,J. Geophys. Res.,97, 9337-9351,!992. di Como, 216-233, 1988. D. Bourles, C. LoriusandN. I. Barkov,løBe Lal, D. and B. Peters,Cosmicray producedradioactivityon the earth, Yiou,F., G. M. Raisbeck, in ice at VostokAntarcticaduringthe last climaticcycle,Nature, 316, Handbuchder Physik;46, 551-612, 1967. 616-617, 1985. Lingenfelter,R. E., Productionof carbon14 by cosmic-rayneutrons, Rev.Geophys., I, 35-55, 1963. Lorius, C., G. Raisbeck, J. Jouzel and D. Raynaud, Long-term environmentalrecordsfrom Antarctic ice cores.,in Oeschger,H. E.J. Steig,M. StuiverandP.M. Grootes,Dept.of Geological andC. C. Langway,eds.TheEnvironmental Recordin Glaciersand Sciences,351310,Univ. of Washington,Seattle,WA 98195 Ice Sheets,JohnWiley, New York, 1989. P.J.Polissar,Schoolof NaturalSciences,HampshireCollege, Maenhaut,W., W. H. Zoller and D. G. Coles, Radionuclidesin the South Amherst, MA 01002 Poleatmosphere, J. Geophys.Res.,84, 3131-3137,1979. R. C. Finkel, Centerfor AcceleratorMass Spectrometry,Lawrence Manney,G. L., L. Froidevaux,J. W. Waters,R. W. Zurek,W. G. Read, LivermoreNationalLaboratory,L-231, Livermore,CA 94550 L. S. Elson,J. B. Kumer,J. L. Mergenthaler,A. E. Roche,A. O'Neill, R. S. Harwood,I. MacKenzie and R. Swinbank,Chemicaldepletion of ozone in the Arctic lower stratosphereduring winter 1992-93, Nature, 370, 429-433, 1994. (ReceivedSeptember 29, 1995;acceptedDecember19, 1995.) ,
© Copyright 2026 Paperzz