TOC.PDF

CONTENTS
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv
Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix
Topical Group on Shock Compression of Condensed Matter: 1999-2001 APS Fellows . . . . . . . . . xxxi
Photograph: Recipient of the APS Shock Compression Science Award, 2 0 0 1 . . . . . . . . . . . . . . . . . xxxii
Conferences of the APS Topical Group on Shock Compression of Condensed Matter . . . . . . . . . xxxiv
PART ONE
CHAPTER I
PLENARY
The Coupling between Shock Waves and Condensed Matter: Continuum Mechanics
to Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
Y. M. Gupta
The History of the APS Topical Group on Shock Compression of Condensed M a t t e r . . . . . . . . . .
11
J. W. Forbes
Traditional Analysis of Nonlinear Wave Propagation in Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20
L. Davison
Shock Wave Paradigms and New Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26
J. R. Asay
Mechanical States of Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36
J. J. Oilman
What Is a Shock Wave to an Explosive Molecule? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42
C. M. Tarver
CHAPTER II
EQUATION OF STATE: NONENERGETIC MATERIALS
Shock Waves and Plasma P h y s i c s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
53
A.Ng
Nickel Critical Point Parameters from Shock Experiments with Porous Samples . . . . . . . . . . . . .
59
D. N. Nikolaev, V. Y. Ternovoi, and A. A. Pyailing
High-Pressure Vaporization and Boiling of Condensed Material: A Generalized
Clausius-Clapeyron Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
63
A. L. Conor
Calculated Hugoniot Curves of Porous Metal: Copper, Nickel, and M o l y b d e n u m . . . . . . . . . . . . .
67
Y. Wang, R. Ahuja, and B. Johansson
Analysis of Isobaric Expansion Data Based on Soft-Sphere Equation of State for
Liquid M e t a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71
P. R. Levashov, V. E. Fortov, K. V. Khishchenko, and I. V. Lomonosov
EOS Data of Ti-6Al-4V to Impact Velocities of 10.4 km/s on a Three-Stage G u n . . . . . . . . . . . . . .
N. A. Winfree, L. C. Chhabildas, W. D. Reinhart, D. E. Carroll, and G. L Kerley
75
Measurements of the Equation of State of Lead under Varying Conditions by
Multiple Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
79
S. D. Rothman, A. M. Evans, P. Graham, K. W. Parker, J. Palmer, T. Jalinaud, J.-P. Davis,
J. Asay, M. Knudson, and C. Hall
Experimental Study of Highly Compressed Iron Using Laser Driven S h o c k s . . . . . . . . . . . . . . . . .
83
A. Benuzzi-Mounaix, G. Huser, M. Koenig, B. Faral, N. Grandjouan, D. Batani,
E. Henry, M. Tomasini, B. Marchet, T. Hall, M. Boustie, T. De Resseguier, M. Hallouin,
and F. Guyot
Equation of State and Phase Diagram of Iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
87
V. V. Dremov, A. L. Kutepov, A. V. Petrovtsev, and A. T. Sapozhnikov
Density-Functional Molecular Dynamics Simulations of Shocked Molecular Liquids . . . . . . . . . .
91
J. D. Kress, S. Maze vet, and L. A. Collins
Temperature Measurements of Single and Double Shock Compressed Liquid Nitrogen
in Overtaking Shock Wave C o n f i g u r a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
95
A. A. Pyalling, V. Y. Ternovoi, and A. S. Filimonov
Density Functional Calculation of the Hugoniot of Shocked Liquid N i t r o g e n . . . . . . . . . . . . . . . . .
99
S. Mazevet, J. D. Kress, L. A. Collins, W. W. Wood, J. D. Johnson, and P. Blottiau
Theoretical Equation of State for Water at High Pressures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
103
H. D. Jones
Thermophysical Properties of Helium under Multiple Shock C o m p r e s s i o n . . . . . . . . . . . . . . . . . . .
107
V. Y. Ternovoi, A. S. Filimonov, A. A. Pyalling, V. B. Mintsev, and V. E. Fortov
Phase Diagrams and Thermodynamic Properties of Metals at High Pressures,
High Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ill
I. V. Lomonosov, V. E. Fortov, K. V. Khishchenko, and P. R. Levashov
Physical Interpretation of Mathematically Invariant K(p,P) Type Equations of State
for Hydrodynamically Driven Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
115
G. M. Hrbek
Thermodynamic Properties of Nonideal Strongly Degenerate Hydrogen Plasma . . . . . . . . . . . . . .
119
P. R. Levashov, V. S. Filinov, V. E. Fortov, and M. Bonitz
Construction of Wide-Range Equations of State through "Merging" Local Equations
Using Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
127
L. F. Gudarenko and V. G. Kudelkin
On the Shock Response of Polychloroprene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
131
J. C. F. Millett, N. K. Bourne, G. T. Gray III, and G. Cooper
The Shock Hugoniot of an Epoxy Resin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
135
N. Barnes, N. K. Bourne, and J. C. F. Millett
Invariant Functional Forms for K(p,P) Type Equations of State for Hydrodynamically
Driven F l o w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
139
G. M. Hrbek
Simulated, Theoretical, and Experimental Shock Trajectories in Cylindrical G e o m e t r y . . . . . . . .
143
R. Kanzleiter, W. Atchison, R. Bowers, and J. Guzik
CHAPTER III
EQUATION OF STATE: ENERGETIC MATERIALS
Development of the LANL Sandwich T e s t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
149
L. G. Hill
Re-shock Experiments in LX-17 to Investigate Reacted Equation of State . . . . . . . . . . . . . . . . . . .
K. S. Vandersall, J. W. Forbes, C. M. Tarver, P. A. Urtiew, and F. Garcia
VI
153
A Hybrid Monte Carlo Method for Equilibrium Equation of State of Detonation Products . . . .
157
M. S. Shaw
Calculation of Chemical Detonation Waves with Hydrodynamics and a Thermochemical
Equation of S t a t e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
161
W. M. Howard, L. E. Fried, P. C. Souers, and P. A. Vitello
ANFO Cylinder Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
165
L. L. Davis and L. G. Hill
A New Temperature-Dependent Equation of State for Inert, Reactive, and
Composite M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
169
O. Heuze, J. C. Goutelle, and G. Baudin
Shock Polar Calculation of Inert Nitromethane by Molecular Dynamics Simulation...........
173
L. Soulard
Detonation Product EOS Studies: Using ISLS to Refine C h e e t a h . . . . . . . . . . . . . . . . . . . . . . . . . . .
177
J. M. Zaug, W. M. Howard, L. E. Fried, and D. W. Hansen
Structural Studies and EOS of Diaminodinitroethylene (DADNE, FOX-7) under
Static Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
181
S. M. Peiris, G. L Pangilinan, F. J. Zerilli, and T. P. Russell
Thermodynamic Representations for Solid/Melt Systems at High Pressure
and T e m p e r a t u r e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
185
M. Braithwaite, C. E. Sims, and N. L. Allan
CHAPTER IV
PHASE TRANSITIONS
Recent Progress in Understanding the Shock Response of Ferroelectric Ceramics . . . . . . . . . . . .
191
R. E. Setchell
Macro- and Meso-Scale Modeling of PZT Ferroelectric Ceramics . . . . . . . . . . . . . . . . . . . . . . . . . .
197
R. M. Brannon, S. T. Montgomery, J. B. Aidun, and A. C. Robinson
Simulation of the Effects of Shock Stress and Electrical Field Strength on
Shock-Induced Depoling of Normally Poled PZT 95/5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
201
S. T. Montgomery, R. M. Brannon, J. Robbins, R. E. Setchell, and D. H. Zeuch
Multidimensional Validation Impact Tests on PZT 95/5 and A L O X . . . . . . . . . . . . . . . . . . . . . . . . .
205
M. D. Furnish, J. Robbins, W. M. Trott, L. C. Chhabildas, R. J. Lawrence,
and S. T. Montgomery
Effects of Initial Porosity on the Shock Response of Normally Poled PZT 95/5 . . . . . . . . . . . . . . .
209
R. E. Setchell, B. A. Tuttle, J. A. Voigt, and E. L. Venturini
The Shear Strength of Potassium Chloride above the B1-B2 Phase Transition
during Shock Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
213
J. C. F. Millett and N. K. Bourne
Spatial Evolution of Three-Wave Structure in Shocked Potasium Chloride . . . . . . . . . . . . . . . . . .
217
E. Zaretsky
Investigation of Liquid-Solid Phase Transition Using Isentropic
Compression Experiments (ICE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
221
J.-P. Davis, D. B. Hayes, J. R. Asay, P. W. Watts, P. A. Flores, and D. B. Reisman
Alpha-Omega Transition in Ti: Equation of State and Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . .
225
C. W. Greeff, D. R. Trinkle, and R. C. Albers
Shock Induced Melting of Lead (Experimental S t u d y ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C. Mabire and P.-L. Hereil
VII
229
Electrical Conductivity Investigation of Graphite-Diamond Transition under
Multiple Shock-Wave Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
233
V. I. Postnov, V. E. Fortov, V. V. Yakushev, and T. I. Yakusheva
Abnormal Electric Conductivity of Lithium at High Dynamic Pressure . . . . . . . . . . . . . . . . . . . . .
237
V. E. Fortov, V. V. Yakushev, K. L. Kagan, I. V. Lomonosov, V. I. Postnov, T. I. Yakusheva,
and A. N. Kuryanchik
A Kinetic Model of Multiple Phase Transitions in I c e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
241
G. Cruz Leon, S. Rodriguez Romo, and V. Tchijov
The Ab-Initio Study of Structural Stability of U r a n i u m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
245
A. Kutepov and S. Kutepova
CHAPTER V
MODELING, SIMULATION, AND THEORY: NONREACTIVE MATERIALS
Superseismic Loading and Shock Polars: An Example of Fluid-Solid C o u p l i n g . . . . . . . . . . . . . . .
251
M. Arienti and J. E. Shepherd
Comparing Lagrangian Godunov and Pseudo-viscosity Schemes for Multidimensional
Impact S i m u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
255
G. Luttwak
Discrete Element Method Modeling of G a s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
259
W. Wang, Z. Tang, P. Gong, and Y. Horie
Nonlocal Theory of Macro-Meso-Level Energy Exchange in the
Shock Compressed M a t t e r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
263
T. A. Khantouleva
Macro-Meso Energy Exchange in Dynamically Deformed S t e e l s . . . . . . . . . . . . . . . . . . . . . . . . . . . .
267
Y. I. Mescheryakov
Analysis of the Slowing of a High Energy Proton Shot through a Target in the
Frame of the Fokker-Plank Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
271
V. Molinari and F. Teodori
Anisotropic Failure Model Development and I m p l e m e n t a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
275
J. D. Walker, K. A. Dannemann, and C. E. Anderson, Jr.
Modeling Anisotropic Plasticity: 3D Eulerian Hydrocode Simulations of High Strain
Rate Deformation P r o c e s s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
279
M. W. Burkett, S. P. Clancy, P. J. Maudlin, and K. S. Holian
Interface Tracking in Eulerian and MMALE Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
283
G. Luttwak
Numerical Investigation into the Performance of a Rarefaction Shock Wave Cutter
for Offshore Oil-Gas Platform Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
287
J. P. Morris, L. A. Glenn, T. H. Antoun, and I. N. Lomov
Analysis of Radiation-Driven Jetting Experiments on NOVA and Z . . . . . . . . . . . . . . . . . . . . . . . . .
291
R. J. Lawrence, T. A. Mehlhorn, T. A. Haill, K. G. Budge, T. G. Trucano, K. R. Cochrane,
and J. J. MacFarlane
Non-Newtonian Viscosity Effects at Shocked Fluid I n t e r f a c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
295
S. M. Valone
Sensitivities for Taylor-Test Model P a r a m e t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
299
R. J. Henninger
Transmission of Shocks along Thin-Walled Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D. A. Salisbury, A. R. Giles, and R. E. Winter
Vlll
303
Computational Characterization of Three-Stage Gun Flier Plate L a u n c h . . . . . . . . . . . . . . . . . . . .
307
D. E. Carroll, L. C. Chhabildas, W. D. Reinhart, N. A. Winfree, and G. I. Kerley
Modeling and Simulation of Explosively Driven Electromechanical D e v i c e s . . . . . . . . . . . . . . . . . .
311
P. N. Demmie
Numerical Simulations of the Influence of Loading Pulse Shape on SHPB Measurements......
315
A. D. Resnyansky and G. T. Gray III
Shock Wave Effects in Copper: Design of an Experimental Device for Post Recovery
Mechanical Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
319
F. Buy and F. Llorca
The Contribution of the Expanding Shell Test to the Modeling of Elastoplasticity
at High Strain R a t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
323
F. Llorca and F. Buy
The Expanding Shell Test: Numerical Simulation of the E x p e r i m e n t . . . . . . . . . . . . . . . . . . . . . . . .
327
F. Buy and F. Llorca
CHAPTER VI
MOLECULAR DYNAMICS MODELING: NONREACTIVE MATERIALS
Large-Scale Molecular Dynamics Simulations of Shock-Induced Plasticity, Phase
Transformations, and Detonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
333
T. C. Germann
Atomistic Simulations of the Motion of an Edge Dislocation in Aluminum
Using the Embedded Atom Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
339
N. Bhate, R. J. Clifton, and R. Phillips
Hugoniot Constraint Molecular Dynamics Study of a Transformation to a
Metastable Phase in Shocked Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
343
E. J. Reed, J. D. Joannopoulos, and L. E. Fried
Molecular Dynamics and Experimental Study of Shock Polarization of Nitromethane.........
347
L. Soulard
Shock-Induced Structural Phase Transformations Studied by Large-Scale
Molecular-Dynamics Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
351
K. Kai, T. C. Germann, P. S. Lomdahl, and B. L. Holian
Atomistic Modeling of Orientation Dependence of Shock Wave Properties in D i a m o n d . . . . . . . .
355
S. V. Zybin, M. L. Elert, J. A. Harrison, and C. T. White
Shock Waves in Dusty P l a s m a s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
359
J. E. Hammerberg, T. C. Germann, and B. L. Holian
Continuum Properties from Molecular Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
363
R. J. Hardy, S. Root, and D. R. Swanson
Uniaxial Hugoniostat: Method and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
367
J.-B. Maillet and S. Bernard
Discrete Element Method Simulation of Nonlinear Viscoelastic Stress Wave Problems.........
371
W. Wang, Z. Tang, and Y. Horie
Molecular Dynamics Simulation of Shock Wave Compression of M e t a l s . . . . . . . . . . . . . . . . . . . . .
374
A. A. Selezenev, V. K. Golubev, A. Y. Aleinikov, O. I. Butnev, R. A. Barabanov,
and B. L. Voronin
Large-Scale Molecular Dynamics Simulations of Shock Waves in Laves Crystals
and Icosahedral Q u a s i c r y s t a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J. Roth
IX
378
CHAPTER VII
MODELING AND SIMULATION: REACTIVE MATERIALS
Electronic Excitations Vibrational Spectra, and Chemistry in Nitromethane and H M X . . . . . . . .
385
E. J. Reed, M. Riad Manaa, J. D. Joannopoulos, and L. E. Fried
A Study of Deflagration to Detonation Transition in a Model A-B System
Using Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
391
J. Fellows, P. J. Haskins, and M. D. Cook
Steady Flow Detonations from Molecular Dynamics Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . .
395
D. R. Swanson and C. T. White
Elastic Properties of H M X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
399
T. D. Sewell, D. Bedrov, R. Menikoff, and G. D. Smith
Molecular Dynamics Simulations of HMX Crystal Polymorphs Using a Flexible
Molecule Force F i e l d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
403
D. Bedrov, G. D. Smith, and T. D. Sewell
Ab Initio Molecular Dynamics Simulations of Molecular Collisions of Nitromethane . . . . . . . . . .
407
D. Wei, R Zhang, and T. K. Woo
Impact Response of PBX 9501 below 2 G P a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
411
K. Kline, Y. Horie, J. J. Dick, and W. Wang
Mesoscale Modelling of Shock Initiation Behavior in HMX-Based Explosives . . . . . . . . . . . . . . . .
415
R. N. Mulford and D. C. Swift
Characterization of the Saturn Air Lens and Its Use in Foam S t u d i e s . . . . . . . . . . . . . . . . . . . . . . .
419
E. J. Harris, D. A. Salisbury, P. Taylor, and R. E. Winter
Steady-State Model of Heterogeneous Detonation with Inert P a r t i c l e s . . . . . . . . . . . . . . . . . . . . . . .
423
A. Gonor, I. Hooton, and S. Narayan
Modeling High Explosives with the Method of Cells and Mori-Tanaka Effective
Medium T h e o r i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
427
B. E. Clements and E. M. Mas
Numerical Simulations of Anti-tank Mine D e t o n a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
431
L. Laine, 0. Ranestad, A. Sandvik, and A. Snekkevik
Simulation of Shaped-Charge with SPH Rezone M e t h o d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
435
J. Yao, M. E. Gunger, and D. A. Matuska
Modeling and Prediction of Sensitivity in Energetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
439
N. V. Garmasheva, V. P. Filin, B. G. Loboiko, A. N. Averin, D. Mathieu,
P. Simonetti, and R. Belmas
Approximate Blast Theory: Application to Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
442
G. J. Hutchens
Effect of Reaction Rate Periodicity on Detonation Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . .
446
E. O. Morano and J. E. Shepherd
A Complete Equation of State for Detonation Products in H y d r o c o d e s . . . . . . . . . . . . . . . . . . . . . .
450
O. Heuze
How Point and Line Defects Affect Detonation Properties of Energetic S o l i d s . . . . . . . . . . . . . . . .
454
M. M. Kuklja
Hydro-Reactive Computations with a Temperature Dependent Reaction R a t e . . . . . . . . . . . . . . . .
460
Y. Partom
A Mechanistic Study of Delayed Detonation in Impact Damaged Solid Rocket Propellant......
464
E. R. Matheson and J. T. Rosenberg
Numerical Simulation on Laser Initiation of Thin E x p l o s i v e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S. Kubota, K. Nagayama, H. Shimada, and K. Matsui
468
CHAPTER VIII
SPALL, FRACTURE, AND FRAGMENTATION OF METALS
The Effect of Material Cleanliness on Dynamic Damage Evolution in 10100 C u . . . . . . . . . . . . . .
475
W. R. Thissell, A. K. Zurek, D. A. S. Macdougall, D. Miller, R. Everett,
A. Geltmacher, R. Brooks, and D. Tonks
Influence of Microstructural Anisotropy on the Spallation of 1080 Eutectoid S t e e l . . . . . . . . . . . .
479
G. T. Gray III, N. K. Bourne, J. C. R Millett, M. R Lopez, and K. S. Vecchio
Incipient Spall Studies in Tantalum—Microstructural E f f e c t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
483
L. C. Chhabildas, W. M. Trott, W. D. Reinhart, J. R. Cogar, and G. A. Mann
The Spall Strength Measurement and Modelling of AQ80 Iron and Copper Systems . . . . . . . . . .
487
P. D. Church, W. G. Proud, T. D. Andrews, and B. Goldthorpe
Grain Size and Pressure Effects on Spall Strength in C o p p e r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
491
A. J. Schwartz, J. U. Cazamias, P. S. Fiske, and R. W. Minich
Cavitation in Compressible Visco-Plastic M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
495
C. Denoual and J. M. Diani
Dynamic Properties of Shock Loaded Thin Uranium Foils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
499
D. L. Robbins, A. M. Kelly, D. J. Alexander, R. J. Hanrahan, R. C. Snow, R. J. Gehr,
T. D. Rupp, S. A. Sheffield, and D. B. Stahl
Hugoniot Elastic Limit and Spall Strength of Aluminum and Copper Single Crystals
over a Wide Range of Strain Rates and Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
503
S. V. Razorenov, G. I. Kanel, K. Baumung, and H. J. Bluhm
A Flash X-Ray Technique to Measure Strain Distribution at Interfaces Sliding
at High Pressure and V e l o c i t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
507
R. E. Winter, P. Taylor, D. J. Carley, A. J. Barlow, H. Pragnell, and L. Markland
Spallation in the Alloy Ti-6Al-4V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
511
P. D. Church, T. Andrews, N. K. Bourne, and J. C. R Millett
Cylinder Fragmentation Using Gas Gun T e c h n i q u e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
515
T. R Thornhill, W. D. Reinhart, L. C. Chhabildas, D. E. Grady, and L. T. Wilson
Dynamic Fracture Studies Using Sleeved Taylor S p e c i m e n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
519
M. R. Gilmore, J. C. Foster Jr., and L. L. Wilson
The Effect of Orientation on the Spall Strength of the Aluminum Alloy 7010-T6 . . . . . . . . . . . . .
523
M. R. Edwards, N. K. Bourne, and J. C. R Millett
Controlled Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
527
W Arnold
Ejecta Particle Size Distributions for Shock-Loaded Sn and Al T a r g e t s . . . . . . . . . . . . . . . . . . . . . .
531
D. S. Sorenson, R. W. Minich, J. L. Romero, T. W. Tunnell, and R. M. Malone
Investigation of the Observed Anisotropic Fracture in S t e e l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
535
B. E. Clements, E. M. Mas, and G. T. Gray III
Applying Micro-mechanics to Finite Element Simulations of Split Hopkinson
Pressure Bar Experiments on High E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
539
E. M. Mas, B. E. Clements, W R. Blumenthal, C. M. Cady, and G. T. Gray El
Effect of Oriented Elastic and Strength Characteristics on the Impact Fracture
of Anisotropic M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
543
A. V. Radchenko, S. V. Kobenko, and M. N. Krivosheina
Experimental Study of Explosive Fragmentation of Metals M e l t s . . . . . . . . . . . . . . . . . . . . . . . . . . .
A. K. Zhiembetov, A. L. Mikhaylov, and G. S. Smirnov
XI
547
CHAPTER IX
CONSTITUTIVE AND MICROSTRUCTURAL PROPERTIES OF METALS
Nonequilibrium Fluctuations in Shock Compression of Poly crystalline Copper a-lron.........
553
Y. Horie and K. Yano
On the Conversion of Plastic Work into Heat during High-Strain-Rate D e f o r m a t i o n . . . . . . . . . .
557
G. Ravichandran, A. J. Rosakis, J. Hodowany, and P. Rosakis
Crystal Failure and Crack Formation during Plastic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
563
C. S. Coffey and J. Sharma
Evolution in the Patterning of Adiabatic Shear Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
567
M. A. Meyers, Q. Xue, and V. F. Nesterenko
Microstructural Evolution in Adiabatic Shear Localization in Stainless S t e e l . . . . . . . . . . . . . . . . .
571
M. A. Meyers, M. T. Perez-Prado, Q. Xue, Y. Xu, and T. R. McNelley
On the Measurement of Shear-Strength in Quasi-isentropic L o a d i n g . . . . . . . . . . . . . . . . . . . . . . . .
575
Z. Rosenberg, N. K. Bourne, G. T. Gray III, and J. C. F. Millett
On the Shock Response of the Shape Memory Alloy N i T i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
579
J. C. F. Millett, N. K. Bourne, G. T. Gray III, and G. S. Stevens
Al and Cu Dynamic Strength at a Strain Rate of 5-108 s " 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
583
M. Werdiger, S. Eliezer, E. Moshe, Z. Henis, E. Dekel, Y. Horovitz, and B. Arad
The Effects of Shear Banding in 6-4 Titanium on Round and Square Taylor Impacts . . . . . . . . .
587
J. U. Cazamias
Numerical Simulation of Elastic-Viscous-Plastic Properties, Polymorphous
Transformations and Spall Fracture in I r o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
591
A. V. Petrovtsev, V. A. Bychenkov, and G. V. Kovalenko
Growth of Perturbations on Metals Interface at Oblique Collision with Supersonic
Velocity of Contact Point Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
595
O. B. Drennov, A. L. Mikhaylov, P. N. Nizovtsev, and V. A. Raevskii
Numerical Simulation of the Vacancy Diffusion in Shocked C r y s t a l s . . . . . . . . . . . . . . . . . . . . . . . .
599
Y. Skryl and M. M. Kuklja
Anomalous Behavior of Aluminum Near the Melting Temperature: Transition in the
Rate Controlling Mechanism of Yielding and Realization of Superheated Solid States
under T e n s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
603
G. I. Kanel, S. V. Razorenov, K. Baumung, and H. Bluhm
Inertia and Temperature Effects in Void G r o w t h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
607
L. Seaman and D. R. Curran
Void Coalescence Model for Ductile Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
611
D. L. Tonks, A. K. Zurek, and W. R. Thissell
Laser Driven High Pressure, High Strain Rate Materials Experiments . . . . . . . . . . . . . . . . . . . . . .
615
D. H. Kalantar, A. M. Alien, F. Gregori, B. Kad, M. Kumar, K. T. Lorenz,
A. Loveridge, M. A. Meyers, S. Pollaine, B. A. Remington, and J. S. Wark
Plastic Deformation in Laser-Induced Shock Compression of Monocrystalline Copper . . . . . . . .
619
M. A. Meyers, F. Gregori, B. K. Kad, M. S. Schneider, D. H. Kalantar, B. A. Remington,
J. S. Wark, T. Boehly, and G. Ravichandran
Formation and Morphology of Twinning in Titanium under High Strain
Rate Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
623
B. Herrmann, A. Venkert, G. Kimmel, A. Landau, D. Shvarts, and E. Zaretsky
Influence of the Structural Levels on the Elastic-Plastic Hardening of Metals
under Submicrosecond Shock Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Y. Sud'enkov
xn
627
Laser-Driven Planar Impact of Miniature Specimens of HY-100 S t e e l . . . . . . . . . . . . . . . . . . . . . . .
630
D. J. Alexander and D. L. Robbins
The Effect of Microstructure on the Shock Behaviour of y-Titanium Aluminides . . . . . . . . . . . . .
634
J. C. R Millett, L P. Jones, N. K. Bourne, and G. T. Gray IE
Experimental Analysis of Shock Wave Effects in C o p p e r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
638
R Llorca, R Buy, and J. Farre
On the Dependence of the Yield Strength of Metals on Temperature and Strain Rate:
The Mechanical Equation of the Solid S t a t e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
642
P. P. Milella
CHAPTER X
MECHANICAL PROPERTIES: POLYMERS
The Deviatoric Response of an Epoxy Resin to One-Dimensional Shock Loading . . . . . . . . . . . . .
649
N. K. Bourne, J. C. R Millett, N. Barnes, and I. Belcher
On the Strength Behaviour of Kel-F-800â„¢ and Estane P o l y m e r s . . . . . . . . . . . . . . . . . . . . . . . . . . .
653
N. K. Bourne, J. C. R Millett, G. T. Gray III, and P. Mort
Thermal Activation Constitutive Model for Polymers Applied to Polytetrafluoroethylene . . . . . .
657
R J. Zerilli and R. W. Armstrong
A Viscoelastic Model for PBX B i n d e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
661
E. M. Mas, B. E. Clements, W. R. Blumenthal, C. M. Cady, G. T. Gray El, and C. Liu
Influence of Temperature and Strain Rate on the Compressive Behavior of PMMA
and Polycarbonate P o l y m e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
665
W. R. Blumenthal, C. M. Cady, M. R Lopez, G. T. Gray III, and D. J. Idar
Effects of Initial Temperature on the Shock and Release Behavior of Filled and
Unfilled E p o x i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
669
M. U. Anderson, R. E. Setchell, and D. E. Cox
Evolution of Stress Relaxation Structures for Several Polymers Subjected to
Plane Shock Compression around 0.5 GPa Shock Stress Measured by PVDF Gauge . . . . . . . . . .
673
Y. Mori and K. Nagayama
CHAPTER XI
MECHANICAL PROPERTIES: COMPOSITES
Discrete Element Modeling for Shock Processes of Heterogeneous Materials . . . . . . . . . . . . . . . . .
679
Z. P. Tang and W. W. Wang
Validation of an Advanced Material Model for Simulating the Impact and Shock
Response of Composite M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
685
R. A. Clegg, C. J. Hayhurst, and H. Nahme
Analytical and Computational Study of One-Dimensional Impact of Graded
Elastic Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
689
M. Scheidler and G. Gazonas
Strain Rate Sensitivity of Graphite/Polymer Laminate Composites . . . . . . . . . . . . . . . . . . . . . . . . .
693
L H. Syed and N. S. Brar
Dynamic Tensile Response of Alumina-Al Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
R. Atisivan, A. Bandyopadhyay, and Y. M. Gupta
Xlll
697
Resolving Mechanical Response of Plastic Bonded Explosives at High Strain-Rate
Using Split Hopkinson Pressure Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
701
V. S. Joshi and R. J. Lee
A Combined Experimental/Computational Approach for Assessing the High Strain
Rate Response of High Explosive Simulants and Other Viscoelastic Particulate
Composite M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
705
J. Corley, W. Riedel, S. Hiermaier, P. Weidemaier, and K. Thoma
Influence of Interface Scattering on Shock Waves in Heterogeneous Solids . . . . . . . . . . . . . . . . . .
709
S. Zhuang, G. Ravichandran, and D. E. Grady
Mesoscale Descriptions of Shock-Loaded Heterogeneous Porous M a t e r i a l s . . . . . . . . . . . . . . . . . . .
713
M. R. Baer and W. M. Trott
Experiment and Theory for the Characterization of Porous Materials . . . . . . . . . . . . . . . . . . . . . .
717
A. D. Resnyansky, N. K. Bourne, and J. C. R Millett
Shock Wave Propagation Process in Epoxy Syntactic F o a m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
721
J. Ribeiro, J. Campos, I. Plaksin, and R. Mendes
Compressive Properties of a Closed-Cell Aluminum Foam as a Function of
Strain Rate and Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
725
C. M. Cady, G. T. Gray III, C. Liu, C. P. Trujillo, B. L. Jacquez, and T. Mukai
The Mechanism of Strain Rate Strengthening during Dynamic Compression of
Closed-Cell Aluminum F o a m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
729
K. A. Dannemann, J. Lankford Jr., and A. E. Nicholls
PART TWO
CHAPTER XII
MECHANICAL PROPERTIES: CERAMICS AND GLASSES
The HEL Upper Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
735
J. P. Billingsley
On the HEL and the "Ramping" above HEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
739
E. Bar-On, Y. Partom, M. B. Rubin, and D. Z. Yankelevsky
Factors Influencing the Shape of the Fracture Wave Induced by the Rod Impact
of a Brittle M a t e r i a l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
743
A. D. Resnyansky and N. K. Bourne
Spall Strength of Ceramic in a Multilayer S y s t e m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
747
B. A. M. Vaughan, N. H. Murray, W. G. Proud, and J. E. Field
Computer Simulation of the Propagation of Short Shock Pulses in Ceramic Materials . . . . . . . .
751
V. A. Skripnyak, E. G. Skripnyak, and T. V. Zhukova
Influence of Microstructural Bias on the Hugoniot Elastic Limit and Spall Strength
of Two-Phase TiB2+Al2O3 Ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
755
G. Kennedy, L. Ferranti, R. Russell, M. Zhou, and N. Thadhani
Shock Compression, Adiabatic Expansion, and Multi-phase Equation of State of Carbon......
759
K. V. Khishchenko, V. E. Fortov, I. V. Lomonosov, M. N. Pavlovskii, G. V. Simakov,
and M. V. Zhernokletov
Thermodynamic Parameters and Equation of State of Low-Density SiO2 A e r o g e l . . . . . . . . . . . . .
M. V. Zhernokletov, T. S. Lebedeva, A. B. Medvedev, M. A. Mochalov, A. N. Shuykin,
and V. E. Fortov
xiv
763
The Hugoniot Elastic Limit of A1ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
767
J. U. Cazamias, P. S. Fiske, and S. J. Bless
The Failure of Aluminium Nitride under S h o c k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
771
I. M. Pickup and N. K. Bourne
On the Failure of Boron Carbide under Shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
775
N. K. Bourne and G. T. Gray III
Spallation of Hot Pressed Boron Carbide Ceramic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
779
P. T. Bartkowski, D. P. Dandekar, and D. J. Grove
Shock Equation of State and Dynamic Strength of Tungsten Carbide . . . . . . . . . . . . . . . . . . . . . . .
783
D. P. Dandekar and D. E. Grady
Bar Impact Tests on Alumina (AD995) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
787
J. U. Cazamias, W. D. Reinhart, C. H. Konrad, L. C. Chhabildas, and S. J. Bless
Investigating Multi-dimensional Effects in Single-Crystal Sapphire . . . . . . . . . . . . . . . . . . . . . . . . .
791
W. D. Reinhart, L. C. Chhabildas, W. M. Trott, and D. P. Dandekar
Experimental Characterization of the Dynamic Failure Resistance of
TiB2/Al2O3 C o m p o s i t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
795
A. R. Keller and M. Zhou
Fragmentation of Expanding Cylinders and the Statistical Theory of N. F. Mott . . . . . . . . . . . . .
799
D. Grady
Digital Speckle Flash X-Ray Photography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
803
S. G. Grantham and W. G. Proud
The Deviatoric Response of Three Dense Glasses under Shock Loading Conditions . . . . . . . . . . .
807
D. D. Radford, W. G. Proud, and J. E. Field
Impact Induced Failure Zones in Homalite B a r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
811
R. Russell, S. J. Bless, and T. Beno
CHAPTER XIII
MECHANICAL PROPERTIES: REACTIVE MATERIALS
Elastic Precursor Decay in HMX Explosive Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
817
J. J. Dick and A. R. Martinez
Influence of Polymer Molecular Weight, Temperature, and Strain Rate on the
Mechanical Properties of PBX 9 5 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
821
D. J. Idar, D. G. Thompson, G. T. Gray III, W. R. Blumenthal, C. M. Cady,
P. D. Peterson, E. L. Roemer, W. J. Wright, and B. L. Jacquez
Moire Interferometry Studies of PBX 9 5 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
825
P. J. Rae, H. T. Goldrein, S. J. P. Palmer, and W. Proud
Experimental Simulations of Dynamic Stress Bridging in Plastic Bonded Explosives . . . . . . . . . .
829
K. M. Roessig and J. C. Foster Jr.
An Optical Microscopy and Small-Angle Scattering Study of Porosity in Thermally
Treated PBX 9 5 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
833
J. T. Mang, C. B. Skidmore, S. F. Son, R. P. Hjelm, and T. P. Rieker
Sub-molecular Fracture Steps in Shock-Shattered RDX Crystals and Follow-On
Nano-Indentation Evaluation of Early Stage P l a s t i c i t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
837
J. Sharma, C. S. Coffey, R. W. Armstrong, W. L. Elban, and S. M. Hoover
Reaction of Shocked but Undetonated HMX-Based E x p l o s i v e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P. Taylor, D. A. Salisbury, L. S. Markland, R. E. Winter, and M. L Andrew
xv
841
Investigation of Dispersive Waves in Low-Density Sugar and HMX Using Line-Imaging
Velocity Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W. M. Trott, L. C. Chhabildas, M. R. Baer, and J. N. Castaneda
Isentropic Compression of LX-04 on the Z Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D. B. Reisman, J. W. Forbes, C. M. Tarver, R Garcia, R. C. Cauble, C. A. Hall,
J. R. Asay, K. Struve, and M. D. Furnish
Mechanical Behavior of Energetic Materials during High A c c e l e r a t i o n . . . . . . . . . . . . . . . . . . . . . .
Y. Lanzerotti and J. Sharma
Using Simultaneous Time-Resolved SHG and XRD Diagnostics to Examine Phase
Transitions of HMX and T A T B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C. K. Saw, J. M. Zaug, and D. L. Farber
Use of High-Speed Photography to Augment Split Hopkinson Pressure Bar
Measurements of Energetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
R. J. Lee and V. S. Joshi
Mechanical Behavior of Explosives at High Pressures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J. M. Kelley, V. S. Joshi, and R. H. Guirguis
Investigation of Shock Wave Impulse Influence on Solid Propellant Combustion . . . . . . . . . . . . .
A. Y. Dolgoborodov and V. N. Marshakov
845
849
853
856
860
864
868
CHAPTER XIV
DETONATION PHENOMENA
Investigation of Isentrope for Detonation Products of TATB-Based C o m p o s i t i o n . . . . . . . . . . . . . .
Y. A. Aminov, M. M. Gorshkov, V. T. Zaikin, G. V. Kovalenko, Y. R. Nikitenko,
and G. N. Rykovanov
Observations on Type II Deflagration-to-Detonation T r a n s i t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M. J. Gifford, W. G. Proud, and J. E. Field
Pressure Wave Measurements from Thermal Cook-Off of an HMX Based High
Explosive PBX 9501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F. G. Garcia, J. W. Forbes, C. M. Tarver, P. A. Urtiew, D. W. Greenwood,
and K. S. Vandersall
Measurement of Low Level Explosives Reaction in Gauged Multi-dimensional
Steven Impact Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A. M. Niles, F. Garcia, D. W. Greenwood, J. W. Forbes, C. M. Tarver,
S. K. Chidester, R. G. Garza, and L. L. Swizter
The Effect of Additives on the Detonation Characteristics of a Liquid Explosive . . . . . . . . . . . . .
P. J. Haskins, M. D. Cook, and R. L Briggs
Electromagnetic Properties of Pre-detonating E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G. P. Chambers, R. J. Lee, T. J. Oxby, and W. F. Perger
Effect of GMB on Failure and Reaction Regime of NM/PMMA-GMB M i x t u r e s . . . . . . . . . . . . . .
J. Gois, J. Campos, and I. Plaksin
Pressure Wave Measurements in Cylinders of Detonating LX-17 . . . . . . . . . . . . . . . . . . . . . . . . . . .
J. W. Forbes, P. C. Souers, P. A. Urtiew, K. S. Vandersall, F. Garcia,
D. W. Greenwood, and L. Green
Diameter Effect Curve and Detonation Front Curvature Measurements for ANFO . . . . . . . . . . .
R. A. Catanach and L. G. Hill
Experimental Investigation of Heterogeneous HE Decomposition Mechanism
in Detonation Wave F r o n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A. V. Fedorov
xvi
875
878
882
886
890
894
898
902
906
910
Experimental and Numerical Study of Temperatures in Cavity Collapse . . . . . . . . . . . . . . . . . . . .
914
A. M. Milne and N. K. Bourne
Detonation Phenomena of PBX Microsamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
918
I. Plaksin, J. Campos, J. Ribeiro, and R. Mendes
Detonation Meso-Scale Tests for Energetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
922
I. Plaksin, J. Campos, J. Ribeiro, R. Mendes, J. Gois, A. Portugal, P. Simoes, and L. Pedroso
Convective Detonations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
926
R. H. Guirguis and A. M. Landsberg
Effect of Void Size on the Detonation Pressure of Emulsion E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . .
930
Y. Hirosaki, K. Murata, Y. Kato, and S. Itoh
Momentum Transfer during Shock Interaction with Metal Particles in
Condensed E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
934
R Zhang, P. A. Thibault, R. Link, and A. L. Gonor
Reaction Zone Transformation for Steady-State Detonation of High Explosives
under Initial Density I n c r e a s e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
938
A. V. Utkin, S. A. Kolesnikov, S. V. Pershin, and V. E. Fortov
The Effect of Variation of Aluminized Particle Size and Polymer on the
Performance of E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
942
D. Woody and J. J. Davis
Near-Field Impulse Effects from Detonation of Heterogeneous Explosives . . . . . . . . . . . . . . . . . . .
946
D. L. Frost, F. Zhang, S. McCahan, S. B. Murray, A. J. Higgins, M. Slanik,
M. Casas-Cordero, and C. Ornthanalai
Effect of Metal Particle Size on Blast Performance of RDX Based Explosives . . . . . . . . . . . . . . . .
950
J. J. Davis and P. J. Miller
Effect of an Inert Material's Thickness and Properties on the Ratio of
Energies Imparted by a Detonation's 1st and 2nd Propulsion S t a g e s . . . . . . . . . . . . . . . . . . . . . . . . .
954
J. E. Backofen and C. A. Weickert
Obtaining the Gurney Energy Constant for a Two-Step Propulsion M o d e l . . . . . . . . . . . . . . . . . . .
958
J. E. Backofen and C. A. Weickert
Aluminised Explosive Compositions Based on NQ and BTNEN . . . . . . . . . . . . . . . . . . . . . . . . . . . .
962
M. F. Gogulya, A. Y. Dolgoborodov, M. A. Brazhnikov, M. N. Makhov,
and V. I. Arkhipov
Proton Radiography Examination of Unburned Regions in PBX 9502 Corner
Turning Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
966
E. N. Perm, C. L. Morris, J. P. Quintana, P. Pazuchanic, H. Stacy, J. D. Zumbro,
G. Hogan, and N. King
CHAPTER XV
EXPLOSIVE AND INITIATION STUDIES
Mesoscale Mechanics of Plastic Bonded E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
973
K. M. Roessig
Compaction Wave Profiles in Granular HMX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
979
R. Menikoff
Mechanistic Model of Hot Spot: A Unifying Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
983
K. Yano, Y. Horie, and D. Greening
Microstructural Model of Ignition for Time Varying Loading C o n d i t i o n s . . . . . . . . . . . . . . . . . . . .
R. V. Browning and R. J. Scammon
xvn
987
Development of a Simple Model of "Hot-Spot" Initiation in Heterogeneous
Solid E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
991
N. J. Whitworth
Initiation of PETN Powder by Pulse Laser A b l a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
995
K. Nagayama, K. Inou, and M. Nakahara
Double Shock Initiation of the HMX Based Explosive E D C - 3 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
999
R. L. Gustavsen, S. A. Sheffield, R. R. Alcon, R. E. Winter, P. Taylor, and D. A. Salisbury
Plastic Deformation Rate and Initiation of Crystalline Explosives . . . . . . . . . . . . . . . . . . . . . . . . . .
J. Namkung and C. S. Coffey
Factors Affecting Shock Sensitivity of Energetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A. Chakravarty, M. J. Gifford, M. W. Greenaway, W. G. Proud, and J. E. Field
The Burning Rate of Aluminium Particles in Cylinder T e s t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D. J. Evans, A. M. Milne, and I. Softley
First Results of Reaction Propagation Rates in HMX at High Pressure . . . . . . . . . . . . . . . . . . . . .
1003
1007
1011
1015
D. L. Farber, A. P. Esposito, J. M. Zaug, J. E. Reaugh, and C. M. Aracne
Embedded Electromagnetic Gauge Measurements and Modeling of Shock Initiation
in the TATB Based Explosives LX-17 and PBX 9502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1019
R. L. Gustavsen, S. A. Sheffield, R. R. Alcon, J. W. Forbes, C. M. Tarver, and F. Garcia
Detonation Initiation in Preshocked Liquid E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1023
A. J. Higgins, F. X. Jette, A. C. Yoshinaka, J. H. S. Lee, and F. Zhang
Lagrangian Analysis of EDC37 Shock Initiation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1027
J. R. Maw
Transient Detonation Processes in a Plastic Bonded Explosive . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1031
K. A. Thomas, E. S. Martin, J. E. Kennedy, I. A. Garcia, and J. C. Foster Jr.
An Investigation into the Initiation of Hexanitrostilbene by Laser-Driven Flyer P l a t e s . . . . . . . . .
1035
M. W. Greenaway, M. J. Gifford, W. G. Proud, J. E. Field, and S. G. Goveas
Shock Initiation of UF-TATB at 250° C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1039
P. A. Urtiew, J. W. Forbes, F. Garcia, and C. M. Tarver
Manganin Gauge and Reactive Flow Modeling Study of the Shock Initiation of PBX 9 5 0 1 . . . . .
1043
C. M. Tarver, J. W. Forbes, F. Garcia, and P. A. Urtiew
Fragment Impact Characterization of Melt-Cast and PBX E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . . .
1047
M. D. Cook, P. J. Haskins, R. L Briggs, C. Stennett, J. Fellows, and P. J. Cheese
Hugoniot and Shock Initiation Studies of Isopropyl N i t r a t e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1051
S. A. Sheffield, L. L. Davis, M. R. Baer, R. Engelke, R. R. Alcon, and A. M. Renlund
Reactive Stress Growth Measurements for the Explosive I R X - 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1055
G. T. Sutherland
The Combustion of Explosives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1059
S. F. Son
Effect of Temperature Profile on Reaction Violence in Heated and Self-Ignited PBX 9501 . . . . .
1065
B. Asay, P. Dickson, B. Henson, L. Smilowitz, and L. Tellier
Ignition Chemistry in HMX from Thermal Explosion to Detonation . . . . . . . . . . . . . . . . . . . . . . . .
1069
B. F. Henson, B. W. Asay, L. B. Smilowitz, and P. Dickson
Instrumentation of Slow Cook-Off Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1073
H. W. Sandusky and G. P. Chambers
Kinetics of the /?-«? Phase Transition in PBX 9 5 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1077
L. B. Smilowitz, B. F. Henson, B. W. Asay, P. M. Dickson, and J. M. Robinson
The Measurement of Hot-Spots in Granulated Ammonium Nitrate . . . . . . . . . . . . . . . . . . . . . . . . .
W. G. Proud
XVlll
1081
CHAPTER XVI
SHOCK-INDUCED MODIFICATIONS AND MATERIAL SYNTHESIS
Computational Modeling of the Shock Compression of Powders . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087
D. J. Benson, I. Do, and M. A. Meyers
Three-Scale Model for Numerical Simulation of Mechano-Chemical Processes
in Shock-Compressed Powder B o d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093
V. N. Leitsin, V. A. Skripnyak, and M. A. Dmitireva
Effect of Shock-Activation on Post-shock Reaction Synthesis of Ternary C e r a m i c s . . . . . . . . . . . .
1097
J. L. Jordan and N. N. Thadhani
Synthesis of Functional Ceramics Layers Using Novel Method Based on Impact
of Ultra-fine Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1101
J. Akedo and M. Lebedev
The Study of Internal Deformation Fields in Granular Materials Using 3D Digital
Speckle X-Ray Flash P h o t o g r a p h y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1105
H. T. Goldrein, S. G. Grantham, W. G. Proud, and J. E. Field
Investigation of Shock-Induced Chemical Reactions in Mo-Si Powder Mixtures
Using Instrumented Experiments with PVDF Stress G a u g e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1109
K. S. Vandersall and N. N. Thadhani
Shock-Induced Cubic Silicon Nitride and Its P r o p e r t i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1113
T. Sekine
Dynamic Response of Titanium Carbide-Steel, Ceramic-Metal Composites . . . . . . . . . . . . . . . . . .
1119
B. Klein, N. Frage, E. Zaretsky, and M. P. Dariel
Investigation of Shock-Induced Chemical Reactions in Ni-Ti Powder Mixtures
Using Instrumented Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1123
X. Xu and N. N. Thadhani
TiC by SHS and Dynamic Compaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1127
E. P. Carton, M. Stuivinga, and A. Boluijt
Cooling Rate Threshold in Transformation of C60 Fullerene to Amorphous Diamond
and Highly Disordered Carbon in SCARQ Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1131
T. Homae, A. Okamoto, K. G. Nakamura, K-L Kondo, M. Yoshida, K. Hirabayashi,
and K. Niwase
CHAPTER XVII
INSTRUMENTATION
Carbon Resistor Pressure Gauge Calibration at Low S t r e s s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1137
B. Cunningham, K. S. Vandersall, A. M. Niles, D. W. Greenwood, E Garcia,
and J. W. Forbes, and W. H. Wilson
Advanced Cryogenic System Capabilities for Precision Shock Physics Measurements on Z . . . . .
1141
D. L. Hanson, R. R. Johnston, M. D. Knudson, J. R. Asay, C. A. Hall, J. E. Bailey,
and R. J. Hickman
Temperature Controlled Vessel for Equation of State M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . .
1145
T. D. Rupp, R. J. Gehr, D. B. Stahl, S. A. Sheffield, and D. L. Robbins
PVDF Gauge Piezoelectric Response under Two-Stage Light Gas Gun Impact Loading........
1149
E Bauer
Outputs of Shock-Loaded Small Piezoceramic D i s k s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J. A. Charest and J. L. Mace
xix
1153
Improvements in the Signal Fidelity of the Manganin Stress Gauge . . . . . . . . . . . . . . . . . . . . . . . .
1157
D. Greenwood, J. Forbes, F. Garcia, K. Vandersall, P. Urtiew, L. Green, and L. Erickson
CHAPTER XVIII
EXPERIMENTAL TECHNIQUES
Recent Advances in Quasi-isentropic Compression Experiments (ICE) on
the Sandia Z Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1163
C. A. Hall, J. R. Asay, M. D. Knudson, D. B. Hayes, R. L. Lemke, J.-R Davis, and C. Deeney
Temperature Measurement of Isentropically Accelerated Flyer Plates . . . . . . . . . . . . . . . . . . . . . . .
1169
T. Bergstresser and S. Becker
SYRINX Project: HPP Generators Devoted to Isentropic Compression Experiments . . . . . . . . . .
1173
C. Mangeant, F. Lassalle, P. L'Eplattenier, P.-L. Hereil, D. Bergues, and G. Avrillaud
Correcting Free Surface Effects by Integrating the Equations of Motion Backward in Space...
1177
D. Hayes and C. Hall
Picosecond Time-Resolved X-Ray Diffraction: Estimation of Local Pressure . . . . . . . . . . . . . . . . .
1181
Y. Hironaka, F. Saito, A. Yazaki, K. G. Nakamura, and K-I. Kondo
Laser Triggered Synchronizable X-Ray System for Real Time Study of Shock Waves
in Condensed Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1185
J. P. Farrell, K. Batchelor, V. Dudnikov, T. Srinivasan-Rao, J. Smedley, and J. McDonald
OD Modelisation of the Magnetic Flux Compression Scheme for Isentropic Compression
Experiments........................................................................
1188
P. L'Eplattenier, G. Avrillaud, and J. Vanpoperynghe
Simultaneous VISAR and TXD Measurements on Shocks in Beryllium C r y s t a l s . . . . . . . . . . . . . .
1192
D. C. Swift, D. L. Paisley, G. A. Kyrala, and A. Hauer
Experiment to Capture Gaseous Products from Shock-Decomposed Materials . . . . . . . . . . . . . . .
1196
W. H. Holt, W. Mock Jr., F. Santiago, and R. M. Gamache
Sound Velocity Doppler Laser Interferometry Measurements on T i n . . . . . . . . . . . . . . . . . . . . . . . .
1200
E. Martinez and J.-M. Servas
Projectile Acceleration Aiming at Velocities above 9 km/s by a Compact Gas Gun . . . . . . . . . . . .
1204
T. Moritoh, N. Kawai, K. G. Nakamura, and K.-I. Kondo
Characterization of Impact in Composite Laminates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1208
K. Minnaar and M. Zhou
Erratum: Friction in High-Speed Impact E x p e r i m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1212
R. A. Pelak, P. Rightley, and J. E. Hammerberg
CHAPTER XIX
OPTICAL AND ELECTRICAL MEASUREMENTS
Shock Temperature of NaCl Measured with Wide-Band Optical R a d i o m e t r y . . . . . . . . . . . . . . . . .
1215
T. Ogura, K. G. Nakamura, H. Takenaka, and K.-I. Kondo
Ultrafast Spectroscopic Investigation of Shock Compressed Glycidyl Azide Polymer Films
and Nitrocellulose F i l m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1219
J. H. Reho, D. S. Moore, D. J. Funk, G. L. Fisher, and R. L. Rabie
Emission Spectroscopy Applied to Shock to Detonation Transition in N i t r o m e t h a n e . . . . . . . . . . .
V. Bouyer, G. Baudin, C. Le Gallic, and P. Herve
xx
1223
Ultrafast Measurement of the Optical Properties of Shocked Nickel and Laser Heated Gold . . . 1227
D. J. Funk, D. S. Moore, J. H. Reho, K. T. Gahagan, S. D. McGrane, and R. L. Rabie
Optical Extinction of Sapphire Shock-Loaded to 250-260 GPa . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1231
D. E. Hare, D. J. Webb, S-H. Lee, and N. C. Holmes
Temperature Measurement of Tin under Shock C o m p r e s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1235
P.-L. Hereil and C. Mabire
Gated IR Images of Shocked S u r f a c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1239
S. S. Lutz, W. D. Turley, P. M. Rightley, and L. E. Primas
Optical Probing of the Electron Temperature Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1243
T. Ao, I. Vollrath, and A. Ng
Ellipsometry in the Study of Dynamic Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1247
A. W. Obst, K. R. Alrick, W. W. Anderson, K. Boboridis, W. T. Buttler,
S. K. Lamoreaux, B. R. Marshall, S. L. Montgomery, J. R. Payton,
and M. D. Wilke
Shock-Induced Birefringence in Lithium F l u o r i d e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1251
J. H. Nguyen and N. C. Holmes
Vibrational Spectra of Nitro Compounds under Shock C o m p r e s s i o n . . . . . . . . . . . . . . . . . . . . . . . .
1255
T. Kobayashi, T. Sekine, and H. He
Transient Bond Scission of Polytetrafluoroethylene under Laser-Induced Shock
Compression Studied by Nanosecond Time-Resolved Raman Spectroscopy . . . . . . . . . . . . . . . . . .
1259
K. G. Nakamura, K. Wakabayashi, K.-I. Kondo
Shock-Induced Orientation of Benzene Molecules Studied by Nanosecond Time-Resolved
Raman S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1263
K. Wakabayashi, K. G. Nakamura, and K.-I. Kondo
Measurements of the Conductivity of Shocked Polymethylmethacrylate . . . . . . . . . . . . . . . . . . . . .
1267
D. Townsend and N. K. Bourne
CHAPTER XX
IMPACT PHENOMENA, BALLISTICS, HYPERVELOCITY STUDIES,
AND EXOTIC SHOCK CONFIGURATIONS
New Directions and New Challenges in Analytical Modeling of Penetration Mechanics . . . . . . . . 1273
J. D. Walker
Ballistic Response of Fabrics: Model and E x p e r i m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279
D. L. Orphal, J. D. Walker, and C. E. Anderson Jr.
Long-Rod Moving-Plate I n t e r a c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1283
Y. Partom
Conversion of Finite Elements into Meshless Particles for Penetration Computations
Involving Ceramic T a r g e t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287
G. R. Johnson, R. A. Stryk , S. R. Beissel, and T. J. Holmquist
Using the Penetration-Velocity Relationship to Correct for Variations in Target Hardness . . . . .
1291
S. J. Bless and J. Cazamias
Ballistic Testing and High-Strain-Rate Properties of Hot Isostatically Pressed T i - 6 A l - 4 V . . . . . . .
1294
Y. Gu, V. F. Nesterenko, and S. S. Indrakanti
Deformation and Damage of Two Aluminum Alloys from Ballistic I m p a c t . . . . . . . . . . . . . . . . . . .
1298
C. E. Anderson Jr. and K. A. Dannemann
Recovery of Uranium Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H. R. James, D. H. McElrue, and R. E. Winter
xxi
1302
Modeling of Uranium Alloy Response in Plane Impact and Reverse Ballistic Experiments . . . . .
1306
B. Hermann, A. Landau, D. Shvarts, V. Favorsky, and E. Zaretsky
On the Entrance Phase in Long Rod Penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1310
Z. Rosenberg and E. Dekel
Impact Interaction of Projectile with Conducting Wall at the Presence of Electric Current . . . .
1314
V. T. Chemerys, A. I. Raychenko, and B. S. Karpinos
The Use of the Taylor Test in Exploring and Validating the Large-Strain,
High-Strain-Rate Constitutive Response of M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1318
J. C. Foster Jr., M. Gilmore, and L. L. Wilson
Dynamic Characterization of Compliant/Brittle Materials Using Split Hopkinson B a r . . . . . . . . .
1323
N. S. Brar and V. S. Joshi
Yield and Strength Properties of the Ti-6-22-22S Alloy over a Wide Strain Rate
and Temperature R a n g e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1327
L. Kriiger, G. I. Kanel, S. V. Razorenov, L. Meyer, and G. S. Bezrouchko
CHAPTER XXI
LASER-DRIVEN SHOCKS
Sub-picosecond Laser-driven Shocks in Metals and Energetic M a t e r i a l s . . . . . . . . . . . . . . . . . . . . .
1333
D. S. Moore, D. J. Funk, K. T. Gahagan, J. H. Reho, G. L. Fisher, S. D. McGrane,
and R. L. Rabie
Time-Resolved Measurement of the Launch of Laser-Driven Foil Plate . . . . . . . . . . . . . . . . . . . . .
1339
H. He, T. Kobayashi, and T. Sekine
Laser-Launched Flyer Plates and Direct Laser Shocks for Dynamic Material
Property M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1343
D. L. Paisley, D. C. Swift, R. P. Johnson, R. A. Kopp, and G. A. Kyrala
Development of Laser-Driven Flyer Techniques for Equation-of-State Studies of
Microscale M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1347
W. M. Trott, and R. E. Setchell, and A. V. Farnsworth Jr.
Ultrafast Time-resolved 2D Spatial Interferometry for Shock Wave Characterization in
Metal Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1351
K. T. Gahagan, J. H. Reho, D. S. Moore, D. J. Funk, and R. L. Rabie
A Computational Study of Laser Driven Flyer P l a t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1355
A. V. Farnsworth Jr., W. M. Trott, and R. E. Setchell
Modelling of Laser Spall Experiments on A l u m i n i u m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1359
C. M. Robinson
Taking Thin Diamonds to Their Limit: Coupling Static-compression and Laser-shock
Techniques to Generate Dense W a t e r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1363
K. K. M. Lee, L. R. Benedetti, A. Mackinnon, D. Hicks, S. J. Moon, P. Loubeyre,
F. Occelli, A. Dewaele, G. W. Collins, and R. Jeanloz
Radiative Shock Experiment Using High Power L a s e r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1367
M. Koenig, A. Benuzzi-Mounaix, N. Grandjouan, V. Malka, S. Bouquet, X. Fleury,
B. Marchet, C. Stehle, S. Leygnac, C. Michaut, J. Chieze, D. Batani, E. Henry,
and T. Hall
1-10 Mbar Laser-driven Shocks Using the Janus Laser Facility . . . . . . . . . . . . . . . . . . . . . . . . . . .
1371
J. Dunn, D. F. Price, S. J. Moon, R. C. Cauble, P. T. Springer, and A. Ng
Transition from Expansion to Shock Compression in Laser Irradiated Si by Multiple Shots....
A. Yazaki, H. Kishimura, Y. Hironaka, F. Saito, K. G. Nakamura, and K.-I. Kondo
xxn
1375
CHAPTER XXII
EQUATION OF STATE AND GEOPHYSICS
Evidence for Kinetic Effects on Shock Wave Propagation in T e c t o s i l i c a t e s . . . . . . . . . . . . . . . . . . . 1381
P. S. DeCarli, E. Bowden, T. G. Sharp, A. P. Jones, and G. D. Price
The Principal Hugoniot and Dynamic Strength of Dolerite under Shock C o m p r e s s i o n . . . . . . . . .
1385
K. Tsembelis, W. G. Proud, and J. E. Field
Explosion in the Granite Field: Hardening and Softening Behavior in R o c k s . . . . . . . . . . . . . . . . .
1389
I. N. Lomov, T. H. Antoun, and L. A. Glenn
Depth of Cracking beneath Impact Craters: New Constraint for Impact V e l o c i t y . . . . . . . . . . . . .
1393
T. J. Ahrens, K. Xia, and D. Coker
Shock Flattening of Spheres in Porous Media: Implications for Flattened C h o n d r u l e s . . . . . . . . .
1397
T. Sekine, N. Hirata, A. Yamaguchi, T. Kobayashi, H. He, and Z.-P. Tang
The Possible Composition and Thermal Structure of the Earth's Lower Mantle and Core . . . . .
1401
Z. Gong, X. Li, and F. Jing
Molecular Dynamics Modeling of Impact-Induced Shock Waves in Hydrocarbons . . . . . . . . . . . .
1406
M. L. Elert, S. Zybin, and C. T. White
High Intensity X-Ray Coupling to Meteorite Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1410
J. L. Remo and M. D. Furnish
The Dynamic Strength of Cement Paste under Shock C o m p r e s s i o n . . . . . . . . . . . . . . . . . . . . . . . . .
1414
K. Tsembelis, W. G. Proud, and J. E. Field
Participant L i s t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1419
Author I n d e x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Al
Subject I n d e x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SI
XXlll