CONTENTS Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix Topical Group on Shock Compression of Condensed Matter: 1999-2001 APS Fellows . . . . . . . . . xxxi Photograph: Recipient of the APS Shock Compression Science Award, 2 0 0 1 . . . . . . . . . . . . . . . . . xxxii Conferences of the APS Topical Group on Shock Compression of Condensed Matter . . . . . . . . . xxxiv PART ONE CHAPTER I PLENARY The Coupling between Shock Waves and Condensed Matter: Continuum Mechanics to Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Y. M. Gupta The History of the APS Topical Group on Shock Compression of Condensed M a t t e r . . . . . . . . . . 11 J. W. Forbes Traditional Analysis of Nonlinear Wave Propagation in Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 L. Davison Shock Wave Paradigms and New Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 J. R. Asay Mechanical States of Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 J. J. Oilman What Is a Shock Wave to an Explosive Molecule? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 C. M. Tarver CHAPTER II EQUATION OF STATE: NONENERGETIC MATERIALS Shock Waves and Plasma P h y s i c s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 A.Ng Nickel Critical Point Parameters from Shock Experiments with Porous Samples . . . . . . . . . . . . . 59 D. N. Nikolaev, V. Y. Ternovoi, and A. A. Pyailing High-Pressure Vaporization and Boiling of Condensed Material: A Generalized Clausius-Clapeyron Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 A. L. Conor Calculated Hugoniot Curves of Porous Metal: Copper, Nickel, and M o l y b d e n u m . . . . . . . . . . . . . 67 Y. Wang, R. Ahuja, and B. Johansson Analysis of Isobaric Expansion Data Based on Soft-Sphere Equation of State for Liquid M e t a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 P. R. Levashov, V. E. Fortov, K. V. Khishchenko, and I. V. Lomonosov EOS Data of Ti-6Al-4V to Impact Velocities of 10.4 km/s on a Three-Stage G u n . . . . . . . . . . . . . . N. A. Winfree, L. C. Chhabildas, W. D. Reinhart, D. E. Carroll, and G. L Kerley 75 Measurements of the Equation of State of Lead under Varying Conditions by Multiple Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 S. D. Rothman, A. M. Evans, P. Graham, K. W. Parker, J. Palmer, T. Jalinaud, J.-P. Davis, J. Asay, M. Knudson, and C. Hall Experimental Study of Highly Compressed Iron Using Laser Driven S h o c k s . . . . . . . . . . . . . . . . . 83 A. Benuzzi-Mounaix, G. Huser, M. Koenig, B. Faral, N. Grandjouan, D. Batani, E. Henry, M. Tomasini, B. Marchet, T. Hall, M. Boustie, T. De Resseguier, M. Hallouin, and F. Guyot Equation of State and Phase Diagram of Iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 V. V. Dremov, A. L. Kutepov, A. V. Petrovtsev, and A. T. Sapozhnikov Density-Functional Molecular Dynamics Simulations of Shocked Molecular Liquids . . . . . . . . . . 91 J. D. Kress, S. Maze vet, and L. A. Collins Temperature Measurements of Single and Double Shock Compressed Liquid Nitrogen in Overtaking Shock Wave C o n f i g u r a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 A. A. Pyalling, V. Y. Ternovoi, and A. S. Filimonov Density Functional Calculation of the Hugoniot of Shocked Liquid N i t r o g e n . . . . . . . . . . . . . . . . . 99 S. Mazevet, J. D. Kress, L. A. Collins, W. W. Wood, J. D. Johnson, and P. Blottiau Theoretical Equation of State for Water at High Pressures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 H. D. Jones Thermophysical Properties of Helium under Multiple Shock C o m p r e s s i o n . . . . . . . . . . . . . . . . . . . 107 V. Y. Ternovoi, A. S. Filimonov, A. A. Pyalling, V. B. Mintsev, and V. E. Fortov Phase Diagrams and Thermodynamic Properties of Metals at High Pressures, High Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ill I. V. Lomonosov, V. E. Fortov, K. V. Khishchenko, and P. R. Levashov Physical Interpretation of Mathematically Invariant K(p,P) Type Equations of State for Hydrodynamically Driven Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 G. M. Hrbek Thermodynamic Properties of Nonideal Strongly Degenerate Hydrogen Plasma . . . . . . . . . . . . . . 119 P. R. Levashov, V. S. Filinov, V. E. Fortov, and M. Bonitz Construction of Wide-Range Equations of State through "Merging" Local Equations Using Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 L. F. Gudarenko and V. G. Kudelkin On the Shock Response of Polychloroprene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 J. C. F. Millett, N. K. Bourne, G. T. Gray III, and G. Cooper The Shock Hugoniot of an Epoxy Resin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 N. Barnes, N. K. Bourne, and J. C. F. Millett Invariant Functional Forms for K(p,P) Type Equations of State for Hydrodynamically Driven F l o w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 G. M. Hrbek Simulated, Theoretical, and Experimental Shock Trajectories in Cylindrical G e o m e t r y . . . . . . . . 143 R. Kanzleiter, W. Atchison, R. Bowers, and J. Guzik CHAPTER III EQUATION OF STATE: ENERGETIC MATERIALS Development of the LANL Sandwich T e s t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 L. G. Hill Re-shock Experiments in LX-17 to Investigate Reacted Equation of State . . . . . . . . . . . . . . . . . . . K. S. Vandersall, J. W. Forbes, C. M. Tarver, P. A. Urtiew, and F. Garcia VI 153 A Hybrid Monte Carlo Method for Equilibrium Equation of State of Detonation Products . . . . 157 M. S. Shaw Calculation of Chemical Detonation Waves with Hydrodynamics and a Thermochemical Equation of S t a t e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 W. M. Howard, L. E. Fried, P. C. Souers, and P. A. Vitello ANFO Cylinder Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 L. L. Davis and L. G. Hill A New Temperature-Dependent Equation of State for Inert, Reactive, and Composite M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 O. Heuze, J. C. Goutelle, and G. Baudin Shock Polar Calculation of Inert Nitromethane by Molecular Dynamics Simulation........... 173 L. Soulard Detonation Product EOS Studies: Using ISLS to Refine C h e e t a h . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 J. M. Zaug, W. M. Howard, L. E. Fried, and D. W. Hansen Structural Studies and EOS of Diaminodinitroethylene (DADNE, FOX-7) under Static Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 S. M. Peiris, G. L Pangilinan, F. J. Zerilli, and T. P. Russell Thermodynamic Representations for Solid/Melt Systems at High Pressure and T e m p e r a t u r e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 M. Braithwaite, C. E. Sims, and N. L. Allan CHAPTER IV PHASE TRANSITIONS Recent Progress in Understanding the Shock Response of Ferroelectric Ceramics . . . . . . . . . . . . 191 R. E. Setchell Macro- and Meso-Scale Modeling of PZT Ferroelectric Ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . 197 R. M. Brannon, S. T. Montgomery, J. B. Aidun, and A. C. Robinson Simulation of the Effects of Shock Stress and Electrical Field Strength on Shock-Induced Depoling of Normally Poled PZT 95/5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 S. T. Montgomery, R. M. Brannon, J. Robbins, R. E. Setchell, and D. H. Zeuch Multidimensional Validation Impact Tests on PZT 95/5 and A L O X . . . . . . . . . . . . . . . . . . . . . . . . . 205 M. D. Furnish, J. Robbins, W. M. Trott, L. C. Chhabildas, R. J. Lawrence, and S. T. Montgomery Effects of Initial Porosity on the Shock Response of Normally Poled PZT 95/5 . . . . . . . . . . . . . . . 209 R. E. Setchell, B. A. Tuttle, J. A. Voigt, and E. L. Venturini The Shear Strength of Potassium Chloride above the B1-B2 Phase Transition during Shock Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 J. C. F. Millett and N. K. Bourne Spatial Evolution of Three-Wave Structure in Shocked Potasium Chloride . . . . . . . . . . . . . . . . . . 217 E. Zaretsky Investigation of Liquid-Solid Phase Transition Using Isentropic Compression Experiments (ICE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 J.-P. Davis, D. B. Hayes, J. R. Asay, P. W. Watts, P. A. Flores, and D. B. Reisman Alpha-Omega Transition in Ti: Equation of State and Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 C. W. Greeff, D. R. Trinkle, and R. C. Albers Shock Induced Melting of Lead (Experimental S t u d y ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Mabire and P.-L. Hereil VII 229 Electrical Conductivity Investigation of Graphite-Diamond Transition under Multiple Shock-Wave Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 V. I. Postnov, V. E. Fortov, V. V. Yakushev, and T. I. Yakusheva Abnormal Electric Conductivity of Lithium at High Dynamic Pressure . . . . . . . . . . . . . . . . . . . . . 237 V. E. Fortov, V. V. Yakushev, K. L. Kagan, I. V. Lomonosov, V. I. Postnov, T. I. Yakusheva, and A. N. Kuryanchik A Kinetic Model of Multiple Phase Transitions in I c e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 G. Cruz Leon, S. Rodriguez Romo, and V. Tchijov The Ab-Initio Study of Structural Stability of U r a n i u m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 A. Kutepov and S. Kutepova CHAPTER V MODELING, SIMULATION, AND THEORY: NONREACTIVE MATERIALS Superseismic Loading and Shock Polars: An Example of Fluid-Solid C o u p l i n g . . . . . . . . . . . . . . . 251 M. Arienti and J. E. Shepherd Comparing Lagrangian Godunov and Pseudo-viscosity Schemes for Multidimensional Impact S i m u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 G. Luttwak Discrete Element Method Modeling of G a s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 W. Wang, Z. Tang, P. Gong, and Y. Horie Nonlocal Theory of Macro-Meso-Level Energy Exchange in the Shock Compressed M a t t e r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 T. A. Khantouleva Macro-Meso Energy Exchange in Dynamically Deformed S t e e l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 Y. I. Mescheryakov Analysis of the Slowing of a High Energy Proton Shot through a Target in the Frame of the Fokker-Plank Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 V. Molinari and F. Teodori Anisotropic Failure Model Development and I m p l e m e n t a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 J. D. Walker, K. A. Dannemann, and C. E. Anderson, Jr. Modeling Anisotropic Plasticity: 3D Eulerian Hydrocode Simulations of High Strain Rate Deformation P r o c e s s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 M. W. Burkett, S. P. Clancy, P. J. Maudlin, and K. S. Holian Interface Tracking in Eulerian and MMALE Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 G. Luttwak Numerical Investigation into the Performance of a Rarefaction Shock Wave Cutter for Offshore Oil-Gas Platform Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 J. P. Morris, L. A. Glenn, T. H. Antoun, and I. N. Lomov Analysis of Radiation-Driven Jetting Experiments on NOVA and Z . . . . . . . . . . . . . . . . . . . . . . . . . 291 R. J. Lawrence, T. A. Mehlhorn, T. A. Haill, K. G. Budge, T. G. Trucano, K. R. Cochrane, and J. J. MacFarlane Non-Newtonian Viscosity Effects at Shocked Fluid I n t e r f a c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 S. M. Valone Sensitivities for Taylor-Test Model P a r a m e t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 R. J. Henninger Transmission of Shocks along Thin-Walled Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. A. Salisbury, A. R. Giles, and R. E. Winter Vlll 303 Computational Characterization of Three-Stage Gun Flier Plate L a u n c h . . . . . . . . . . . . . . . . . . . . 307 D. E. Carroll, L. C. Chhabildas, W. D. Reinhart, N. A. Winfree, and G. I. Kerley Modeling and Simulation of Explosively Driven Electromechanical D e v i c e s . . . . . . . . . . . . . . . . . . 311 P. N. Demmie Numerical Simulations of the Influence of Loading Pulse Shape on SHPB Measurements...... 315 A. D. Resnyansky and G. T. Gray III Shock Wave Effects in Copper: Design of an Experimental Device for Post Recovery Mechanical Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 F. Buy and F. Llorca The Contribution of the Expanding Shell Test to the Modeling of Elastoplasticity at High Strain R a t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 F. Llorca and F. Buy The Expanding Shell Test: Numerical Simulation of the E x p e r i m e n t . . . . . . . . . . . . . . . . . . . . . . . . 327 F. Buy and F. Llorca CHAPTER VI MOLECULAR DYNAMICS MODELING: NONREACTIVE MATERIALS Large-Scale Molecular Dynamics Simulations of Shock-Induced Plasticity, Phase Transformations, and Detonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 T. C. Germann Atomistic Simulations of the Motion of an Edge Dislocation in Aluminum Using the Embedded Atom Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 N. Bhate, R. J. Clifton, and R. Phillips Hugoniot Constraint Molecular Dynamics Study of a Transformation to a Metastable Phase in Shocked Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 E. J. Reed, J. D. Joannopoulos, and L. E. Fried Molecular Dynamics and Experimental Study of Shock Polarization of Nitromethane......... 347 L. Soulard Shock-Induced Structural Phase Transformations Studied by Large-Scale Molecular-Dynamics Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 K. Kai, T. C. Germann, P. S. Lomdahl, and B. L. Holian Atomistic Modeling of Orientation Dependence of Shock Wave Properties in D i a m o n d . . . . . . . . 355 S. V. Zybin, M. L. Elert, J. A. Harrison, and C. T. White Shock Waves in Dusty P l a s m a s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 J. E. Hammerberg, T. C. Germann, and B. L. Holian Continuum Properties from Molecular Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 R. J. Hardy, S. Root, and D. R. Swanson Uniaxial Hugoniostat: Method and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 J.-B. Maillet and S. Bernard Discrete Element Method Simulation of Nonlinear Viscoelastic Stress Wave Problems......... 371 W. Wang, Z. Tang, and Y. Horie Molecular Dynamics Simulation of Shock Wave Compression of M e t a l s . . . . . . . . . . . . . . . . . . . . . 374 A. A. Selezenev, V. K. Golubev, A. Y. Aleinikov, O. I. Butnev, R. A. Barabanov, and B. L. Voronin Large-Scale Molecular Dynamics Simulations of Shock Waves in Laves Crystals and Icosahedral Q u a s i c r y s t a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Roth IX 378 CHAPTER VII MODELING AND SIMULATION: REACTIVE MATERIALS Electronic Excitations Vibrational Spectra, and Chemistry in Nitromethane and H M X . . . . . . . . 385 E. J. Reed, M. Riad Manaa, J. D. Joannopoulos, and L. E. Fried A Study of Deflagration to Detonation Transition in a Model A-B System Using Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 J. Fellows, P. J. Haskins, and M. D. Cook Steady Flow Detonations from Molecular Dynamics Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 D. R. Swanson and C. T. White Elastic Properties of H M X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 T. D. Sewell, D. Bedrov, R. Menikoff, and G. D. Smith Molecular Dynamics Simulations of HMX Crystal Polymorphs Using a Flexible Molecule Force F i e l d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 D. Bedrov, G. D. Smith, and T. D. Sewell Ab Initio Molecular Dynamics Simulations of Molecular Collisions of Nitromethane . . . . . . . . . . 407 D. Wei, R Zhang, and T. K. Woo Impact Response of PBX 9501 below 2 G P a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 K. Kline, Y. Horie, J. J. Dick, and W. Wang Mesoscale Modelling of Shock Initiation Behavior in HMX-Based Explosives . . . . . . . . . . . . . . . . 415 R. N. Mulford and D. C. Swift Characterization of the Saturn Air Lens and Its Use in Foam S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . 419 E. J. Harris, D. A. Salisbury, P. Taylor, and R. E. Winter Steady-State Model of Heterogeneous Detonation with Inert P a r t i c l e s . . . . . . . . . . . . . . . . . . . . . . . 423 A. Gonor, I. Hooton, and S. Narayan Modeling High Explosives with the Method of Cells and Mori-Tanaka Effective Medium T h e o r i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 B. E. Clements and E. M. Mas Numerical Simulations of Anti-tank Mine D e t o n a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 L. Laine, 0. Ranestad, A. Sandvik, and A. Snekkevik Simulation of Shaped-Charge with SPH Rezone M e t h o d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 J. Yao, M. E. Gunger, and D. A. Matuska Modeling and Prediction of Sensitivity in Energetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 N. V. Garmasheva, V. P. Filin, B. G. Loboiko, A. N. Averin, D. Mathieu, P. Simonetti, and R. Belmas Approximate Blast Theory: Application to Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 G. J. Hutchens Effect of Reaction Rate Periodicity on Detonation Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 E. O. Morano and J. E. Shepherd A Complete Equation of State for Detonation Products in H y d r o c o d e s . . . . . . . . . . . . . . . . . . . . . . 450 O. Heuze How Point and Line Defects Affect Detonation Properties of Energetic S o l i d s . . . . . . . . . . . . . . . . 454 M. M. Kuklja Hydro-Reactive Computations with a Temperature Dependent Reaction R a t e . . . . . . . . . . . . . . . . 460 Y. Partom A Mechanistic Study of Delayed Detonation in Impact Damaged Solid Rocket Propellant...... 464 E. R. Matheson and J. T. Rosenberg Numerical Simulation on Laser Initiation of Thin E x p l o s i v e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Kubota, K. Nagayama, H. Shimada, and K. Matsui 468 CHAPTER VIII SPALL, FRACTURE, AND FRAGMENTATION OF METALS The Effect of Material Cleanliness on Dynamic Damage Evolution in 10100 C u . . . . . . . . . . . . . . 475 W. R. Thissell, A. K. Zurek, D. A. S. Macdougall, D. Miller, R. Everett, A. Geltmacher, R. Brooks, and D. Tonks Influence of Microstructural Anisotropy on the Spallation of 1080 Eutectoid S t e e l . . . . . . . . . . . . 479 G. T. Gray III, N. K. Bourne, J. C. R Millett, M. R Lopez, and K. S. Vecchio Incipient Spall Studies in Tantalum—Microstructural E f f e c t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 L. C. Chhabildas, W. M. Trott, W. D. Reinhart, J. R. Cogar, and G. A. Mann The Spall Strength Measurement and Modelling of AQ80 Iron and Copper Systems . . . . . . . . . . 487 P. D. Church, W. G. Proud, T. D. Andrews, and B. Goldthorpe Grain Size and Pressure Effects on Spall Strength in C o p p e r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 A. J. Schwartz, J. U. Cazamias, P. S. Fiske, and R. W. Minich Cavitation in Compressible Visco-Plastic M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 C. Denoual and J. M. Diani Dynamic Properties of Shock Loaded Thin Uranium Foils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 D. L. Robbins, A. M. Kelly, D. J. Alexander, R. J. Hanrahan, R. C. Snow, R. J. Gehr, T. D. Rupp, S. A. Sheffield, and D. B. Stahl Hugoniot Elastic Limit and Spall Strength of Aluminum and Copper Single Crystals over a Wide Range of Strain Rates and Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 S. V. Razorenov, G. I. Kanel, K. Baumung, and H. J. Bluhm A Flash X-Ray Technique to Measure Strain Distribution at Interfaces Sliding at High Pressure and V e l o c i t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507 R. E. Winter, P. Taylor, D. J. Carley, A. J. Barlow, H. Pragnell, and L. Markland Spallation in the Alloy Ti-6Al-4V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511 P. D. Church, T. Andrews, N. K. Bourne, and J. C. R Millett Cylinder Fragmentation Using Gas Gun T e c h n i q u e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515 T. R Thornhill, W. D. Reinhart, L. C. Chhabildas, D. E. Grady, and L. T. Wilson Dynamic Fracture Studies Using Sleeved Taylor S p e c i m e n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519 M. R. Gilmore, J. C. Foster Jr., and L. L. Wilson The Effect of Orientation on the Spall Strength of the Aluminum Alloy 7010-T6 . . . . . . . . . . . . . 523 M. R. Edwards, N. K. Bourne, and J. C. R Millett Controlled Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527 W Arnold Ejecta Particle Size Distributions for Shock-Loaded Sn and Al T a r g e t s . . . . . . . . . . . . . . . . . . . . . . 531 D. S. Sorenson, R. W. Minich, J. L. Romero, T. W. Tunnell, and R. M. Malone Investigation of the Observed Anisotropic Fracture in S t e e l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 B. E. Clements, E. M. Mas, and G. T. Gray III Applying Micro-mechanics to Finite Element Simulations of Split Hopkinson Pressure Bar Experiments on High E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539 E. M. Mas, B. E. Clements, W R. Blumenthal, C. M. Cady, and G. T. Gray El Effect of Oriented Elastic and Strength Characteristics on the Impact Fracture of Anisotropic M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543 A. V. Radchenko, S. V. Kobenko, and M. N. Krivosheina Experimental Study of Explosive Fragmentation of Metals M e l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . A. K. Zhiembetov, A. L. Mikhaylov, and G. S. Smirnov XI 547 CHAPTER IX CONSTITUTIVE AND MICROSTRUCTURAL PROPERTIES OF METALS Nonequilibrium Fluctuations in Shock Compression of Poly crystalline Copper a-lron......... 553 Y. Horie and K. Yano On the Conversion of Plastic Work into Heat during High-Strain-Rate D e f o r m a t i o n . . . . . . . . . . 557 G. Ravichandran, A. J. Rosakis, J. Hodowany, and P. Rosakis Crystal Failure and Crack Formation during Plastic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 C. S. Coffey and J. Sharma Evolution in the Patterning of Adiabatic Shear Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567 M. A. Meyers, Q. Xue, and V. F. Nesterenko Microstructural Evolution in Adiabatic Shear Localization in Stainless S t e e l . . . . . . . . . . . . . . . . . 571 M. A. Meyers, M. T. Perez-Prado, Q. Xue, Y. Xu, and T. R. McNelley On the Measurement of Shear-Strength in Quasi-isentropic L o a d i n g . . . . . . . . . . . . . . . . . . . . . . . . 575 Z. Rosenberg, N. K. Bourne, G. T. Gray III, and J. C. F. Millett On the Shock Response of the Shape Memory Alloy N i T i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 J. C. F. Millett, N. K. Bourne, G. T. Gray III, and G. S. Stevens Al and Cu Dynamic Strength at a Strain Rate of 5-108 s " 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583 M. Werdiger, S. Eliezer, E. Moshe, Z. Henis, E. Dekel, Y. Horovitz, and B. Arad The Effects of Shear Banding in 6-4 Titanium on Round and Square Taylor Impacts . . . . . . . . . 587 J. U. Cazamias Numerical Simulation of Elastic-Viscous-Plastic Properties, Polymorphous Transformations and Spall Fracture in I r o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591 A. V. Petrovtsev, V. A. Bychenkov, and G. V. Kovalenko Growth of Perturbations on Metals Interface at Oblique Collision with Supersonic Velocity of Contact Point Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 O. B. Drennov, A. L. Mikhaylov, P. N. Nizovtsev, and V. A. Raevskii Numerical Simulation of the Vacancy Diffusion in Shocked C r y s t a l s . . . . . . . . . . . . . . . . . . . . . . . . 599 Y. Skryl and M. M. Kuklja Anomalous Behavior of Aluminum Near the Melting Temperature: Transition in the Rate Controlling Mechanism of Yielding and Realization of Superheated Solid States under T e n s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603 G. I. Kanel, S. V. Razorenov, K. Baumung, and H. Bluhm Inertia and Temperature Effects in Void G r o w t h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607 L. Seaman and D. R. Curran Void Coalescence Model for Ductile Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611 D. L. Tonks, A. K. Zurek, and W. R. Thissell Laser Driven High Pressure, High Strain Rate Materials Experiments . . . . . . . . . . . . . . . . . . . . . . 615 D. H. Kalantar, A. M. Alien, F. Gregori, B. Kad, M. Kumar, K. T. Lorenz, A. Loveridge, M. A. Meyers, S. Pollaine, B. A. Remington, and J. S. Wark Plastic Deformation in Laser-Induced Shock Compression of Monocrystalline Copper . . . . . . . . 619 M. A. Meyers, F. Gregori, B. K. Kad, M. S. Schneider, D. H. Kalantar, B. A. Remington, J. S. Wark, T. Boehly, and G. Ravichandran Formation and Morphology of Twinning in Titanium under High Strain Rate Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623 B. Herrmann, A. Venkert, G. Kimmel, A. Landau, D. Shvarts, and E. Zaretsky Influence of the Structural Levels on the Elastic-Plastic Hardening of Metals under Submicrosecond Shock Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Sud'enkov xn 627 Laser-Driven Planar Impact of Miniature Specimens of HY-100 S t e e l . . . . . . . . . . . . . . . . . . . . . . . 630 D. J. Alexander and D. L. Robbins The Effect of Microstructure on the Shock Behaviour of y-Titanium Aluminides . . . . . . . . . . . . . 634 J. C. R Millett, L P. Jones, N. K. Bourne, and G. T. Gray IE Experimental Analysis of Shock Wave Effects in C o p p e r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638 R Llorca, R Buy, and J. Farre On the Dependence of the Yield Strength of Metals on Temperature and Strain Rate: The Mechanical Equation of the Solid S t a t e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 P. P. Milella CHAPTER X MECHANICAL PROPERTIES: POLYMERS The Deviatoric Response of an Epoxy Resin to One-Dimensional Shock Loading . . . . . . . . . . . . . 649 N. K. Bourne, J. C. R Millett, N. Barnes, and I. Belcher On the Strength Behaviour of Kel-F-800â„¢ and Estane P o l y m e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . 653 N. K. Bourne, J. C. R Millett, G. T. Gray III, and P. Mort Thermal Activation Constitutive Model for Polymers Applied to Polytetrafluoroethylene . . . . . . 657 R J. Zerilli and R. W. Armstrong A Viscoelastic Model for PBX B i n d e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661 E. M. Mas, B. E. Clements, W. R. Blumenthal, C. M. Cady, G. T. Gray El, and C. Liu Influence of Temperature and Strain Rate on the Compressive Behavior of PMMA and Polycarbonate P o l y m e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 W. R. Blumenthal, C. M. Cady, M. R Lopez, G. T. Gray III, and D. J. Idar Effects of Initial Temperature on the Shock and Release Behavior of Filled and Unfilled E p o x i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669 M. U. Anderson, R. E. Setchell, and D. E. Cox Evolution of Stress Relaxation Structures for Several Polymers Subjected to Plane Shock Compression around 0.5 GPa Shock Stress Measured by PVDF Gauge . . . . . . . . . . 673 Y. Mori and K. Nagayama CHAPTER XI MECHANICAL PROPERTIES: COMPOSITES Discrete Element Modeling for Shock Processes of Heterogeneous Materials . . . . . . . . . . . . . . . . . 679 Z. P. Tang and W. W. Wang Validation of an Advanced Material Model for Simulating the Impact and Shock Response of Composite M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685 R. A. Clegg, C. J. Hayhurst, and H. Nahme Analytical and Computational Study of One-Dimensional Impact of Graded Elastic Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689 M. Scheidler and G. Gazonas Strain Rate Sensitivity of Graphite/Polymer Laminate Composites . . . . . . . . . . . . . . . . . . . . . . . . . 693 L H. Syed and N. S. Brar Dynamic Tensile Response of Alumina-Al Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Atisivan, A. Bandyopadhyay, and Y. M. Gupta Xlll 697 Resolving Mechanical Response of Plastic Bonded Explosives at High Strain-Rate Using Split Hopkinson Pressure Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701 V. S. Joshi and R. J. Lee A Combined Experimental/Computational Approach for Assessing the High Strain Rate Response of High Explosive Simulants and Other Viscoelastic Particulate Composite M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705 J. Corley, W. Riedel, S. Hiermaier, P. Weidemaier, and K. Thoma Influence of Interface Scattering on Shock Waves in Heterogeneous Solids . . . . . . . . . . . . . . . . . . 709 S. Zhuang, G. Ravichandran, and D. E. Grady Mesoscale Descriptions of Shock-Loaded Heterogeneous Porous M a t e r i a l s . . . . . . . . . . . . . . . . . . . 713 M. R. Baer and W. M. Trott Experiment and Theory for the Characterization of Porous Materials . . . . . . . . . . . . . . . . . . . . . . 717 A. D. Resnyansky, N. K. Bourne, and J. C. R Millett Shock Wave Propagation Process in Epoxy Syntactic F o a m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721 J. Ribeiro, J. Campos, I. Plaksin, and R. Mendes Compressive Properties of a Closed-Cell Aluminum Foam as a Function of Strain Rate and Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725 C. M. Cady, G. T. Gray III, C. Liu, C. P. Trujillo, B. L. Jacquez, and T. Mukai The Mechanism of Strain Rate Strengthening during Dynamic Compression of Closed-Cell Aluminum F o a m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729 K. A. Dannemann, J. Lankford Jr., and A. E. Nicholls PART TWO CHAPTER XII MECHANICAL PROPERTIES: CERAMICS AND GLASSES The HEL Upper Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735 J. P. Billingsley On the HEL and the "Ramping" above HEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739 E. Bar-On, Y. Partom, M. B. Rubin, and D. Z. Yankelevsky Factors Influencing the Shape of the Fracture Wave Induced by the Rod Impact of a Brittle M a t e r i a l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743 A. D. Resnyansky and N. K. Bourne Spall Strength of Ceramic in a Multilayer S y s t e m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747 B. A. M. Vaughan, N. H. Murray, W. G. Proud, and J. E. Field Computer Simulation of the Propagation of Short Shock Pulses in Ceramic Materials . . . . . . . . 751 V. A. Skripnyak, E. G. Skripnyak, and T. V. Zhukova Influence of Microstructural Bias on the Hugoniot Elastic Limit and Spall Strength of Two-Phase TiB2+Al2O3 Ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755 G. Kennedy, L. Ferranti, R. Russell, M. Zhou, and N. Thadhani Shock Compression, Adiabatic Expansion, and Multi-phase Equation of State of Carbon...... 759 K. V. Khishchenko, V. E. Fortov, I. V. Lomonosov, M. N. Pavlovskii, G. V. Simakov, and M. V. Zhernokletov Thermodynamic Parameters and Equation of State of Low-Density SiO2 A e r o g e l . . . . . . . . . . . . . M. V. Zhernokletov, T. S. Lebedeva, A. B. Medvedev, M. A. Mochalov, A. N. Shuykin, and V. E. Fortov xiv 763 The Hugoniot Elastic Limit of A1ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767 J. U. Cazamias, P. S. Fiske, and S. J. Bless The Failure of Aluminium Nitride under S h o c k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771 I. M. Pickup and N. K. Bourne On the Failure of Boron Carbide under Shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775 N. K. Bourne and G. T. Gray III Spallation of Hot Pressed Boron Carbide Ceramic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779 P. T. Bartkowski, D. P. Dandekar, and D. J. Grove Shock Equation of State and Dynamic Strength of Tungsten Carbide . . . . . . . . . . . . . . . . . . . . . . . 783 D. P. Dandekar and D. E. Grady Bar Impact Tests on Alumina (AD995) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787 J. U. Cazamias, W. D. Reinhart, C. H. Konrad, L. C. Chhabildas, and S. J. Bless Investigating Multi-dimensional Effects in Single-Crystal Sapphire . . . . . . . . . . . . . . . . . . . . . . . . . 791 W. D. Reinhart, L. C. Chhabildas, W. M. Trott, and D. P. Dandekar Experimental Characterization of the Dynamic Failure Resistance of TiB2/Al2O3 C o m p o s i t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795 A. R. Keller and M. Zhou Fragmentation of Expanding Cylinders and the Statistical Theory of N. F. Mott . . . . . . . . . . . . . 799 D. Grady Digital Speckle Flash X-Ray Photography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803 S. G. Grantham and W. G. Proud The Deviatoric Response of Three Dense Glasses under Shock Loading Conditions . . . . . . . . . . . 807 D. D. Radford, W. G. Proud, and J. E. Field Impact Induced Failure Zones in Homalite B a r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811 R. Russell, S. J. Bless, and T. Beno CHAPTER XIII MECHANICAL PROPERTIES: REACTIVE MATERIALS Elastic Precursor Decay in HMX Explosive Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817 J. J. Dick and A. R. Martinez Influence of Polymer Molecular Weight, Temperature, and Strain Rate on the Mechanical Properties of PBX 9 5 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821 D. J. Idar, D. G. Thompson, G. T. Gray III, W. R. Blumenthal, C. M. Cady, P. D. Peterson, E. L. Roemer, W. J. Wright, and B. L. Jacquez Moire Interferometry Studies of PBX 9 5 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825 P. J. Rae, H. T. Goldrein, S. J. P. Palmer, and W. Proud Experimental Simulations of Dynamic Stress Bridging in Plastic Bonded Explosives . . . . . . . . . . 829 K. M. Roessig and J. C. Foster Jr. An Optical Microscopy and Small-Angle Scattering Study of Porosity in Thermally Treated PBX 9 5 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833 J. T. Mang, C. B. Skidmore, S. F. Son, R. P. Hjelm, and T. P. Rieker Sub-molecular Fracture Steps in Shock-Shattered RDX Crystals and Follow-On Nano-Indentation Evaluation of Early Stage P l a s t i c i t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837 J. Sharma, C. S. Coffey, R. W. Armstrong, W. L. Elban, and S. M. Hoover Reaction of Shocked but Undetonated HMX-Based E x p l o s i v e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Taylor, D. A. Salisbury, L. S. Markland, R. E. Winter, and M. L Andrew xv 841 Investigation of Dispersive Waves in Low-Density Sugar and HMX Using Line-Imaging Velocity Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. M. Trott, L. C. Chhabildas, M. R. Baer, and J. N. Castaneda Isentropic Compression of LX-04 on the Z Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. B. Reisman, J. W. Forbes, C. M. Tarver, R Garcia, R. C. Cauble, C. A. Hall, J. R. Asay, K. Struve, and M. D. Furnish Mechanical Behavior of Energetic Materials during High A c c e l e r a t i o n . . . . . . . . . . . . . . . . . . . . . . Y. Lanzerotti and J. Sharma Using Simultaneous Time-Resolved SHG and XRD Diagnostics to Examine Phase Transitions of HMX and T A T B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. K. Saw, J. M. Zaug, and D. L. Farber Use of High-Speed Photography to Augment Split Hopkinson Pressure Bar Measurements of Energetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. J. Lee and V. S. Joshi Mechanical Behavior of Explosives at High Pressures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. M. Kelley, V. S. Joshi, and R. H. Guirguis Investigation of Shock Wave Impulse Influence on Solid Propellant Combustion . . . . . . . . . . . . . A. Y. Dolgoborodov and V. N. Marshakov 845 849 853 856 860 864 868 CHAPTER XIV DETONATION PHENOMENA Investigation of Isentrope for Detonation Products of TATB-Based C o m p o s i t i o n . . . . . . . . . . . . . . Y. A. Aminov, M. M. Gorshkov, V. T. Zaikin, G. V. Kovalenko, Y. R. Nikitenko, and G. N. Rykovanov Observations on Type II Deflagration-to-Detonation T r a n s i t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. J. Gifford, W. G. Proud, and J. E. Field Pressure Wave Measurements from Thermal Cook-Off of an HMX Based High Explosive PBX 9501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. G. Garcia, J. W. Forbes, C. M. Tarver, P. A. Urtiew, D. W. Greenwood, and K. S. Vandersall Measurement of Low Level Explosives Reaction in Gauged Multi-dimensional Steven Impact Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. M. Niles, F. Garcia, D. W. Greenwood, J. W. Forbes, C. M. Tarver, S. K. Chidester, R. G. Garza, and L. L. Swizter The Effect of Additives on the Detonation Characteristics of a Liquid Explosive . . . . . . . . . . . . . P. J. Haskins, M. D. Cook, and R. L Briggs Electromagnetic Properties of Pre-detonating E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. P. Chambers, R. J. Lee, T. J. Oxby, and W. F. Perger Effect of GMB on Failure and Reaction Regime of NM/PMMA-GMB M i x t u r e s . . . . . . . . . . . . . . J. Gois, J. Campos, and I. Plaksin Pressure Wave Measurements in Cylinders of Detonating LX-17 . . . . . . . . . . . . . . . . . . . . . . . . . . . J. W. Forbes, P. C. Souers, P. A. Urtiew, K. S. Vandersall, F. Garcia, D. W. Greenwood, and L. Green Diameter Effect Curve and Detonation Front Curvature Measurements for ANFO . . . . . . . . . . . R. A. Catanach and L. G. Hill Experimental Investigation of Heterogeneous HE Decomposition Mechanism in Detonation Wave F r o n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. V. Fedorov xvi 875 878 882 886 890 894 898 902 906 910 Experimental and Numerical Study of Temperatures in Cavity Collapse . . . . . . . . . . . . . . . . . . . . 914 A. M. Milne and N. K. Bourne Detonation Phenomena of PBX Microsamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918 I. Plaksin, J. Campos, J. Ribeiro, and R. Mendes Detonation Meso-Scale Tests for Energetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922 I. Plaksin, J. Campos, J. Ribeiro, R. Mendes, J. Gois, A. Portugal, P. Simoes, and L. Pedroso Convective Detonations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926 R. H. Guirguis and A. M. Landsberg Effect of Void Size on the Detonation Pressure of Emulsion E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . . 930 Y. Hirosaki, K. Murata, Y. Kato, and S. Itoh Momentum Transfer during Shock Interaction with Metal Particles in Condensed E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934 R Zhang, P. A. Thibault, R. Link, and A. L. Gonor Reaction Zone Transformation for Steady-State Detonation of High Explosives under Initial Density I n c r e a s e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938 A. V. Utkin, S. A. Kolesnikov, S. V. Pershin, and V. E. Fortov The Effect of Variation of Aluminized Particle Size and Polymer on the Performance of E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942 D. Woody and J. J. Davis Near-Field Impulse Effects from Detonation of Heterogeneous Explosives . . . . . . . . . . . . . . . . . . . 946 D. L. Frost, F. Zhang, S. McCahan, S. B. Murray, A. J. Higgins, M. Slanik, M. Casas-Cordero, and C. Ornthanalai Effect of Metal Particle Size on Blast Performance of RDX Based Explosives . . . . . . . . . . . . . . . . 950 J. J. Davis and P. J. Miller Effect of an Inert Material's Thickness and Properties on the Ratio of Energies Imparted by a Detonation's 1st and 2nd Propulsion S t a g e s . . . . . . . . . . . . . . . . . . . . . . . . . 954 J. E. Backofen and C. A. Weickert Obtaining the Gurney Energy Constant for a Two-Step Propulsion M o d e l . . . . . . . . . . . . . . . . . . . 958 J. E. Backofen and C. A. Weickert Aluminised Explosive Compositions Based on NQ and BTNEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962 M. F. Gogulya, A. Y. Dolgoborodov, M. A. Brazhnikov, M. N. Makhov, and V. I. Arkhipov Proton Radiography Examination of Unburned Regions in PBX 9502 Corner Turning Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966 E. N. Perm, C. L. Morris, J. P. Quintana, P. Pazuchanic, H. Stacy, J. D. Zumbro, G. Hogan, and N. King CHAPTER XV EXPLOSIVE AND INITIATION STUDIES Mesoscale Mechanics of Plastic Bonded E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973 K. M. Roessig Compaction Wave Profiles in Granular HMX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979 R. Menikoff Mechanistic Model of Hot Spot: A Unifying Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983 K. Yano, Y. Horie, and D. Greening Microstructural Model of Ignition for Time Varying Loading C o n d i t i o n s . . . . . . . . . . . . . . . . . . . . R. V. Browning and R. J. Scammon xvn 987 Development of a Simple Model of "Hot-Spot" Initiation in Heterogeneous Solid E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991 N. J. Whitworth Initiation of PETN Powder by Pulse Laser A b l a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995 K. Nagayama, K. Inou, and M. Nakahara Double Shock Initiation of the HMX Based Explosive E D C - 3 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999 R. L. Gustavsen, S. A. Sheffield, R. R. Alcon, R. E. Winter, P. Taylor, and D. A. Salisbury Plastic Deformation Rate and Initiation of Crystalline Explosives . . . . . . . . . . . . . . . . . . . . . . . . . . J. Namkung and C. S. Coffey Factors Affecting Shock Sensitivity of Energetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Chakravarty, M. J. Gifford, M. W. Greenaway, W. G. Proud, and J. E. Field The Burning Rate of Aluminium Particles in Cylinder T e s t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. J. Evans, A. M. Milne, and I. Softley First Results of Reaction Propagation Rates in HMX at High Pressure . . . . . . . . . . . . . . . . . . . . . 1003 1007 1011 1015 D. L. Farber, A. P. Esposito, J. M. Zaug, J. E. Reaugh, and C. M. Aracne Embedded Electromagnetic Gauge Measurements and Modeling of Shock Initiation in the TATB Based Explosives LX-17 and PBX 9502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 R. L. Gustavsen, S. A. Sheffield, R. R. Alcon, J. W. Forbes, C. M. Tarver, and F. Garcia Detonation Initiation in Preshocked Liquid E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023 A. J. Higgins, F. X. Jette, A. C. Yoshinaka, J. H. S. Lee, and F. Zhang Lagrangian Analysis of EDC37 Shock Initiation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027 J. R. Maw Transient Detonation Processes in a Plastic Bonded Explosive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031 K. A. Thomas, E. S. Martin, J. E. Kennedy, I. A. Garcia, and J. C. Foster Jr. An Investigation into the Initiation of Hexanitrostilbene by Laser-Driven Flyer P l a t e s . . . . . . . . . 1035 M. W. Greenaway, M. J. Gifford, W. G. Proud, J. E. Field, and S. G. Goveas Shock Initiation of UF-TATB at 250° C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039 P. A. Urtiew, J. W. Forbes, F. Garcia, and C. M. Tarver Manganin Gauge and Reactive Flow Modeling Study of the Shock Initiation of PBX 9 5 0 1 . . . . . 1043 C. M. Tarver, J. W. Forbes, F. Garcia, and P. A. Urtiew Fragment Impact Characterization of Melt-Cast and PBX E x p l o s i v e s . . . . . . . . . . . . . . . . . . . . . . . 1047 M. D. Cook, P. J. Haskins, R. L Briggs, C. Stennett, J. Fellows, and P. J. Cheese Hugoniot and Shock Initiation Studies of Isopropyl N i t r a t e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051 S. A. Sheffield, L. L. Davis, M. R. Baer, R. Engelke, R. R. Alcon, and A. M. Renlund Reactive Stress Growth Measurements for the Explosive I R X - 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055 G. T. Sutherland The Combustion of Explosives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059 S. F. Son Effect of Temperature Profile on Reaction Violence in Heated and Self-Ignited PBX 9501 . . . . . 1065 B. Asay, P. Dickson, B. Henson, L. Smilowitz, and L. Tellier Ignition Chemistry in HMX from Thermal Explosion to Detonation . . . . . . . . . . . . . . . . . . . . . . . . 1069 B. F. Henson, B. W. Asay, L. B. Smilowitz, and P. Dickson Instrumentation of Slow Cook-Off Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 H. W. Sandusky and G. P. Chambers Kinetics of the /?-«? Phase Transition in PBX 9 5 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077 L. B. Smilowitz, B. F. Henson, B. W. Asay, P. M. Dickson, and J. M. Robinson The Measurement of Hot-Spots in Granulated Ammonium Nitrate . . . . . . . . . . . . . . . . . . . . . . . . . W. G. Proud XVlll 1081 CHAPTER XVI SHOCK-INDUCED MODIFICATIONS AND MATERIAL SYNTHESIS Computational Modeling of the Shock Compression of Powders . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087 D. J. Benson, I. Do, and M. A. Meyers Three-Scale Model for Numerical Simulation of Mechano-Chemical Processes in Shock-Compressed Powder B o d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093 V. N. Leitsin, V. A. Skripnyak, and M. A. Dmitireva Effect of Shock-Activation on Post-shock Reaction Synthesis of Ternary C e r a m i c s . . . . . . . . . . . . 1097 J. L. Jordan and N. N. Thadhani Synthesis of Functional Ceramics Layers Using Novel Method Based on Impact of Ultra-fine Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101 J. Akedo and M. Lebedev The Study of Internal Deformation Fields in Granular Materials Using 3D Digital Speckle X-Ray Flash P h o t o g r a p h y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105 H. T. Goldrein, S. G. Grantham, W. G. Proud, and J. E. Field Investigation of Shock-Induced Chemical Reactions in Mo-Si Powder Mixtures Using Instrumented Experiments with PVDF Stress G a u g e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109 K. S. Vandersall and N. N. Thadhani Shock-Induced Cubic Silicon Nitride and Its P r o p e r t i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113 T. Sekine Dynamic Response of Titanium Carbide-Steel, Ceramic-Metal Composites . . . . . . . . . . . . . . . . . . 1119 B. Klein, N. Frage, E. Zaretsky, and M. P. Dariel Investigation of Shock-Induced Chemical Reactions in Ni-Ti Powder Mixtures Using Instrumented Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123 X. Xu and N. N. Thadhani TiC by SHS and Dynamic Compaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127 E. P. Carton, M. Stuivinga, and A. Boluijt Cooling Rate Threshold in Transformation of C60 Fullerene to Amorphous Diamond and Highly Disordered Carbon in SCARQ Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131 T. Homae, A. Okamoto, K. G. Nakamura, K-L Kondo, M. Yoshida, K. Hirabayashi, and K. Niwase CHAPTER XVII INSTRUMENTATION Carbon Resistor Pressure Gauge Calibration at Low S t r e s s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137 B. Cunningham, K. S. Vandersall, A. M. Niles, D. W. Greenwood, E Garcia, and J. W. Forbes, and W. H. Wilson Advanced Cryogenic System Capabilities for Precision Shock Physics Measurements on Z . . . . . 1141 D. L. Hanson, R. R. Johnston, M. D. Knudson, J. R. Asay, C. A. Hall, J. E. Bailey, and R. J. Hickman Temperature Controlled Vessel for Equation of State M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . 1145 T. D. Rupp, R. J. Gehr, D. B. Stahl, S. A. Sheffield, and D. L. Robbins PVDF Gauge Piezoelectric Response under Two-Stage Light Gas Gun Impact Loading........ 1149 E Bauer Outputs of Shock-Loaded Small Piezoceramic D i s k s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. A. Charest and J. L. Mace xix 1153 Improvements in the Signal Fidelity of the Manganin Stress Gauge . . . . . . . . . . . . . . . . . . . . . . . . 1157 D. Greenwood, J. Forbes, F. Garcia, K. Vandersall, P. Urtiew, L. Green, and L. Erickson CHAPTER XVIII EXPERIMENTAL TECHNIQUES Recent Advances in Quasi-isentropic Compression Experiments (ICE) on the Sandia Z Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163 C. A. Hall, J. R. Asay, M. D. Knudson, D. B. Hayes, R. L. Lemke, J.-R Davis, and C. Deeney Temperature Measurement of Isentropically Accelerated Flyer Plates . . . . . . . . . . . . . . . . . . . . . . . 1169 T. Bergstresser and S. Becker SYRINX Project: HPP Generators Devoted to Isentropic Compression Experiments . . . . . . . . . . 1173 C. Mangeant, F. Lassalle, P. L'Eplattenier, P.-L. Hereil, D. Bergues, and G. Avrillaud Correcting Free Surface Effects by Integrating the Equations of Motion Backward in Space... 1177 D. Hayes and C. Hall Picosecond Time-Resolved X-Ray Diffraction: Estimation of Local Pressure . . . . . . . . . . . . . . . . . 1181 Y. Hironaka, F. Saito, A. Yazaki, K. G. Nakamura, and K-I. Kondo Laser Triggered Synchronizable X-Ray System for Real Time Study of Shock Waves in Condensed Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1185 J. P. Farrell, K. Batchelor, V. Dudnikov, T. Srinivasan-Rao, J. Smedley, and J. McDonald OD Modelisation of the Magnetic Flux Compression Scheme for Isentropic Compression Experiments........................................................................ 1188 P. L'Eplattenier, G. Avrillaud, and J. Vanpoperynghe Simultaneous VISAR and TXD Measurements on Shocks in Beryllium C r y s t a l s . . . . . . . . . . . . . . 1192 D. C. Swift, D. L. Paisley, G. A. Kyrala, and A. Hauer Experiment to Capture Gaseous Products from Shock-Decomposed Materials . . . . . . . . . . . . . . . 1196 W. H. Holt, W. Mock Jr., F. Santiago, and R. M. Gamache Sound Velocity Doppler Laser Interferometry Measurements on T i n . . . . . . . . . . . . . . . . . . . . . . . . 1200 E. Martinez and J.-M. Servas Projectile Acceleration Aiming at Velocities above 9 km/s by a Compact Gas Gun . . . . . . . . . . . . 1204 T. Moritoh, N. Kawai, K. G. Nakamura, and K.-I. Kondo Characterization of Impact in Composite Laminates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208 K. Minnaar and M. Zhou Erratum: Friction in High-Speed Impact E x p e r i m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1212 R. A. Pelak, P. Rightley, and J. E. Hammerberg CHAPTER XIX OPTICAL AND ELECTRICAL MEASUREMENTS Shock Temperature of NaCl Measured with Wide-Band Optical R a d i o m e t r y . . . . . . . . . . . . . . . . . 1215 T. Ogura, K. G. Nakamura, H. Takenaka, and K.-I. Kondo Ultrafast Spectroscopic Investigation of Shock Compressed Glycidyl Azide Polymer Films and Nitrocellulose F i l m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1219 J. H. Reho, D. S. Moore, D. J. Funk, G. L. Fisher, and R. L. Rabie Emission Spectroscopy Applied to Shock to Detonation Transition in N i t r o m e t h a n e . . . . . . . . . . . V. Bouyer, G. Baudin, C. Le Gallic, and P. Herve xx 1223 Ultrafast Measurement of the Optical Properties of Shocked Nickel and Laser Heated Gold . . . 1227 D. J. Funk, D. S. Moore, J. H. Reho, K. T. Gahagan, S. D. McGrane, and R. L. Rabie Optical Extinction of Sapphire Shock-Loaded to 250-260 GPa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1231 D. E. Hare, D. J. Webb, S-H. Lee, and N. C. Holmes Temperature Measurement of Tin under Shock C o m p r e s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235 P.-L. Hereil and C. Mabire Gated IR Images of Shocked S u r f a c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239 S. S. Lutz, W. D. Turley, P. M. Rightley, and L. E. Primas Optical Probing of the Electron Temperature Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243 T. Ao, I. Vollrath, and A. Ng Ellipsometry in the Study of Dynamic Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1247 A. W. Obst, K. R. Alrick, W. W. Anderson, K. Boboridis, W. T. Buttler, S. K. Lamoreaux, B. R. Marshall, S. L. Montgomery, J. R. Payton, and M. D. Wilke Shock-Induced Birefringence in Lithium F l u o r i d e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251 J. H. Nguyen and N. C. Holmes Vibrational Spectra of Nitro Compounds under Shock C o m p r e s s i o n . . . . . . . . . . . . . . . . . . . . . . . . 1255 T. Kobayashi, T. Sekine, and H. He Transient Bond Scission of Polytetrafluoroethylene under Laser-Induced Shock Compression Studied by Nanosecond Time-Resolved Raman Spectroscopy . . . . . . . . . . . . . . . . . . 1259 K. G. Nakamura, K. Wakabayashi, K.-I. Kondo Shock-Induced Orientation of Benzene Molecules Studied by Nanosecond Time-Resolved Raman S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1263 K. Wakabayashi, K. G. Nakamura, and K.-I. Kondo Measurements of the Conductivity of Shocked Polymethylmethacrylate . . . . . . . . . . . . . . . . . . . . . 1267 D. Townsend and N. K. Bourne CHAPTER XX IMPACT PHENOMENA, BALLISTICS, HYPERVELOCITY STUDIES, AND EXOTIC SHOCK CONFIGURATIONS New Directions and New Challenges in Analytical Modeling of Penetration Mechanics . . . . . . . . 1273 J. D. Walker Ballistic Response of Fabrics: Model and E x p e r i m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279 D. L. Orphal, J. D. Walker, and C. E. Anderson Jr. Long-Rod Moving-Plate I n t e r a c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1283 Y. Partom Conversion of Finite Elements into Meshless Particles for Penetration Computations Involving Ceramic T a r g e t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287 G. R. Johnson, R. A. Stryk , S. R. Beissel, and T. J. Holmquist Using the Penetration-Velocity Relationship to Correct for Variations in Target Hardness . . . . . 1291 S. J. Bless and J. Cazamias Ballistic Testing and High-Strain-Rate Properties of Hot Isostatically Pressed T i - 6 A l - 4 V . . . . . . . 1294 Y. Gu, V. F. Nesterenko, and S. S. Indrakanti Deformation and Damage of Two Aluminum Alloys from Ballistic I m p a c t . . . . . . . . . . . . . . . . . . . 1298 C. E. Anderson Jr. and K. A. Dannemann Recovery of Uranium Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. R. James, D. H. McElrue, and R. E. Winter xxi 1302 Modeling of Uranium Alloy Response in Plane Impact and Reverse Ballistic Experiments . . . . . 1306 B. Hermann, A. Landau, D. Shvarts, V. Favorsky, and E. Zaretsky On the Entrance Phase in Long Rod Penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1310 Z. Rosenberg and E. Dekel Impact Interaction of Projectile with Conducting Wall at the Presence of Electric Current . . . . 1314 V. T. Chemerys, A. I. Raychenko, and B. S. Karpinos The Use of the Taylor Test in Exploring and Validating the Large-Strain, High-Strain-Rate Constitutive Response of M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1318 J. C. Foster Jr., M. Gilmore, and L. L. Wilson Dynamic Characterization of Compliant/Brittle Materials Using Split Hopkinson B a r . . . . . . . . . 1323 N. S. Brar and V. S. Joshi Yield and Strength Properties of the Ti-6-22-22S Alloy over a Wide Strain Rate and Temperature R a n g e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327 L. Kriiger, G. I. Kanel, S. V. Razorenov, L. Meyer, and G. S. Bezrouchko CHAPTER XXI LASER-DRIVEN SHOCKS Sub-picosecond Laser-driven Shocks in Metals and Energetic M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . 1333 D. S. Moore, D. J. Funk, K. T. Gahagan, J. H. Reho, G. L. Fisher, S. D. McGrane, and R. L. Rabie Time-Resolved Measurement of the Launch of Laser-Driven Foil Plate . . . . . . . . . . . . . . . . . . . . . 1339 H. He, T. Kobayashi, and T. Sekine Laser-Launched Flyer Plates and Direct Laser Shocks for Dynamic Material Property M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1343 D. L. Paisley, D. C. Swift, R. P. Johnson, R. A. Kopp, and G. A. Kyrala Development of Laser-Driven Flyer Techniques for Equation-of-State Studies of Microscale M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1347 W. M. Trott, and R. E. Setchell, and A. V. Farnsworth Jr. Ultrafast Time-resolved 2D Spatial Interferometry for Shock Wave Characterization in Metal Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1351 K. T. Gahagan, J. H. Reho, D. S. Moore, D. J. Funk, and R. L. Rabie A Computational Study of Laser Driven Flyer P l a t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1355 A. V. Farnsworth Jr., W. M. Trott, and R. E. Setchell Modelling of Laser Spall Experiments on A l u m i n i u m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1359 C. M. Robinson Taking Thin Diamonds to Their Limit: Coupling Static-compression and Laser-shock Techniques to Generate Dense W a t e r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1363 K. K. M. Lee, L. R. Benedetti, A. Mackinnon, D. Hicks, S. J. Moon, P. Loubeyre, F. Occelli, A. Dewaele, G. W. Collins, and R. Jeanloz Radiative Shock Experiment Using High Power L a s e r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1367 M. Koenig, A. Benuzzi-Mounaix, N. Grandjouan, V. Malka, S. Bouquet, X. Fleury, B. Marchet, C. Stehle, S. Leygnac, C. Michaut, J. Chieze, D. Batani, E. Henry, and T. Hall 1-10 Mbar Laser-driven Shocks Using the Janus Laser Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . 1371 J. Dunn, D. F. Price, S. J. Moon, R. C. Cauble, P. T. Springer, and A. Ng Transition from Expansion to Shock Compression in Laser Irradiated Si by Multiple Shots.... A. Yazaki, H. Kishimura, Y. Hironaka, F. Saito, K. G. Nakamura, and K.-I. Kondo xxn 1375 CHAPTER XXII EQUATION OF STATE AND GEOPHYSICS Evidence for Kinetic Effects on Shock Wave Propagation in T e c t o s i l i c a t e s . . . . . . . . . . . . . . . . . . . 1381 P. S. DeCarli, E. Bowden, T. G. Sharp, A. P. Jones, and G. D. Price The Principal Hugoniot and Dynamic Strength of Dolerite under Shock C o m p r e s s i o n . . . . . . . . . 1385 K. Tsembelis, W. G. Proud, and J. E. Field Explosion in the Granite Field: Hardening and Softening Behavior in R o c k s . . . . . . . . . . . . . . . . . 1389 I. N. Lomov, T. H. Antoun, and L. A. Glenn Depth of Cracking beneath Impact Craters: New Constraint for Impact V e l o c i t y . . . . . . . . . . . . . 1393 T. J. Ahrens, K. Xia, and D. Coker Shock Flattening of Spheres in Porous Media: Implications for Flattened C h o n d r u l e s . . . . . . . . . 1397 T. Sekine, N. Hirata, A. Yamaguchi, T. Kobayashi, H. He, and Z.-P. Tang The Possible Composition and Thermal Structure of the Earth's Lower Mantle and Core . . . . . 1401 Z. Gong, X. Li, and F. Jing Molecular Dynamics Modeling of Impact-Induced Shock Waves in Hydrocarbons . . . . . . . . . . . . 1406 M. L. Elert, S. Zybin, and C. T. White High Intensity X-Ray Coupling to Meteorite Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1410 J. L. Remo and M. D. Furnish The Dynamic Strength of Cement Paste under Shock C o m p r e s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . 1414 K. Tsembelis, W. G. Proud, and J. E. Field Participant L i s t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1419 Author I n d e x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Al Subject I n d e x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SI XXlll
© Copyright 2026 Paperzz