vii TABLE OF CONTENTS CHAPTER 1 TITLE PAGE DECLARATION ii DEDICATION iii ACKNOLEDGEMENTS iv ABSTRACT v ABSTRAK vi TABLE OF CONTENTS vii LIST OF TABLES x LIST OF FIGURES xi LIST OF SYMBOLS xii LIST OF ABBREVIATIONS xiii LIST OF APPENDICES xiv INTRODUCTION 1 1.1 Over view on PSO 1 1.2 Background of the Study 3 1.3 Statement of the problem 4 1.4 Objectives of the research 5 1.5 Scope of the project 6 1.6 Project time line 7 viii 2 LITERATURE REVIEW 8 2.1 Introduction 8 2.2 Description of Multi Robot Systems ( MRS ) 9 2.2.1 Introduction 9 2.2.2 Taxonomy in MRS 10 2.2.3 Duties and domains for MRS 14 2.2.4 Unsupervised learning 15 Overview on Particle Swarm Optimization ( PSO ) 16 2.3.1 Introduction 16 2.3.2 Classic PSO 17 2.3.3 The algorithm 20 2.3.4 PSO parameter control 21 2.3.5 Advantages of PSO 23 2.4 Previous investigations and works 24 2.5 Chapter Summary 27 2.3 3 4 METHODOLOGY 28 3.1 Introduction 28 3.2 Model Description 29 3.3 Modified Particle Swarm Algorithm (MPSA) 32 3.4 Fitness Function 33 3.5 Obstacle Avoidance 34 3.6 Collision Avoidance 36 3.7 Algorithm 37 3.8 Chapter Summary 38 SIMULATION RESULTS AND DISCUSSION 39 4.1 39 4.2 Introduction Simulation Set-Up 41 4.2.1 Case study 1 43 4.2.2 Case study 2 45 ix 4.2.3 5 Case study 3 47 4.3 Comparison of simulations with other approaches 49 4.4 Discussion 50 CONCLUSION AND DISCUSSION 51 5.1 Conclusion 51 5.2 Recommendation of Future Works 52 REFERENCES 54 Appendices 58 x LIST OF TABLES TABLE NO. 1.1 TITLE project time table PAGE 7 xi LIST OF FIGURES FIGURE NO. TITLE PAGE 1.1 Swarm of birds 2 1.2 schools of fish 4 2.1 MRS Taxonomy 16 3.1 The neighborhood description for an agent 31 3.2 Change of the leader in the swarm 35 3.3 Virtual zone 36 4.1 Case study 1 43 4.2 Case study 2 45 4.3 Case study 3 47 xii LIST OF SYMBOLS Xi,j - Position of the particle i in dimension j Vi,j - Velocity of the particle i in dimension j - Inertia weight - Random function lbest - Local best gbest - Global best - Inertia weight - Learning factor - Positive Constant coefficient - Fitness function - Maximum velocity bound - Minimum velocity bound - Best position of a particle - Best position of all particles - Penalty value - Fitness function - Set of obstacles - Position of the obstacle j - Penalty parameter - Penalty parameter - Threshold radios of the virtual zone for an agent - Distance between two agents - Number of Obstacles - Number of agents - Symbol of norm xiii LIST OF ABBREVIATIONS PSO - Particle Swarm Optimization 3_D - Three Dimensional MARS - Multiple Agent Robotic System ODE - Ordinary Differential Equation LTI - Linear Time Invariant MRS - Multi Robot System MPSA - Modified Particle Swarm Algorithm GA - Genetic Algorithm SISO - Single Input _ Single Output MIMO - Multi Input _ Multi Output ANN - Artificial Neural Networks PID - Proportional Integral Derivative xiv LIST OF APPENDICES APPENDIX. A TITLE MATLAB Source Code ( m.file ) PAGE 64
© Copyright 2026 Paperzz