vii TABLE OF CONTENTS CHAPTER TITLE 1 PAGE DECLARATION ii DEDICATION iii ACKNOWLEDGEMENTS iv ABSTRACT v ABSTRAK vi TABLE OF CONTENTS vii LIST OF TABLES x LIST OF FIGURES xi LIST OF SYMBOLS xvi INTRODUCTION 1.1 Introduction to sensor 1 1.2 Environmental Sensor 3 1.3 Background of Problem 5 1.4 Objective of Study 7 1.5 Scope of Study 7 2 LITERATURE REVIEW 2.1 An Overview of Non-destructive Testing 9 2.2 Soils Contamination Detection Method 11 viii 2.2.1 Soils Contamination Detection using 12 Chromatography technique 2.2.2 Soils Contamination Detection using 14 Surface Plasmon Resonance (SPR) 2.2.3 Soils Contamination Detection using 15 Enzyme linked Immunosorbent Assay (ELISA) 2.3 Planar Electromagne tic Sensor 16 2.3.1 Planar Meander, Mesh and Interdigital 16 Electromagnetic Sensor 2.4 Application and Development in 20 Planar Electromagne tic Sensor 3 RESEARCH METHODOLOGY 3.1 Introduction 24 3.2 Literature Review 25 3.3 Sensor Design And Fabrication 26 3.3.1 Sensor Design 26 3.3.2 Sensor Fabrication 33 Experimental setup 34 3.4.1 Hardware Development 35 3.4.2 Software Development 38 Experimental Work 43 3.5.1 Work Sensor Characteristic on Open Air 44 3.4 3.5 Experiment: 3.5.2 Sensor Characteristic on Soils and Water 44 Concentration on Soils Experiment: 3.6 Data Analysis and Verification 46 3.7 Report Writing 49 4 EXPERIMENTAL RESULTS AND DISCUSSIONS 4.1 Introduction 50 ix 4.2 Description of the Selected Sensors 50 4.3 Characterization of the Sensors via Experiment 51 4.3.1 Characterization of the Sensors via 52 Open Air Experiment 4.3.2 Characterization Of The Sensors via 55 Water concentration in Soils experiment 4.3.3 Characterization of the Parallel 56 Configuration Sensors via water concentration in soils experiment 4.3.4 Characterization of the Wye 64 Configuration Sensors via water concentration in soils experiment 4.3.5 Characterization of the Delta 72 Configuration Sensors via water concentration in soils experiment 4.4 5 Sensitivity studies of the soils 80 CONCLUSIONS AND FUTURE WORK 5.1 Conclusions 83 5.2 Future Works 85 REFERENCES 87 x LIST OF TABLES TABLE NO. TITLE PAGE 4.1 R2 Regression value for parallel sensor 57 4.2 R2 Regression value for wye sensor 65 4.3 R2 Regression value for delta sensor 73 xi LIST OF FIGURES FIGURE NO. TITLE PAGE 1.1 Transducer Used In Measurement Block Diagram 1 1.2 Percentage of Sensor According To Industries 2 1.3 Global Environmental Sensor And Monitoring Business By 4 Market Category 2.1 Configuration Of Planar Electromagnetic Sensors; (A) 17 Mesh-Type Sensor (B) Meander-Type Sensor 2.2 Electric Field Lines Of Parallel Plate Capacitors 18 2.3 Conventional Interdigital Sensor 19 2.4 Electric Field Formed Between Positive And Negative 19 Electrodes For Different Pitch Lengths, (l1, l2and l3) 3.1 Project research methodology flow chart 25 3.2 The planar electromagnetic sensor design a) Top side b) 26 Bottom side 3.3a Planar Electromagnetic Sensor Parallel Placement 28 (Overall Design) 3.3b Planar Electromagnetic Sensor Parallel Placement (Top 28 Side Design) 3.3c Planar Electromagnetic Sensor Parallel Placement 28 (Bottom Side Design) 3.4a Planar Electromagnetic Sensor Wye Placement (Overall 29 xii Design) 3.4b Planar Electromagnetic Sensor Wye Placement (Top 30 Design) 3.4c Planar Electromagnetic Sensor Wye Placement (Bottom 30 Design) 3.5a Planar Electromagnetic Sensor Delta Placement (Overall 31 Design) 3.5b Planar Electromagnetic Sensor Delta Placement (Top 32 Design) 3.5c Planar Electromagnetic Sensor Parallel Placement 32 (Bottom Design) 3.6a Planar Electromagnetic Sensor Parallel Placement 33 3.6b Planar Electromagnetic Sensor Wye Placement 34 3.6c Planar Electromagnetic Sensor Delta Placement 34 3.7 Overall Experiment Setup 35 3.8 Agilent U2781A USB modular Chassis 36 3.9 Agilent U2761A USB modular function generator. 36 3.10 Agilent U2701A USB modular oscilloscope. 37 3.11 Overall Modular Experimental Setup. 38 3.12 Cyclic Frequency Increment Sub Program 40 3.13a Function Generator Initialize Setup 41 3.13b Function Generator Output Setup 41 3.14a Oscilloscope Initialization Setup 42 3.14b Oscilloscope Output Configuration Setup 42 3.15 Agilent VEE Modular Control Program. 43 3.16 Water concentration into soils experiment flow. 45 3.17 Soils are filled and weighted. 45 3.18 Sensor is attached to the polystyrene bag. 46 3.19 Equivalent Circuit of planar meander and interdigital 48 sensor. 4.1 Parallel configuration sensor characteristic via open air 53 experiment 4.2 Wye configuration sensor characteristic via open air 53 xiii experiment 4.3 Delta configuration sensor characteristic via open air 54 experiment 4.4a Linear Parallel configuration sensor regression at 100 58 kHz 4.4b Linear Parallel configuration sensor regression at 200 58 kHz 4.4c Linear Parallel configuration sensor regression at 300 58 kHz 4.4d Linear Parallel configuration sensor regression at 400 59 kHz 4.4e Linear Parallel configuration sensor regression at 500 59 kHz 4.4f Linear Parallel configuration sensor regression at 600 59 kHz 4.4g Linear Parallel configuration sensor regression at 700 60 kHz 4.4h Linear Parallel configuration sensor regression at 800 60 kHz 4.4i Linear Parallel configuration sensor regression at 900 60 kHz 4.4j Linear Parallel configuration sensor regression at 1 MHz 61 4.5a Polynomial Parallel configuration sensor regression at 61 100 kHz 4.5b Polynomial Parallel configuration sensor regression at 61 200 kHz 4.5c Polynomial Parallel configuration sensor regression at 62 300 kHz 4.5d Polynomial Parallel configuration sensor regression at 62 400 kHz 4.5e Polynomial Parallel configuration sensor regression at 62 500 kHz 4.5f Polynomial Parallel configuration sensor regression at 63 xiv 600 kHz 4.5g Polynomial Parallel configuration sensor regression at 63 700 kHz 4.5h Polynomial Parallel configuration sensor regression at 63 800 kHz 4.5i Polynomial Parallel configuration sensor regression at 64 900 kHz 4.5j Polynomial Parallel configuration sensor regression at 1 64 MHz 4.6a Linear Wye configuration sensor regression at 100 kHz 66 4.6b Linear Wye configuration sensor regression at 200 kHz 66 4.6c Linear Wye configuration sensor regression at 300 kHz 66 4.6d Linear Wye configuration sensor regression at 400 kHz 67 4.6e Linear Wye configuration sensor regression at 500 kHz 67 4.6f Linear Wye configuration sensor regression at 600 kHz 67 4.6g Linear Wye configuration sensor regression at 700 kHz 68 4.6h Linear Wye configuration sensor regression at 800 kHz 68 4.6i Linear Wye configuration sensor regression at 900 kHz 68 4.6j Linear Wye configuration sensor regression at 1 MHz 69 4.7a Polynomial Wye configuration sensor regression at 100 69 kHz 4.7b Polynomial Wye configuration sensor regression at 200 69 kHz 4.7c Polynomial Wye configuration sensor regression at 300 70 kHz 4.7d Polynomial Wye configuration sensor regression at 400 70 kHz 4.7e Polynomial Wye configuration sensor regression at 500 70 kHz 4.7f Polynomial Wye configuration sensor regression at 600 71 kHz 4.7g Polynomial Wye configuration sensor regression at 700 kHz 71 xv 4.7h Polynomial Wye configuration sensor regression at 800 71 kHz 4.7i Polynomial Wye configuration sensor regression at 900 72 kHz 4.7j Polynomial Wye configuration sensor regression at 1 72 MHz 4.8a Linear Delta configuration sensor regression at 100 kHz 74 4.8b Linear Delta configuration sensor regression at 200 kHz 74 4.8c Linear Delta configuration sensor regression at 300 kHz 74 4.8d Linear Delta configuration sensor regression at 400 kHz 75 4.8e Linear Delta configuration sensor regression at 500 kHz 75 4.8f Linear Delta configuration sensor regression at 600 kHz 75 4.8g Linear Delta configuration sensor regression at 700 kHz 76 4.8h Linear Delta configuration sensor regression at 800 kHz 76 4.8i Linear Delta configuration sensor regression at 900 kHz 76 4.8j Linear Delta configuration sensor regression at 1 MHz 77 4.9a Polynomial Delta configuration sensor regression at 100 77 kHz 4.9b Polynomial Delta configuration sensor regression at 200 77 kHz 4.9c Polynomial Delta configuration sensor regression at 300 78 kHz 4.9d Polynomial Delta configuration sensor regression at 400 78 kHz 4.9e Polynomial Delta configuration sensor regression at 500 78 kHz 4.9f Polynomial Delta configuration sensor regression at 600 79 kHz 4.9g Polynomial Delta configuration sensor regression at 700 79 kHz 4.9h Polynomial Delta configuration sensor regression at 800 kHz 79 xvi 4.9i Polynomial Delta configuration sensor regression at 900 80 kHz 4.9j Polynomial Delta configuration sensor regression at 1 80 MHz 4.10 Sensitivity of real part for different water concentration 82 in soils at 100 kHz 4.11 Sensitivity of imaginary part for different water concentration in soils at 100 kHz 82 xvii LIST OF SYMBOLS C - Capacitance I - Current L - Inductor PCB - Printed Circuit Board R - Resistance V - Voltage X - Reactance Z - Impedance Ω - Ohm ∅ - Angle
© Copyright 2026 Paperzz