LEARNING TOOLS FOR BLOOD CELL SEGMENTATION AND EXTRACTION TECHNIQUES POON CHEE LIM A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical - Computer and Microelectronic System) Faculty of Electrical Engineering Universiti Teknologi Malaysia JANUARY 2013 LEARNING TOOLS FOR BLOOD CELL SEGMENTATION AND EXTRACTION TECHNIQUES POON CHEE LIM UNIVERSITI TEKNOLOGI MALAYSIA To my parents and God for always being there. ACKNOWLEDGEMENT During the writing of this thesis I was assisted by many individuals with whom I would like to share my sincerest gratitude. First and foremost I would like to express my appreciation to Dr. Nasrul Humaimi Mahmood, my project supervisor for all his time, effort and guidance in ensuring that I am able to complete this thesis. I would also like to thank him for all his advice and also for the motivation he has given me throughout this time. Next I would like to give my heartfelt thanks to my parents who have supported me the whole time. I would also like to express my thanks to all my friends who have been supportive during this time and even providing some light hearted entertainment throughout the writing of this thesis. They also helped give me ideas and encouragement. Finally, I would also like to thank Faculty of Electrical Engineering, Universiti Teknologi Malaysia and School of Graduate Studies (SPS UTM) for their support in this project. v ABSTRACT Blood cell segmentation and identification is vital in the study of blood as a health indicator. A complete blood count is used to determine the state of a person’s health based on the contents of the blood in particular the white blood cells and the red blood cells. The main problem arises when massive amounts of blood samples are required to be processed by the haematologist or Medical Laboratory Technicians. The time and skill required for the task limits the speed and accuracy with which the blood sample can be processed. This project aims to provide userfriendly software based on MATLAB allowing for quick user interaction with a simple tool for the segmentation and identification of red and white blood cells from a provided image. The project presents the solution in a modular framework allowing for future development within a structured environment. In order to perform the segmentation, this project uses k-means clustering and colour based segmentation using International Commission on Illumination L*a*b* (CIELAB) colour space coupled with polygon information of the region of interest. The project integrates these methods into a flow within a Graphical User Interface (GUI) with customizable variables to handle changing input images. The result of the project is a working GUI with the capability to accept user interaction. The completed project is able to obtain quick and accurate blood cell segmentation of both red and white blood cells. The accuracy of this project ranges from 64% to 87% depending on the type of processing used and the type of cells being extracted. vi ABSTRAK Segmentasi dan pengenalan sel darah adalah penting dalam kajian darah sebagai petunjuk kesihatan. Pengiraan darah lengkap digunakan untuk menentukan tahap kesihatan seseorang berdasarkan kandungan sel darah putih merah. Masalah timbul apabila kuantiti sampel darah yang perlu diproses oleh haematologist atau Juruteknik Makmal Perubatan adalah besar. Masa dan kemahiran yang diperlukan menghadkan kelajuan dan ketepatan pemprosesan sampel darah. Projek ini menyediakan perisian yang membolehkan interaksi pengguna yang cepat dan mudah digunakan untuk segmentasi dan pengenalpastian sel darah merah dan putih dari imej yang disediakan. Projek ini membentangkan penyelesaian dalam bentuk rangka modular yang membenarkan pembangunan masa depan dalam persekitaran teratur. Dalam usaha untuk melaksanakan segmentasi, projek ini menggunakan pengelompokan k-means dan segmentasi berasaskan warna dalam ruang warna “International Commission on Illumination L*a*b*” bergandingan dengan penggunaan maklumat poligon. Projek ini mengintegrasikan kaedah ini dalam antara muka grafik pengguna (GUI) beserta dengan pembolehubah yang boleh diubah untuk memproses input yang berlainan. Hasil projek adalah GUI yang mempunyai keupayaan untuk berinteraksi dengan pengguna. Secara keseluruhan, projek ini berupaya mengendalikan segmentasi sel darah dengan cepat dan tepat untuk sel darah merah dan putih. Ketepatan projek ini adalah diantara 64% sehingga 87% bergantung kepada proses yang digunakan dan jenis sel yang hendak diekstrak.
© Copyright 2026 Paperzz