Summer Review Packet Calculus with Applications The problems in this packet are designed to help you review topics that are important to your success in Calculus. You must know how to do all these problems WITHOUT a calculator. If you need help with any of the problems, check the Poolesville web site for links to on-line classes at Montgomery College, which are available to you free of charge. You may also e-mail Mrs. Loomis at [email protected] with questions. Calculus with Applications Summer Review I. Simplify. Show the work that leads to your answer. 1. x4 2 x 3x 4 3. 5 x x 2 25 II. 1. x3 8 2. x2 x 2 4 x 32 4. x 2 16 Simplify each expression. 1 1 xh x 1 1 3. 3 x 3 x 2 2 2. x 10 x5 4. 2x 1 8 2 x 6x 9 x 1 x 2x 3 2 Calculus with Applications Summer Review III. Complete the following identities. 1. sin2x + cos2x = __________ 3. cot2x + 1 = __________ 5. sin 2x = __________ IV. 2. 1 + tan2x = __________ 4. cos 2x = __________ Solve for z. 2. y2 + 3yz – 8z – 4x = 0 1. 4x + 10yz = 0 V. If x 3 f(x) = {(3,5), (2,4), (1,7)} g(x) = h(x)= {(3,2), (4,3), (1,6)} k(x) = x2 + 5 determine each of the following: 1. (f + h)(1) = _______________ 2. (k – g)(5) = _______________ 3. (f ◦ h)(3) = _______________ 4. (g ◦ k)(7) = _______________ 5. f -1(x) = _______________ 6. k-1(x) = 1 = f ( x) _______________ 7. 8. (kg)(x) = _______________ _______________ Calculus with Applications Summer Review VI. Follow the directions for each problem. 1. Evaluate f ( x h) f ( x ) and simplify if f(x) = x2 – 2x. h 2. Expand (x + y)3 3. Simplify: VII. 1. 3. 3 2 5 2 x ( x x x2 ) Simplify x x e(1ln x ) _________________ 2. eln3 _________________ 4. ln 1 _________________ _________________ 5. ln e7 _________________ 6. log3(1/3) _________________ 7. log 1/2 8 _________________ _________________ 9. e3ln x 8. ln _________________ 10. 1 2 4 xy 2 1 3 12 x y _________________ 5 11. 272/3 _________________ 12. (5a2/3)(4a3/2) 13. (4a5/3) 3/2 _________________ 14. Blank!! _________________ Calculus with Applications Summer Review VIII. Using the point-slope form y – y1 = m(x – x1), write an equation for the line. 1. with slope –2, containing the point (3, 4) 1. __________________________ 2. containing the points (1, -3) and (-5, 2) 2. __________________________ 3. with slope 0, containing the point (4, 2) 3. __________________________ 4. perpendicular to the line in problem #1, containing the point (3, 4) 4. __________________________ IX. Determine the exact value of each expression. 1. sin 0 ________ 4. cos ________ 7. tan 7 4 ________ 10. cos(Sin –1 1 ) 2 2. sin 2 ________ 3. sin 3 4 ________ ________ 5. cos 3 4 ________ 6. cos 3 8. tan 6 ________ 9. tan 2 ________ 3 ________ 11. Sin –1 (sin 7 ) 6 ________ Calculus with Applications Summer Review X. For each function, determine its domain and range. Function 1. y x 4 2. y x2 4 3. y 4 x2 4. y x2 4 Domain Range _________________ _________________ _________________ _________________ _________________ _________________ _________________ _________________ Calculus with Applications Summer Review XI. Solve for x, where x is a real number. Show the work that leads to your solution. 1. x + 3x – 4 = 14 x4 1 0 2. x3 3. (x – 5)2 = 9 4. 2x2 + 5x = 8 5. (x + 3)(x – 3) > 0 6. x2 – 2x - 15 0 7. 12x2 = 3x 8. sin 2x = sin x , 0 x 2 9. |x – 3| < 7 10. (x + 1)2(x – 2) + (x + 1)(x – 2)2 = 0 11. 272x = 9x-3 12. log x + log(x – 3) = 1 2 Calculus with Applications Summer Review XII. Graph each function. Give its domain and range. 1. y = sin x 2. y = ex Domain_________________ Domain_________________ Range _________________ Range _________________ 3. y = 4. y = x 3 x Domain_________________ Domain_________________ Range _________________ Range _________________ Calculus with Applications Summer Review 5. y = ln x 6. y = |x + 3| - 2 Domain_________________ Domain_________________ Range _________________ Range _________________ 7. 1 y x 8. x 2 y = x + 2 4 if x < 0 if 0 x 3 if x > 3 Domain_________________ Domain_________________ Range _________________ Range _________________
© Copyright 2026 Paperzz