Matakuliah Tahun Versi : A0064 / Statistik Ekonomi : 2005 : 1/1 Pertemuan 24 Deret Berkala, Peramalan, dan Angka Indeks-2 1 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : • Menghubungkan beberapa deret berkala bagi penyusunan aangka indeks, peramalan dengan menggunakan metode rata-rata bergerak, dan exponential smoothing 2 Outline Materi • Metode Rata-rata Bergerak • Metode Exponential Smoothing • Angka Indeks 3 COMPLETE 12-4 BUSINESS STATISTICS 5th edi tion Forecasting a Multiplicative Series: Example 12-3 The forecast of a multiplica tive series : Zˆ = TSC Forecast for Winter 2002 (t = 17) : Trend : ẑ = 152.26 - (0.837)(17) = 138.03 S = 1.1015 C 1 (negligibl e) Zˆ = TSC = (1)(138.03)(1.1015) = 152.02 McGraw-Hill/Irwin Aczel/Sounderpandian © The McGraw-Hill Companies, Inc., 2002 COMPLETE 12-5 BUSINESS STATISTICS 5th edi tion Multiplicative Series: Review Z ( Trend )( Seasonal ( Cyclical )( Irregular ) TSCI MA ( Trend )( Cyclical ) TC Z TSCI SI MA TC S = Average of SI (Ratio - to - Moving Averages) Z TSCI CTI (Deseasonalized Data) S S McGraw-Hill/Irwin Aczel/Sounderpandian © The McGraw-Hill Companies, Inc., 2002 COMPLETE 12-6 BUSINESS STATISTICS 5th edi tion 12-5 Exponential Smoothing Methods Smoothing is used to forecast a series by first removing sharp variation, as does the moving average. Weights Decline as we go back in Time Weights Decline as We Go Back in Time and Sum to 1 W ei g ht Weight 0.4 0.3 0.2 0.1 0.0 -15 -10 -5 0 Lag -10 McGraw-Hill/Irwin Lag Exponential smoothing is a forecasting method in which the forecast is based in a weighted average of current and past series values. The largest weight is given to the present observations, less weight to the immediately preceding observation, even less weight to the observation before that, and so on. The weights decline geometrically as we go back in time. 0 Aczel/Sounderpandian © The McGraw-Hill Companies, Inc., 2002 COMPLETE 12-7 BUSINESS STATISTICS 5th edi tion The Exponential Smoothing Model Given a weighting factor: 0 < w < 1: 2 3 Z t 1 w ( Z t ) w (1 w )( Z t 1 ) w (1 w ) ( Z t 2 ) w (1 w ) ( Z t 3 ) Since 2 3 Z t w ( Z t 1 ) w (1 w )( Z t 2 ) w (1 w ) ( Z t 3 ) w (1 w ) ( Z t 4 ) 2 3 (1 w ) Z t w (1 w )( Z t 1 ) w (1 w ) ( Z t 2 ) w (1 w ) ( Z t 3 ) So Z t 1 w(Z t ) (1 w)(Z t ) Z t 1 Z t (1 w)(Z t - Z t ) McGraw-Hill/Irwin Aczel/Sounderpandian © The McGraw-Hill Companies, Inc., 2002 COMPLETE 12-8 BUSINESS STATISTICS 5th edi tion Example 12-4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Z 925 940 924 925 912 908 910 912 915 924 943 962 960 958 955 * McGraw-Hill/Irwin w=.4 925.000 925.000 931.000 928.200 926.920 920.952 915.771 913.463 912.878 913.727 917.836 927.902 941.541 948.925 952.555 953.533 w=.8 925.000 925.000 937.000 926.600 925.320 914.664 909.333 909.867 911.573 914.315 922.063 938.813 957.363 959.473 958.295 955.659 Exponential Smo othing: w=0 .4 and w=0.8 960 950 w= .4 Day 940 930 920 910 0 5 10 15 Day Original data: Smoothed, w=0.4: ...... Smoothed, w=0.8: ----- Aczel/Sounderpandian © The McGraw-Hill Companies, Inc., 2002 COMPLETE BUSINESS STATISTICS 12-9 5th edi tion Example 12-4 – Using the Template McGraw-Hill/Irwin Aczel/Sounderpandian © The McGraw-Hill Companies, Inc., 2002 COMPLETE BUSINESS STATISTICS 12-10 5th edi tion 12-6 Index Numbers An index number is a number that measures the relative change in a set of measurements over time. For example: the Dow Jones Industrial Average (DJIA), the Consumer Price Index (CPI), the New York Stock Exchange (NYSE) Index. Value in period i Index number in period i: = 100 Value in base period Changing the base period of an index: Old index value New index value: = 100 Index value of new base McGraw-Hill/Irwin Aczel/Sounderpandian © The McGraw-Hill Companies, Inc., 2002 COMPLETE 12-11 BUSINESS STATISTICS 5th edi tion Index Numbers: Example 12-5 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 121 121 133 146 162 164 172 187 197 224 255 247 238 222 100.0 100.0 109.9 120.7 133.9 135.5 142.1 154.5 162.8 185.1 210.7 204.1 196.7 183.5 McGraw-Hill/Irwin 64.7 64.7 71.1 78.1 86.6 87.7 92.0 100.0 105.3 119.8 136.4 132.1 127.3 118.7 Price and Index (1982=100) of Natural Gas Price 250 Original Index (1984) P ric e Index Index Year Price 1984-Base 1991-Base 150 Index (1991) 50 Aczel/Sounderpandian 1985 1990 1995 Year © The McGraw-Hill Companies, Inc., 2002 COMPLETE BUSINESS STATISTICS 12-12 5th edi tion Consumer Price Index – Example 12-6 Consumer Price index (CPI): 1967=100 Example 12-6: 450 Adjusted Salary = CPI 350 250 150 50 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 Ye a r McGraw-Hill/Irwin Aczel/Sounderpandian Year 1980 1981 1982 1983 1984 1985 Salary 100 CPI Adjusted Salary Salary 29500 11953.0 31000 11380.3 33600 11610.2 35000 11729.2 36700 11796.8 38000 11793.9 © The McGraw-Hill Companies, Inc., 2002 COMPLETE BUSINESS STATISTICS 12-13 5th edi tion Example 12-6: Using the Template McGraw-Hill/Irwin Aczel/Sounderpandian © The McGraw-Hill Companies, Inc., 2002 Penutup • Deret Berkala pada dasarnya bertujuan untuk mengidentifikasi faktor-faktor atau komponen deret berkala (trend, variasi musim, perilaku siklus dan variasi lainnya) yang selanjutnya digunakan sebagai landasan untuk meramalkan nilai-nilai tersebut di masa mendatang 14
© Copyright 2026 Paperzz