11 July 2017 Metode Numerik II 1 Bounary Value & Eigenvalue Probelms •Linear ODEs •Nonlinear ODEs* •Shooting Method* •Finite Difference Method (FDM) •Eigenvalue Problems 11 July 2017 Metode Numerik II 2 Types of Boundary Conditions •Simple B.C (Dirichlet B.C): The value of the unknown function is given at the boundary. y (a) y a •Neumann B.C.: The derivative of the unknown function is given at the boundary. dy dy (a) dx x a dx •Mixing B.C.: The combination of the unknown function’s value and derivative is given at the boundary. a 11 July 2017 dy ( a ) b y (a) dx Metode Numerik II 3 Shooting Method For a simple (Dirichlet) B.C linear ODE: y ' ' p( x) y ' q( x) y r ( x) y (a) y a and y(b) yb yb u (b) If v(b) 0, then y u ( x) v( x). v(b) u'' p(x)u' q(x)u r(x) u (a) y a , u ' (a) 0. v'' p(x)v' q(x)v 11 July 2017 v(a) 0, Metode Numerik II v' (a) 1. 4 Principle of Shooting Method y '' p ( x) y ' q( x) y r ( x) u'' p(x)u' q(x)u r(x) v'' p(x)v' q(x)v 0 Homogenous Equ. Solution for v is the general solution for y Solution for u is the particular solution y u Av where A is the arbitrary constant y ( a ) ya u (a ) Av(a ) y (a ) (1) y(b) yb u (b) Av(b) y (b) (2) Noticing u ( a ) ya , From (2) y (b) u (b) A v(Metode b) Numerik II 11 July 2017 from (1) v(a) 0, 5 Shooting Method •Reducing the two 2nd-order I-V ODEs to four 1st-order ODEs. •Solving the system of ODEs (four 1st-order ODEs) using either R-K or Multi-step methods. u1 u, u 2 u' u1 ' , u3 v, u 4 v' u3 '. Four ODEs and their Initial Conditions . u1 ' u 2 , u 2 ' p( x)u 2 q( x)u1 r ( x) u1 (a) y a u 2 (a) 0 u3 ' u 4 , u3 (a) 0 u 4 ' p( x)u 4 q( x)u3 u 4 (a) 1. 11 July 2017 Metode Numerik II 6 Finite-Difference Method (FDM) y' ' p( x) y ' q( x) y r ( x) y (a) and y(b) Approximate the derivatives using numerical difference schemes. h x0 =a x1 xi-1 xi xi+1 xn=b ba Dividing the range into n equal segments. h x . n yi 1 2 yi yi 1 y ' ' ( xi ) y i ' ' O(h 2 ), h2 yi 1 yi 1 y ' ( xi ) y i ' O(h 2 ) 2h Metode Numerik II 11 July 2017 7 Finite-Difference Method (FDM) (continued) • Substituting the derivatives by approximations and then we have a set of discretized equations At i 1,2,.......n 1 yi 1 2 yi yi 1 yi 1 yi 1 pi qi yi ri . 2h h2 Multiply both sides by h 2 . h h 2 ( 1 pi )y i-1 - ( 2 qi h ) yi (1 pi ) yi 1 h 2 ri 2 2 11 July 2017 Metode Numerik II 8 Finite-Difference Method (FDM) (continued) For i 1. h h 2 - ( 2 q1h ) y1 (1 p1 ) y 2 h r1 (1 p1 ) 2 2 For i 2,3,......,n 2, 2 h h 2 ( 1 pi )y i-1 - ( 2 qi h ) yi (1 pi ) yi 1 h 2 ri 2 2 For i n 1, h ( 1 pi )y n 2 - ( 2 qi h 2 ) y n 1 2 h 2 h rn 1 (1 p n 1 ) 2 Metode Numerik II 11 July 2017 9 Matrix Form of Equ. System If h a-b and n 7, noticing that 7 y(a) and y (b) . h 2 ( 2 q h ) 1 p 0 0 0 0 1 1 2 h 2 h r ( 1 p h h 1 ) 1 p2 y1 1 - ( 2 q2 h 2 ) 1 p2 0 0 0 2 2 2 2 y h r 2 2 h h 2 0 1 p3 - ( 2 q3 h ) 1 p3 0 0 2 h r3 y3 2 2 2 h h y 2 h r 4 0 0 1 p4 - ( 2 q4 h ) 1 p4 0 4 2 2 y5 h 2 r5 h h 0 0 0 1 p5 - ( 2 q5 h 2 ) 1 p5 y6 2 h h r6 (1 p6 ) 2 2 2 h 2 0 0 0 0 1 p6 - ( 2 q6 h ) 2 What kind of matrix is it ? 11 July 2017 Metode Numerik II 10 d 2T dx 2 d 2T dx 2 h '(Ta T ) 0, T (0) 40, T (10) 200, Ta 20, h ' 0.01m-2. Ti 1 2Ti Ti 1 x 2 ; Ti 1 2Ti Ti 1 x 2 h '(Ta Ti ) 0; Ti 1 (2 h ' x 2 )Ti Ti 1 h ' x 2Ta n 5, x 2m. For i 1, T2 2.04T1 T0 0.8 T2 2.04T1 40.8, For i 2, T3 2.04T2 T1 0.8, For i 3, T4 2.04T3 T2 0.8, For i 4, T5 2.04T4 T3 0.8 2.04T4 T3 200.8 11 July 2017 x0 x1 x Metode Numerik II x2 x3 x4 x5 11 Eigenvalue Problems Eigen-value problems are a special class of B-V problems. A x x is unknown parameters which are eigenvalues. For given A , there are usually many eigenvalues. xi is known as eigenvector. A x I x 0 For each λi , the solution A x x A I x 0 A homogenous equation system. For11 non-trivial solution Metode of Numerik x , II det A I 0 . July 2017 12 Matrix Formation a11 a A 21 a31 a 41 a12 a13 a 22 a 23 a32 a33 a 42 a 43 a11 a A I 21 a31 a 41 a14 a 24 a34 a 44 a12 a13 a 22 a 23 a32 a33 a 42 a 43 a 24 a34 a 44 a14 det A I 0, leads to a fourth order equation of . 11 July 2017 Metode Numerik II 13 Physics of Eigenvalues & Eigenvectors A system of two degrees of freedom. x1 To simplify the problem, we assume that k1= k2= k3= k. m1 d 2 x1 dt 2 x2 k2 k1 m1 kx1 k ( x 2 x1 ) m2 k1x1 2 d x2 m2 kx2 k ( x 2 x1 ) 2 dt 11 July 2017 Metode Numerik II k3 k2(x2-x1) k2(x2-x1) m1 m2 k3x2 14 Physics of Eigenvalues (continued) Both masses (m1& m2) are oscillating w.r.t. their mean positions. xi Ai sin (t ) d 2 xi dt 2 i 1 or 2. 2 Ai sin (t) i 1 or 2. Substituting the above equ.s Into the motion equ.s and dividing both sides by sin (t ) . 2 m1 A1 kA1 k ( A2 A1 ) 2 m2 A2 kA2 k ( A2 A1 ) 11 July 2017 2k m 1 k m2 Metode Numerik II k m1 A1 2 A1 2k A2 A2 m2 15 Physics of Eigenvalues (continued) 2k m 1 k m2 k m1 A1 2 A1 2k A2 A2 m2 Cx x Hence, the eigenvalues are related to the natural frequencies or periods which are crucial to the design of structures. The eigenvectors are related to the motion of a structure related to the corresponding natural frequency. For most engineering problems, the largest or the smallest frequencies are the most important ones to know. 11 July 2017 Metode Numerik II 16 Steps of Solving Eigen-value Problems • detA I 0 . leads to an algebraic equation of . •Solving the equation for . - Polynomial method (find roots of an equation) (p765-767). - Other methods (more efficient): Power Method. •Given the eigenvalues eigenvectors x . 11 July 2017 , obtain the corresponding Metode Numerik II 17 Power Method The Power Method is an iterative procedure for determining the dominant (largest) eigenvalue of the matrix A and the corresponding eigenvector. Ex27.7 p767 Power Method for the dominant (highest) eigenvalue and its eigenvector. 1.778 0 x1 3.556 x1 1.778 3.556 1.778 x x 2 2 x 0 1.778 3.556 x3 3 1. Guess a solution 11 July 2017 for the eigenvecto r , x1 1, x 2 1, x3 1. Metode Numerik II 18 Example of Power Method (Continued) substituti ng the eigenvecto r into the left - hand - side of Eq. 0 1 1.778 3.556 1.778 1.778 3.556 1.778 1 0 0 1.778 3.556 1 1.778 2. Normalize the approximat e eigenvecto r (the right - hand - side), so that the element of the largest absolute value becomes either 1 or - 1. 1.778 1 0 1.7780 1.778 1 3.Using the current normalized eigenvecto r xT 1 0 1 as the guess and repeat steps 1 and 2. 11 July 2017 Metode Numerik II 19 Example of Power Method (Continued) substituti ng the eigenvecto r into the left - hand - side of Eq. 0 1 3.556 3.556 1.778 1 1.778 3.556 1.778 0 3.556 3.556 1 1 0 1.778 3.556 1 3.556 4. Examine the relative error of , εa i 1 i 3.556 1.778 50%. i 1 3.556 if ε a is greater than the tolerance error, the iteration continues. Otherwise, the eigenvalue , and the eigenvecto r x are obtained. ............................. The fifth iteration renders 4 6.223, x1 2017 x 2 x3 0.714 1 Metode 0.714 11 July Numerik II 20 Example of Power Method (Continued) 0 0.714 4.317 3.556 1.778 0.708 1.778 3.556 1.778 1 6.095 6.095 1 0.708 0 1.778 3.556 0.714 4.317 6.095 6.223 a 2 .1 % 1 % 6.095 The sixth iteration 0 0.708 4.296 3.556 1.778 0.707 1.778 3.556 1.778 1 6.074 6.074 1 0.707 0 1.778 3.556 0.708 4.296 6.074 6.095 a 0.35% 1% 6.074 6.074 11 July 2017 and x1 0.707 x 1 2 are obtained. x 0.707 3 Metode Numerik II 21 Inverse Power Method The Power Method can be modified to provide the smallest (lowest) (magnitude) eigenvalue and its eigenvector. The modified method is known as the inverse power method. The inverse power method is to modify the original equ. A x x . Left Multiplication of 1 A A x A x , 1 Noticing that A A I , The equation becomes where -1 to the equ. -1 1 B A , x A -1 1 x . x A x . B x x Dividing both sides by , 11 July 2017 A . Metode Numerik-1 II -1 22 Ada Pertanyaan ??? 11 July 2017 Metode Numerik II 23
© Copyright 2026 Paperzz