Parabolic Equation Cari u(x,t) yang memenuhi persamaan Parabolik Dengan syarat batas u(x,0) = 0 = u(8,t) dan u(x,0) = 4x – ½ x2 di x = i : i = 0, 1 , 2 , 3 ,… 5. Solution : c2 = 4 , h = 1, k = 1/8 Lab 1 Discussion • In lab 1 we solved the advection equation: u u v 0 t x • The first method we tried was the forward Euler method: u n 1 j vt n n u (u j u j 1 ) h n j Upwind method, CFL=0.9 What’s Going On? un 1 un un un Add/subtract u nj1 j j j j 1 v t h n u n u n 2u n u n n 1 n u u u j 1 j 1 j 1 j j 1 j j v t 2h un 1 un un un u n 2u n u n j j j 1 j 1 vh j 1 j j 1 v 0 2 t 2h 2 h Advection Diffusion Numerical Diffusion • The alebgra shows that the finite difference equation has both an advective term and a diffusive term. It is in fact a better model for: u u u v K 2 t x x 2 Instability Upwind method, CFL=1.2 (final timstep only) Lax-Wendroff method, CFL=0.9 Flux Limiters • In the advection equation let’s assume v is positive: u u v 0 t x • Most flux limiters are based on the ratio of the first order fluxes at node i, i.e.: ui ui 1 ri 1/ 2 ui 1 ui
© Copyright 2026 Paperzz