vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS LIST OF APPENDICES ii iii iv v vi vii xi xii xiv xv xvi 1 INTRODUCTION 1.1 Problem Statement 1.2 Objective of Research 1.3 Scope of Research 1.4 Thesis Outline 1 2 2 3 4 2 LITERATURE REVIEW 2.1 Introduction 2.2 Multi-objective Optimization 2.3 Terminology of Surrogate Modeling 2.4 Surrogate Modeling in Engineering Design Optimization 2.5 Surrogate Modeling Technique 2.6 Surrogate Modeling in Control System 2.7 Surrogate Modeling Design Optimization Strategies 2.8 Multi-objective Optimization Using Surrogate Modeling 5 5 5 8 9 11 12 13 14 viii 2.9 3 4 5 Summary MULTI-OBJECTIVE SURROGATE MODELING OPTIMIZATION ALGORITHM 3.1 Introduction 3.2 General Algorithm 3.3 Input Design Space 3.4 Design of Experiment - Latin Hypercube 3.5 Radial Basis Function Neural Network (RBFNN) 3.6 Objective Function - Integral Square Error (ISE) 3.6.1 Best Compromise 3.7 Summary CASE STUDY 1: FORCED CIRCULATION EVAPORATOR 4.1 Introduction 4.2 Force Circular Evaporator 4.3 Experimental and Simulation Setup 4.4 Optimization Setup 4.4.1 Artificial Neural Network Setting 4.4.1.1 Radial Basis Function Neural Network Setting 4.4.1.2 Feed Forward Neural Network Setting 4.5 Results 4.5.1 Surrogate modeling versus Brute-force search 4.5.2 Comparison with different approximation model 4.5.3 Comparison with Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Strength Pareto Evolutionary Algorithm 2 (SPEA2) 4.6 Summary CASE STUDY 2: REMOTELY OPERATED VEHICLE 5.1 Introduction 15 16 16 16 18 20 21 24 25 25 26 26 26 31 32 33 34 34 35 35 37 39 43 45 45 ix 5.2 5.3 5.4 5.5 5.6 6 Case Study - Nonlinear Model of the Underactuate ROV 5.2.1 Body-Fixed Model of the Underactuated ROV 5.2.2 An Earth-Fixed Model of the Underactuated ROV 5.2.3 Thruster Model Optimization Setup Results 5.4.1 Surrogate versus brute force search 5.4.2 Comparison with different approximation model 5.4.3 Comparison with Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Strength Pareto Evolutionary Algorithm 2 (SPEA2) Overall Comparison of the Controllers Performance based On Best Compromise Summary THE MOSMO TOOLBOX 6.1 Introduction 6.2 Development goals 6.3 Toolbox Overview 6.3.1 Toolbox Limitation 6.4 Toolbox Algorithm and Organization 6.5 Toolbox Overview 6.5.1 Files 6.5.2 Installation R 6.5.3 Setting up Simulink File for MOSMO Toolbox 6.6 Using Surrogate Modeling Optimization Toolbox 6.6.1 Defining the Problem 6.6.2 Defining the Design Space 6.6.3 Running the algorithm 6.6.4 Sampling Strategy 6.6.5 Surrogate Model 6.6.6 Plot and Display 6.7 Summary 45 46 47 48 48 51 51 53 54 56 60 61 61 61 62 64 64 67 67 68 69 70 71 73 73 75 75 76 78 x 7 CONCLUSIONS AND FUTURE WORKS 7.1 Conclusions 7.2 Suggestion for Future Works REFERENCES Appendices A – B 79 80 81 82 89 – 90 xi LIST OF TABLES TABLE NO. 3.1 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.1 TITLE Example of design space using a grid sequence Constant value and description Variables and steady state values Variable constrain Design space configuration for evaporator control system Design space for evaporator optimization Summary of PID evaporator optimization simulation result NSGA-II and SPEA2 basic parameters setting Comparison MOSMO with NSGA-II and SPEA2 Design space configuration for ROV control system Parameters gains of PD input Surrogate models setting Summary of ROV optimization simulation result NSGA-II and SPEA2 basic parameters setting ROV comparison summary Comparison of surge (x) response’s characteristics Comparison of sway (y) response’s characteristics Comparison of heave (z) response’s characteristics MOSMO Toolbox sampling options PAGE 19 28 29 31 32 33 39 40 41 49 50 51 54 54 56 57 58 59 65 xii LIST OF FIGURES FIGURE NO. 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 5.1 5.2 5.3 5.4 5.5 5.6 5.7 TITLE Illustration of non-dominated solutions Close-up view non-dominated solutions Metamodeling hierarchy Surrogate modeling design optimization strategies Flowchart of multi-objective surrogate modeling optimization Difference between random and grid design space Example of Latin Hypercube sampling and filling An RBF Neural Network Force Circulation Evaporator. R Simulink block diagram of force circular evaporator of PID controller Pareto-front of objective functions obtained by MOSMO and actual simulation using Brute-force search Pareto-fronts of MOSMO-RBFNN and MOSMO-FFNN with actual Pareto-front of Brute-force search Comparison MOSMO. NSGA-II and SPEA2. Close-up view of best compromise MOSMO, NSGA-II and SPEA2. Respond of an evaporator using parameter gains obtained from MOSMO, NSGA-II and SPEA2 Advance two coordinates frame of the ROV. R Simulink block diagram of ROV PD controller. Pareto-front of objective functions obtained by MOSMO and actual simulation using Brute-force search Pareto-fronts of different approximation model compare with actual Pareto-front of from Brute force search Comparison MOSMO. NSGA-II and SPEA2. Best compromise MOSMO. NSGA-II and SPEA2. Respond of surge (x) position using parameter gains obtained from MOSMO, NSGA-II and SPEA2 PAGE 6 7 8 14 17 18 21 21 27 27 36 38 40 41 43 46 49 52 53 55 56 57 xiii 5.8 5.9 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 Respond of sway (y) position using parameter gains obtained from MOSMO, NSGA-II and SPEA2 Respond of heave (z) position using parameter gains obtained from MOSMO, NSGA-II and SPEA2 MOSMO Toolbox interface Flowchart MOSMO operation Flowchart for loop inside MOSMO Toolbox Sequence diagram of MOSMO Toolbox List of files for MOSMO Toolbox Setting up objective function from block parameter to R workspace in Matlab Simulink R Simulink model properties setup MOSMO Toolbox user interface Define problem using GUI Define problem using file function Example of design space Run the MOSMO Toolbox Status of design space Termination of MOSMO algorithm Sampling option Surrogate model option Plot and Display Training plot Testing plot Pareto-front and best compromise plot 58 59 62 63 65 67 68 69 70 71 71 72 73 73 74 74 75 76 76 77 77 77 xiv LIST OF ABBREVIATIONS DoE – Design of Experiment FFNN – Feed Forward Neural Network GUI – Graphic User Interface GUIDE – Graphic User Interface Development Environment ISE – Integral Square Error LH – Latin Hypercube LHD – Latin Hypercube Design LHS – Latin Hypercube Sampling MIMO – Multi Input Multi Outputs MOSMO – multi-objective optimization using surrogate modeling NSGA-II – Non-dominated Sorting Genetic Algorithm II PD – Proportional Derivative PID – Proportional Integral Derivative RBFNN – Radial Basis Function Neural Network ROV – Remote Underwater Vehicle SPEA2 – Strength Pareto Evolutionary Algorithm 2 xv LIST OF SYMBOLS D – Input parameter DE – Euclidean distance Ex – Error Ēx – Estimated error lx – Lower bound ux – Upper bound k·k – Euclidean Norm φk – Basis function x ∈ <R×1 – Input vector φ – Pseudo W ij – Weight for network from neuron i to j wlk – Weight in the output layer Kp – PID proportional gain Ki – PID integral gain Kd – PID derivative gain xvi LIST OF APPENDICES APPENDIX A B TITLE LIST OF PUBLICATIONS MAIN CODING PAGE 89 90
© Copyright 2026 Paperzz