vii TABLE OF CONTENTS CHAPTER 1 2 TITLE PAGE DECLARATION ii DEDICATION iii ACKNOWLEDGEMENT iv ABSTRACT v ABSTRAK vi TABLE OF CONTENTS vii LIST OF TABLES xii LIST OF FIGURES xiii LIST OF SYMBOLS xvi INTRODUCTION 1 1.1 General Introduction 1 1.2 Problem Statement 2 1.3 Objective of Project 3 1.4 Scope of Project 4 1.5 Thesis Outline 5 LITERATURE REVIEW 7 2.1 Introduction 7 2.2 Literature Research 7 viii 2.3 3 4 2.2.1 Fuzzy Logic Controller 8 2.2.2 Hybrid Controller 10 2.2.3 Adaptive Neural Network Fuzzy Controller 11 2.2.4 Fusion Function Based Controller 12 Summary of Chapter 2 14 RESEARCH METHODOLOGY 15 3.1 Introduction 15 3.2 Understanding the Inverted Pendulum System 16 3.3 Mathematical Modeling of Nonlinear Plant 16 3.3.1 Newton’s Law of Motion 16 3.3.2 The Energy Method 17 3.4 Deriving the Dynamics of the Linearized System 17 3.5 Controller Design 18 3.6 Simulation and Evaluation of Performance 19 3.7 Comparative Assessment of Results 19 3.8 Methodology 20 3.9 Summary of Chapter 3 21 MODELING OF AN INVERTED PENDULUM 22 4.1 Introduction 22 4.2 Inverted Pendulum Parameters 23 4.3 Mathematical Modeling 24 4.3.1 Generalized Coordinate System 25 4.3.2 Kinetic and Potential Energy Functions 26 4.3.3 Lagrangian Function 28 4.3.4 Lagrange’s Equation 28 4.4 Linear Model of the Inverted Pendulum System 31 4.5 Transfer Function 32 4.6 State-Space 34 4.7 Summary of Chapter 4 35 ix 5 CONTROLLER DESIGN FOR INVERTED PENDULUM SYSTEM 36 5.1 Introduction 36 5.2 State-space Controller Theory and Design Implementation 37 5.2.1 Introduction 37 5.2.2 State Variable 37 5.2.3 State Space Representation for Linear System 38 5.2.4 State Space Controllability and Observability 39 5.2.5 Controller Design Using Full State Feedback 40 5.2.6 Full State Feedback with Reference Input 41 5.2.7 Full State Feedback with Reference Input for LQR 42 5.3 LQR Controller Design for Inverted Pendulum System 5.4 Fuzzy Logic Controller Theory and Design Implementation 45 5.5 5.4.1 Introduction 45 5.4.2 Components of Fuzzy Logic Controller 46 5.4.3 Methodology of Designing Fuzzy Controller 47 5.4.3.1 Fuzzy Logic Control Variables 48 5.4.3.2 Fuzzification 49 5.4.3.3 Knowledge Base Design 50 5.4.3.4 Inference Encoding Procedure 52 5.4.3.5 Deffuzification 53 5.4.3.6 Tuning Parameters 54 Fuzzy Logic Controller Design for Inverted Pendulum System 5.6 43 55 Adaptive Neural Network Fuzzy Controller Theory and Design Implementation 61 5.6.1 Introduction 61 5.6.2 Fuzzy Inference System 62 5.6.2.1 Sugeno Type Fuzzy Inference System 5.6.3 Adaptive Networks 62 64 x 5.6.3.1 Adaptive Network Architecture and Basic Learning Rule 65 5.6.4 Adaptive Neuro Fuzzy Inference System (ANFIS) 66 5.6.4.1 ANFIS Architecture 67 5.6.5 ANFIS Learning Algorithm 70 5.6.5.1 Learning of Premise Parameters 70 5.6.5.2 Learning of Consequent Parameters 70 5.6.5.3 Hybrid Learning Algorithm 71 5.6.6 ANFIS Editor GUI 5.7 74 5.7.1 State Variables Fusion 75 5.7.2 Adaptive Neural Network Fuzzy Control 76 Summary of Chapter 5 81 RESULTS AND ANALYSIS 82 6.1 Introduction 82 6.2 Results of Different Designed Controllers for Inverted Pendulum 6.3 6.4 7 Adaptive Neural Network Fuzzy Logic Controller Design for Inverted Pendulum System 5.8 6 72 System 83 6.2.1 Results for State Feedback Controller: LQR 83 6.2.2 Results for Fuzzy Logic Controller 85 6.2.3 Results for Adaptive Neural Fuzzy Controller 87 Overall Comparison of the Controllers’ Performance 89 6.3.1 Comparison of Output Response for Position 89 6.3.2 Comparison of Output Response for Angle 90 Summary of Chapter 6 92 CONCLUSION AND FUTURE WORK 93 7.1 Introduction 93 7.2 Conclusion 94 7.3 Suggestion for the Future Works 95 xi REFERENCES 96-99 xii LIST OF TABLES TABLE NO. TITLE PAGE 4.1 Properties of the inverted pendulum system 24 4.2 Characteristics of the inverted pendulum system 24 5.1 State space model representation 39 5.2 Inputs and outputs of FLC 56 5.3 Standard labels of quantization 56 5.4 Fuzzy rule matrix for position/angle control 60 5.5 Two passes in hybrid learning algorithm 71 6.1 Summarization of the performance characteristics for cart’s position 6.2 90 Summarization of the performance characteristics for pendulum’s angle 91 xiii LIST OF FIGURES FIGURE NO. TITLE PAGE 3.1 Flow chart of research methodology 20 4.1 Free body diagram of the inverted pendulum system 23 4.2 Velocity analysis of the pendulum 27 5.1 State feedback control configuration 40 5.2 State feedback control configuration with the input gain, Nbar 42 5.3 Components in the fuzzy logic controller 47 5.4 Fuzzy logic control in the closed-loop system 48 5.5 Input and output for the fuzzy controller 49 5.6 Fuzzification procedure 50 5.7 Example of fuzzy inference using Mamdani method 52 5.8 Defuzzification by center of gravity 54 5.9 Fuzzy logic controllers in the feedback loop of inverted pendulum system 55 xiv 5.10 Fuzzy set for the input ‘x’ 57 5.11 Fuzzy set for the input ‘delx’ 57 5.12 Fuzzy set for the output ‘Force-x’ 58 5.13 Fuzzy set for the input ‘theta’ 58 5.14 Fuzzy set for the input ‘deltheta’ 59 5.15 Fuzzy set for the output ‘Force-theta’ 59 5.16 Simulink implementation of FLC for the inverted pendulum system 61 5.17 First order Sugeno fuzzy model 64 5.18 Adaptive Network 65 5.19 ANFIS architecture 67 5.20 ANFIS editor GUI 73 5.21 Simulation model of inverted pendulum based on ANFIS 77 5.22 Initialization of membership functions 78 5.23 The error curve of ANFIS training 79 5.24 The membership functions of variable E 79 5.25 The membership functions of variable EC 80 5.25 The ANFIS network structure 80 6.1 Step response of the pendulum’s angle with LQR controller 84 6.2 Step response of the cart’s position with LQR controller 84 xv 6.3 Step response of the pendulum’s angle with Fuzzy Logic Controller 6.4 Step response of the cart’s position with Fuzzy Logic Controller 6.5 86 86 Step response of the pendulum’s angle with ANFIS Controller 88 6.6 Step response of the cart’s position with ANFIS controller 88 6.7 Comparison of output response of cart’s position 90 6.8 Comparison of output response of pendulum’s angle 91 xvi LIST OF SYMBOLS b - Friction of cart l - Length to pendulum centre of mass x - Cart position coordinate x - cart acceleration θ - Pendulum angle from the vertical - Pendulum angular acceleration r(s) - Reference signal e(s) - Error signal u(s) - Plant input x - State vector u - Input vector y - Output vector Ts - Settling time Tr - Rising time ess - Steady state error NS - Negative small NM - Negative medium NL - Negative large ZE - Zero PS - Positive small PM - Positive medium PL - Positive Large xvii LQR - Linear Quadratic Regulator FLC - Fuzzy Logic Controller ANFIS Adaptive Neural Fuzzy Inference System GUI Graphic User Interface AI - Artificial Intelligence M - Mass of cart m - Mass of pendulum CV - Control variable E - Error SP - Set point PV - Process variable R - Step input to the cart A - State matrix B - Input matrix C - Output matrix D - Direct transmission matrix %OS - Percent overshoot I - Inertia of the pendulum F - Force applied to cart
© Copyright 2026 Paperzz