Matakuliah
Tahun
: K0414 / Riset Operasi Bisnis dan Industri
: 2008 / 2009
Fuzzy Linear Programming
Pertemuan 8 (GSLC)
Learning Outcomes
• Mahasiswa dapat menyelesaiakan masalah Fuzzy
Linear Programming untuk berbagai masalah.
Bina Nusantara University
3
Outline Materi:
•
•
•
•
Pengertian Fuzzy LP
Kasus Maksimalisasi
Kasus Minimalisasi
Contoh pemakaian
Bina Nusantara University
4
Fuzzy Sets
• If X is a collection of objects denoted generically by x,
then a fuzzy set à in X is a set of ordered pairs:
( x)) | x X }
• Ã= {( x,
• A fuzzy set is represented solely by stating its
membership function.
Bina Nusantara University
5
Linear Programming
• Min z=c’x
• St. Ax<=b,
•
x>=0,
• Linear Programming can be solved efficiently by simplex
method and interior point method. In case of special
structures, more efficiently methods can be applied.
Bina Nusantara University
6
Fuzzy Linear Programming
•
•
•
•
There are many ways to modify a LP into a fuzzy LP.
The objective function maybe fuzzy
The constraints maybe fuzzy
The relationship between objective function and
constraints maybe fuzzy.
• ……..
Bina Nusantara University
7
Our model for fuzzy LP
• Ĉ~fuzzy constraints {c,Uc}
• Ĝ~fuzzy goal (objective function) {g,Ug}
• Ď= Ĉ and Ĝ{d,Ud}
• Note: Here our decision Ď is fuzzy. If you want a crisp
decision, we can define:
• λ=max Ud to be the optimal decision
Ud min{ Uc,Ug}
Bina Nusantara University
8
Our model for fuzzy LP Cont’d
CT X Z
AX b
c
( A) B
z
( b) d
X 0
1
Ui( x) [0,1]
1
Bina Nusantara University
if BiX d,
if di BiX di Pi
if di pi BiX
9
Our model for fuzzy LP Cont’d
• Maximize λ
• St. λpi+Bix<=di+pi i= 1,2,….M+1
•
x>=0
• It’s a regular LP with one more constraint and can be
solved efficiently.
Bina Nusantara University
10
Example A
• Crisp LP
1 2 x1
max Z ( x) (
)( )
2 1 x2
(z1 , z 2 ) (14,7) at (7,0)
x1 3x2 21
(z1 , z 2 ) (3,21) at (3.4,0.2)
x1 3x2 27
4 x1 3x2 45
3x1 x2 30
x1 , x2 0
Bina Nusantara University
11
Example A cont’d
• Fuzzy Objective function ( keep constraints crisp)
z1 ( x) 3
0
z1 ( x) (3)
- 3 z1 ( x) 14
U1 ( x)
14 (3)
z1 ( x) 14
1
z 2 ( x) 7
0
z ( x) 7
7 z1 ( x) 21
U 2 ( x) 2
21 7
z1 ( x) 21
1
Bina Nusantara University
12
Example A cont’d
• Example A cont’d
max
17
1 2 x1
( )(
)( )
14
2 1 x2
x1 3x2 21
x1 3x2 27
0.74
(z1 , z 2 ) (17.38,4.58)
at (5.03,7.32)
Bina Nusantara University
4 x1 3x2 45
3x1 x2 30
x1 , x2 0
13
Example B
• Crisp LP
min z 41400 x1 44300 x2 48100 x3 49100 x4
0.84 x1 1.44 x2 2.16 x3 2.4 x4 170
16 x1 16 x2 16 x3 16 x4 1300
x1 6
x2 , x3 , x4 0
( x1 , x2 , x3 , x4 , z ) (6,16.29,0,58.96,3864795)
constra int s (170,1300,6)
Bina Nusantara University
14
Example B cont’d
•
•
•
•
•
Fuzzy Objective function Fuzzy Constraints
Maximize λ
St. λpi+Bix<=di+pi i= 1,2,….M+1
x>=0
Apply this to both of the objective function and
constraints.
Bina Nusantara University
15
Example B cont’d
• Now d=(3700000,170,1300,6)
• P=(500000,10,100,6)
41400 x1 44300 x2 48100 x3 49100 x4 500000 3700000
0.84 x1 1.44 x2 2.16 x3 0.24 x4 10 170
16 x1 16 x2 16 x3 16 x4 100 1300
x1 6 6
x2 , x3 , x4 0
( x1 , x2 , x3 , x4 , z ) (17.414,0,0,66.54,3988250)
constra int s (174.33,1343.33,17.414)
Bina Nusantara University
16
Conclusion
• Here we showed two cases of fuzzy LP. Depends on the
models used, fuzzy LP can be very differently. ( The
choosing of models depends on the cases, no general
law exits.)
• In general, the solution of a fuzzy LP is efficient and give
us some advantages to be more practical.
Bina Nusantara University
17
Conclusion Cont’d
• Advantages of our models:
1. Can be calculated efficiently.
2. Symmetrical and easy to understand.
3. Allow the decision maker to give a fuzzy description of
his objectives and constraints.
4. Constraints are given different weights.
Bina Nusantara University
18
Bina Nusantara University
19
© Copyright 2026 Paperzz