Matakuliah : METODE NUMERIK I Tahun : 2008 HAMPIRAN NUMERIK PENYELESAIAN SISTEM PERSAMAAN LINIER Pertemuan 5 Bentuk umum Sistem Persamaan Linier n a j 1 ij X j ci Untuk i = 1,2,3,…,n a11 x1 a12 x 2 a13 x3 a1n x n c1 a 21 x1 a 22 x 2 a 23 x3 a 2 n x n c 2 a 31 x1 a32 x 2 a33 x3 a 3n x n c3 a n1 x1 a n 2 x 2 a n 3 x3 a nn x n c n Bina Nusantara a11 a 21 . . . a n1 a12 a 22 . . . an2 . . . a1n x1 c1 . . . a 2 n x 2 c 2 . . . . . . . . . . . . . . . . . . . . . . a nn x n c n Metode Penyelesaian Persamaan Linier Eliminasi Gauss Eliminasi Gauss-Jordan Matriks balikan Dekomposisi LU Iterasi Jacobi Bina Nusantara Iterasi Gauss-Seidel Eliminasi Gauss • Sistem Persamaan dengan n persamaan dan n variabel a11 x1 a12 x 2 a13 x3 a1n x n c1 a 21 x1 a 22 x 2 a 23 x3 a 2 n x n c 2 a31 x1 a32 x 2 a33 x3 a3n x n c3 a n1 x1 a n 2 x 2 a n 3 x3 a nn x n c n • Nilai variabel (vektor x,) pada sistem tidak berubah jika dilakukan hal-hal berikut: Kalikan atau bagikan suatu persamaan dengan konstanta yang tidak sama dengan nol Ganti suatu persamaan dengan penjumlahan persamaan tersebut dengan persamaan lainnya Bina Nusantara Operasi Baris Elementer a11x1 a12 x2 a13 x3 a1n xn b1 a21x1 a22 x2 a23 x3 a2n xn b2 a31x1 a32 x2 a33 x3 a3n xn b3 an1x1 an 2 x2 an3 x3 ann xn bn Bina Nusantara b’k = bk (a11) – b1 (ak1) k = 2,3,4,…,n a11x1 a12 x2 a13 x3 a1n xn b1 x2 a23 x3 a2 n xn b2 a22 x2 a33 x3 a3 n xn b3 a32 xn bn an 2 x2 an 3 x3 ann Membentuk Segitiga Bawah a11x1 a12 x2 a13 x3 a1n xn b1 x2 a23 x3 a2 n xn b2 a22 x2 a33 x3 a3 n xn b3 a32 xn bn an 2 x2 an 3 x3 ann b’k = bk (a’ 22) – b2 (ak2) k = 3,4,…,n a11x1 a12 x2 a13 x3 a1n xn b1 x2 a23 x3 a2 n xn b2 a22 x3 a3 n xn b3 a33 Bina Nusantara ... ann xn bn... Forward Elimination a11x1 a12 x2 a13 x3 a1n xn b1 x2 a23 x3 a2 n xn b2 a22 x3 a3 n xn b3 a33 ... ann xn bn... xn Bina Nusantara bn... ... ann Substitusi Kembali xn a11x1 a12 x2 a13 x3 a1n xn b1 x2 a23 x3 a2 n xn b2 a22 x3 a3 n xn b3 a33 ... bn ... an ... ann xn bn... an...1,n1xn1 + an...1,n xn bn...1 xn1 bn...1 - an...1,n xn an... 1,n 1 Sehingga diperoleh b (a12 x2 a13 x3 a1n xn ) x1 1 a11 Bina Nusantara n b1 ( a1k xk ) k 2 a11 Gauss Elimination Gauss Elimination Input A, c , n Forward Elimination Back Substitution Output Solution Vector, x stop Bina Nusantara Gauss Elimination Back Substitution xn = bn /ann i = n-1, n-2, ..., 1 Compute last unknown Loop backwards over all rows except last sum = 0 j = i+1, ..., n Loop over all columns to the right of the current row sum = sum + ai,j *x j xi = (bi - sum)/ai,i Bina Nusantara Compute (i)th unknown a11x1 a12 x2 a13 x3 a1n xn b1 x2 a23 x3 a2 n xn b2 a22 x3 a3 n xn b3 a33 ... ann xn bn... Gauss Elimination Forward Elimination k = 1, 2, ..., n-1 i = k+1, ..., n Bina Nusantara Loop over all rows in matrix, except last Loop over all rows below the diagonal position (k,k) mik = aik/akk Compute multiplier for row (i) and column (k) j = k+1, ..., n Loop over all columns to the right of the diagonal position (k,k) aij = aij - mik*akj Update coefficient for row (i) and column (j) bi = bi - mik*bk Update right hand side for row (i) and column (j) a11x1 a12 x2 a13 x3 a1n xn b1 x2 a23 x3 a2 n xn b2 a22 x3 a3 n xn b3 a33 ... ann xn bn... Contoh Forward Elimination 2 x1 x2 4 x3 16 B2+(-3/2)b1 3 x1 2 x2 x3 10 x1 3 x2 3 x3 16 2 x1 x2 4 x3 16 1 x2 5 x3 -14 2 x1 3 x2 3x3 16 B3+(-1/2)b1 2 x1 x2 4 x3 16 1 x2 5 x3 -14 2 5 x2 x3 8 2 Bina Nusantara B3+(-5)b1 2 x1 x2 4 x3 16 x2 10 x3 -28 26 x3 78 Contoh Substitusi Balik x3 78 3 26 x2 - 28 10 x3 - 28 10(3) 2 16 ( x2 4 x3 ) 2 16 2 4(3) 2 1 x1 Bina Nusantara GAUSS-JORDAN ELIMINATON a11x1 a12 x2 a13 x3 a1n xn b1 a21x1 a22 x2 a23 x3 a2n xn b2 a31x1 a32 x2 a33 x3 a3n xn b3 an1x1 an 2 x2 an3 x3 ann xn bn x1 0 0 0 b1... 0 x 2 0 0 b2... 0 0 x3 0 b3... Bina Nusantara 0 0 0 ... 0 x nn bn... Contoh: Selesaikan SPL berikut dengan eliminasi Gass-Jordan 3 x1 0.1x 2 0.2 x3 7.85 0.1x1 7 x 2 0.3 x3 19.3 0.3 x1 0.2 x 2 10 x3 71.4 Jawaban: Matriks perluasan(augmented matrix) dari koefisien SPL: 3 0.1 0.2 7.85 0.1 7 0.3 19.3 b 0.3 0.2 10 71.4 Bina Nusantara ’ 1 = b1/3 1 0.1 0.3 0.033333 0.066667 7 0.3 0.2 10 2.61667 19.3 71.4 b’2 = b2 – 0.1 b1 b’3 = b3 – 0.3 b1 1 0 0 0.033333 0.066667 7.033333 0.29333 0.190000 10.0200 b”2 = b’2/7.033333 Bina Nusantara 2.61667 19.5617 70.6150 1 0 0.068063 2.52356 0 1 0.041664 2.79320 0 0 1 7.0000 b”’1 = b”1 + 0.068063 b”’3 b”’2 = b’’2 + 0.190000 b”’3 1 0 0 Bina Nusantara 0 0 1 0 0 1 3.0000 2.5000 7.0000 x1 3.0000 x 2.5000 2 x3 7.0000 1 0 0.068063 2.52356 0 1 0.041664 2.79320 0 0 1 7.0000 b”’1 = b”1 + 0.068063 b”’3 b”’2 = b’’2 + 0.190000 b”’3 1 0 0 Bina Nusantara 0 0 1 0 0 1 3.0000 2.5000 7.0000 x1 3.0000 x 2.5000 2 x3 7.0000 Iterative Methods • Consider the linear system Ax b a11 a12 a1n x1 b1 a2n x2 a21 a22 b2 an1 an 2 ann xn bn a11x1 a12 x2 a1n xn b1 a21x1 a22 x2 a2n xn b2 Bina Nusantara an1x1 an 2 x2 ann xn bn Solution Methods • • • • • Bina Nusantara Gauss Elimination – Subject to roundoff errors and ill conditioning Iterative methods -- Alternative to elimination method Take initial guess of solution and then iterate to obtain improved estimates of the solution Jacobi and Gauss-Seidel methods Work well for large sets of equations Iterative Methods • Rearrange the equations so that an unknown is on the left-hand side of each equation: x1 b1 (a12 x2 a1n xn ) a11 x2 b2 (a21x1 a2n xn ) a22 xn bn (an1x1 an 2 x2 ann 1xn 1 ) ann • Bina Nusantara Initial guess x10 , x20 ,, xn0 Jacobi Method • Initial guess • Next approximation of the solution x10 , x20 ,, xn0 0 0 b ( a x a x ) 1 12 1 n n 1 2 x1 a11 0 0 b ( a x a x ) 2 21 2 n n 1 1 x2 a22 0 0 0 b ( a x a x a x ) n n 1 n 2 nn 1 1 1 2 n 1 xn ann Bina Nusantara Jacobi Method • After k iterations of this process k k b ( a x a x 1 12 2 1n n ) k 1 x1 a11 k k b ( a x a x 2 21 1 2n n ) k 1 x2 a22 k k k b ( a x a x a x ) n n 1 n 2 nn 1 k 1 1 2 n 1 xn ann Bina Nusantara Example – Jacobi Method • • Rearrange System of 3 equations in 3 unknowns 2 x1 x2 1 x1 3 x2 x3 8 x2 2 x3 5 x1k 1 1 ( x2k ) 2 1 x2k 2 k k k k 8 ( x x ) 8 x x 1 3 1 3 x2k 1 3 3 x3k 1 Bina Nusantara 5 ( x2k ) 2 5 x2k 2 Example – Jacobi Method • x11 x12 x13 Initial guess 1 x20 2 1 0 0. 5 2 8 x10 x30 3 5 x20 2 x10 0, x20 0, x30 0 1 1 8 x 8 0 0 1 x3 8 0.5 (2.5) 2 2.667 x 2 2 3 3 3 50 2.5 2 • After 20 iterations Bina Nusantara 1 1 x 1 2.6667 2 2 x1 1.833335 2 2 x32 5 x12 2 5 1.833335 1.1667 2 x1 2, x2 3, x3 1 Jacobi Methode • We stop when r Ai r A1 r A2 ~ xik 1 ~ xik tolerance, k 1 ~ xi for all i ~ x1k 1 ~ x1k tolerance k 1 ~ x1 ~ x 2k 1 ~ x 2k tolerance k 1 ~ x 2 r An Bina Nusantara ~ x nk 1 ~ x nk tolerance k 1 ~ xn
© Copyright 2026 Paperzz