1 PERTEMUAN 2 Even and odd functions Half-range expansions If a function is defined over half the range, say 0 to L, instead of the full range from - L to L, it may be expanded in a series of sine terms only or of cosine terms only. The series produced is then called a half range Fourier series. Conversely, the Fourier Series of an even or odd function can be analysed using the half range definition. Even Function and Half Range Cosine Series An even function can be expanded using half its range from 0 to L or -L to 0 or L to 2L That is, the range of integration = L. The Fourier series of the half range even function is given by: for n = 1, 2, 3, ... , where bn = 0 2 In the figure below, f(t) = t is sketched from t = 0 to t = . An even function means that it must be symmetrical about the f(t) axis and this is shown in the following figure by the broken line between t = - and t = 0. It is then assumed that the "triangular wave form" produced is periodic with Example 3 We are given that and f(t) is periodic with period 2π. a) Sketch the function for 3 cycles. b) Find the Fourier trigonometric series for f(t), using half-range series. Solution: a) Sketch: b) Since the function is even, we have bn = 0. In this example, L = π. We have: 4 To find an, we use a result from before: We have: When n is odd, the last line gives us . 5 When n is even, the last line equals 0. For the series, we need to generate odd values for n. We need to use (2n - 1) for n = 1, 2, 3,... So we have: Check: The graph for the first 40 terms: Odd Function and Half Range Sine Series An odd function can be expanded using half its range from 0 to L, i.e. the range of integration = L. The Fourier series of the odd function is: Since ao = 0 and an = 0, we have: 6 for n = 1, 2, 3, ... In the figure below, f(t) = t is sketched from t = 0 to t = , as before. An odd function means that it is symmetrical about the origin and this is shown by the red broken lines between t = - and t = 0. It is then assumed that the waveform produced is periodic of period 2 outside of this range as shown by the dotted lines. 7 Example. Find the Fourier series of the function Answer. Since f(x) is odd, then an = 0, for the coefficients bn. For any We deduce Hence , we have . We turn our attention to 8 Example. Find the Fourier series of the function Answer. We have and We obtain b2n = 0 and Therefore, the Fourier series of f(x) is 9 Example. Find the Fourier series of the function function Answer. Since this function is the function of the example above minus the constant . So Therefore, the Fourier series of f(x) is 10 Example. Find the Fourier series of Answer. Since L = 2, we obtain for . Therefore, we have 11 http://aurora.phys.utk.edu/~forrest/papers/fourier/ Example. Perderetkan 8 0 x 2 8 2 x 4 f(x) = ( Periode 4 , L=2) Penyelesaian : Y 8 -4 -2 0 X -8 a0 4 2 1 1 f(x) dx ( 8. dx 20 2 0 2 4 1 8x - 8x 2 0 2 0 4 2 8. dx ) 1 ( 16 - 32 16 ) 2 2 4 12 an 1 nx 1 nx f(x) cos dx ( 8.cos dx 20 2 2 0 2 4 2 2 nx 2 4 sin 2 0 n 2 8. cos nx dx ) 2 nx 4 2 sin n 2 2 ( sin n 0 ). 0 bn - 4 1 nx 1 nx nx f(x) sin dx ( 8.sin dx - 8. sin dx 20 2 2 0 2 2 2 4 - 2 nx 2 4 cos 2 0 n 8 ( - cos n 1 1 n 16 ( 1 - cos n ) n 2 4 2 nx 4 cos n 2 2 cos n ) 32 , ( n ganjil , n Jadi f(x) = 32 cos n (-1)n ) (2n-1)x sin 2 ( ) ( 2n 1) n1 πx 32 ( π Atau dapat ditulis : f(x) = Example. Perderetkan periode 2π ) a0 1 : 2 2 1 0 f(x) dx 1 2 2 3 0 ( - x ). dx (2 2 2 2 ) 0 5 πx sin f(x) = π – x , 1 1 2 2 x x 2 0 1 3 πx sin sin 2 5 ..... ) 0 < x < 2π , ( 13 an 1 1 2 0 f(x) dx 1 2 0 ( - x ).cos nx dx x -1 2 cos n 1 sin nx n 0 ( - x ).cos nx dx 0 -1 cos nx n2 2 1 x 1 sin nx cos nx n 0 n2 bn 1 n 2 1 1 (1 1) 0 2 0 f(x) dx 1 2 0 ( - x ).sin nx 2 dx x sin nx 0 ( - x ).sin nx dx -1 1 x 1 cos nx sin nx 2 n n cos nx n 2 -1 0 0 -1 n 2 sin nx 1 2 ( 2 ) n n Jadi f(x) = π – x = 2 n1 sinnx n Atau dapat ditulis sebagai berikut : f(x) = π - x = 2 ( Example. Perderetkan f(x) = ex Half range Sinus. Penyelesaian : sinx sin2x sin3x sin4x ... 1 2 3 4 untuk 0 < x < π , dalam 14 L bn 2 nπx f(x)sin dx L0 L 2 2 L 0 2 -1 1 1 e sinnxdx ( e xcosnx 2 e x sin nx - 2 n n n x n2 1 1 ( - e x cos nx 2 e x sin nx) 2 n 1 n n e sin nx dx ) x 0 e e x x sin nx - cos nx n e 0 x - sin nx n2 2 n (1 - e cos n ) 2 n 1 f(x) e x 2 ( 1 e 1 e 1 e sin x 2 sin 2x 3 sin3x .... ) 12 1 22 1 32 1 Example. Perderetkan f(x) = sin x , range Cosinus 0 < x < π , ke dalam Half Penyelesaian : a0 2 -2 sin x dx 0 ( -1 - 1 ) -2 cos x 0 sin x cos x 4 - sin x cos nx sin nx n - cos nx n2 an 2 sin x . cos 0 nx 2 dx sin x cos nx dx 0 sin x sin nx cos x cos nx 1 sin x cos nx dx n n2 n 2 0 2 n 2 sin x sin nx cos x cos nx 2 0 (n 1) n n2 2 15 n 2 2 - cos n - 1 1 - 2 cos n 1 2 ( ) ( ) , ( 0 utk n ganjil ) 2 2 (n 1) n (n 1) 1 -4 ((2n) 2 1) f(x) atau 2 4 - 2 - n genap 1 (2n) n1 2 1 cos2nx 4 cos2x cos2x cos6x cos8x ( 2 2 ... 2 1 4 1 6 2 1 8 2 1 Soal – soal Untuk soal 1 s/d 4 , bila f(x) = x 1. Perderetkan f(x) dalam deret fourier cosinus untuk 0 < x < π 2. Perderetkan f(x) dalam deret fourier sinus untuk 0 < x < π 3. Perderetkan f(x) dalam deret fourier cosinus untuk 0 < x < 1 4. Perderetkan f(x) dalam deret fourier sinus untuk 0 < x < 1 5. Perderetkan f(x) = 2x – 1 , 0 < x < 1 dalam deret sinus 6 . Perderetkan f(x) = 2x – 1 , 0 < x < 1 dalam deret cosinus TERIMA KASIH
© Copyright 2026 Paperzz