download

Pertemuan
6
Fungsi Gamma & Beta
11 July 2017
1
The (complete) gamma function
is defined to be an
extension of the factorial to complex and real number
arguments. It is related to the factorial by
. It is analytic everywhere except at z = 0, -1, -2, ..., and
the residue at
11 July 2017
is
2
Fungsi Gamma
Euler's gamma function is defined by the integral
Some further values of the Gamma function for small arguments are:
1,0
1,1
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
2,0
1,0000
0,9514
0,9182
0,9875
0,8873
0,8862
0,8935
0,9086
0,9314
0,9618
1,0000
11 July 2017
3
11 July 2017
4
If x is an integer n = 1, 2, 3, ..., then
11 July 2017
5
Γ(n+1) = n Γ(n)
11 July 2017
6
Contoh

a.
3 -x
x
 e dx  ( 4 )  3!  3 x 2 x 1  6
.
0


3
 2x  2x
3 2x
x
e
dx

0
0  2  e d (2 x / 2)
b.
1
3
 (4) 
16
8
Contoh


x e 3
x
dx ,
misalkan
y 3 x
0
x = 1/9 y2

dx = 2/9 y dy
(3) 
4
27

2/27
2 y
y
.
 e dy 
0
11 July 2017
2/27
7
11 July 2017
8
11 July 2017
9
11 July 2017
10
The gamma function satisfies the functional
equations
11 July 2017
11
11 July 2017
12
11 July 2017
13
11 July 2017
14
11 July 2017
15
11 July 2017
16
11 July 2017
17
11 July 2017
18
http://www.stat.vt.edu/~sundar/java/applets/Distributions.html#BETAFUNC
11 July 2017
19
http://www.stat.vt.edu/~sundar/java/applets/Distributions.html#GAMMAFUNC
11 July 2017
20
http://www.earlevel.com/Digital%20Audio/harmonigraf.html
11 July 2017
21
11 July 2017
22