Pertemuan 13 Transformasi - Z Z-Transform Introduction U(s) u(t) Y(s) y(t) G(s) Linear system Tools to analyse continuous systems : Laplace transform It could be used for sampled or discrete systems T f (t) f ' (t) t t f (t) X f ' (t) t Z-Transform f ' (t) t k 0 k 0 f ' ( t ) f ( t )( t kT) f (kT) Apply Laplace transform of f’(t) f ( 0 ) L[f ' ( t )] f ( t )( t kT)e st dt f (kT)e skT 2 k 0 0 k 0 Factors like Exp(-sT) are involved Unlike the majority of transfer functions of continuous systems It will not lead to rational functions Z-Transform Definition k 0 k 0 F(z) f (kT)z k f (k )z k ze sT 1 F (s) f (0) F' (k ) 2 ' 1 s ln( z) j T Re( z) e T cos(T) Im( z) e T sin( T) 1 F(z) F' (s)[s ln( z)] T Summary The operation of taking the z-transform of a continuous-data function, f(t), involves the following three steps: 1- f(t) is sampled by an ideal sampler to get f’(t) 2- Take the Laplace transform of f’(t) F' (s) f (kT)e ksT k 0 3- Replace e s T by z in F’(s) to get F(z) f (kT)z k k 0 Mapping between the s-plane and the z-plane ze j sT S-plane 2 3 1 4 Imz 5 3 4 s 2 Primary strip s 2 5 2 2 s T z-plane 1 Rez 1 The left half of the primary strip is mapped inside the unit circle Mapping between the s-plane and the z-plane ze j sT S-plane 2 3 Primary strip s 2 1 4 5 Imz 3 4 2 5 s 2 Z-plane 1 Rez 1 The right half of the primary strip is mapped outside the unit circle Mapping between the s-plane and the z-plane e ( s jks ) T S-plane e sT e jks T j e sT 2 jk e e sT 1 s ( k ) 2 Complementary strip s ( Imz 1 k) 2 Z-plane Rez 1 The right half of the complementary strip is also mapped inside the unit circle s-plane properties of F’(s) j Complementary s 0 j2s strip 3s / 2 Complementary s 0 js strip Primary strip s0 s / 2 s / 2 Complementary s 0 js strip Complementary strip 5s / 2 s 0 j2s F' (s jms ) F' (s) 3s / 2 5s / 2 s-plane properties of F’(s) j Complementary s 0 j2s X strip Complementary s 0 js X strip Primary strip s0 X Complementary s 0 js X strip Complementary strip 5s / 2 3s / 2 s / 2 s / 2 3s / 2 s 0 j2s X X Poles of F’(s) in primary strip 5s / 2 s-plane properties of F’(s) j Complementary s 0 j2s X strip 5s / 2 Folded back poles Complementary s 0 js X strip Primary strip s0 X Complementary s 0 js X strip Complementary strip 3s / 2 s / 2 s / 2 3s / 2 s 0 j2s X X Poles of F’(s) in complementary strips 5s / 2 The constant damping loci z e 1 T e jT j 1 2 z e 2 T e jT s-plane z-plane The constant frequency loci 2 T z e j1 T j j2 1 T j1 j1 z e j1 T s-plane z-plane The constant damping ratio loci Imz j 3 s j 2 2 1 4 5 s-plane 2 5 3 4 s 2 z-plane Rez 1 The constant damping ratio loci s tan j j s j 2 s 2 Imz s 4 Rez s 2 s-plane s 3s 4 z-plane Mapping between the s-plane and the z-plane Conclusion: All points in the left half of the s-plane are mapped into the Region inside the unit circle in the z-plane. The points in the right half of the s-plane are mapped into the Region outside the unit circle in the z-plane Example: discrete exponential function f * (k ) e k 1 k f * (k ) 0, k 0 Apply z-transform F (z) f * (k )z k * k 0 k 0 k 0 F* (z) e k z k (e z 1 ) k 1 z F (k ) 1 1 e z z e * 0 Series Reminder s n y n 1 y y 2 y 3 ........y n n 0 s n 1 y y 2 y3 ........y n y.s n y y 2 y3 ........y n y( n 1) s n y.s n s n (1 y) 1 y( n 1) 1 y( n 1) 1 sn 1 y 1 y Example: discrete Cosine function jk jk e e f * (k ) cos(k ) 2 1 z z F (z) ( ) j j 2 ze ze * j j z ( z e ) ( z e ) * F ( z) [ ] j j 2 (z e )( z e ) j j z 2 z ( e e ) * F ( z) ( 2 ) j j 2 z z(e e ) 1 z(z cos ) F (z) 2 z 2z cos 1 * Z[e k z ] z e Another approach y(k) cos(k) j sin( k) e jk z z Y( z) j ze z cos j sin z(z cos j sin ) Y(z) (z cos j sin )( z cos j sin ) z(z cos ) jz sin ) Y( z) z 2 2z cos 1 z(z cos ) Z[cos] 2 z 2z cos 1 z sin( ) Z[sin] 2 z 2z cos 1 Dirac function ( t ) F[( t )] 1 Z[( t )] 1 F[( t )] ( t )z sT (0) 1 k 0 Sampled step function u(t) 1 t 0 T 2T 3T 4T 5T 1 skT U(s) e sT 1 e k 0 1 z U(z) 1 1 z z 1 U(s) e skT k 0 U(z) z NB: Equivalent to Exp(-k) as 0 k 0 k 1 z 1 1 z z 1 Delayed pulse train T ( t kT) T k t T t x 'e x [(k )T][t (k )T] k e X (s, ) e ' e sT skT x [( k ) T ) e e k 0 Complete z-transform k 0 k 0 F(z, ) f [( k )T]z k f (k, )z k Example:exponential function f (k, ) e ( k ) , 0 F(z, ) e k 0 ( k ) k z e e k k 0 z F(z, ) e z e z k z e z e Terima kasih
© Copyright 2026 Paperzz