1 Pertemuan VII Fungsi Gamma dan Fungsi Beta Fungsi Gamma Euler's gamma function is defined by the integral Some further values of the Gamma function for small arguments are: 1,0 1,0000 1,1 0,9514 1,2 0,9182 1,3 0,9875 1,4 0,8873 1,5 0,8862 1,6 0,8935 1,7 0,9086 1,8 0,9314 1,9 0,9618 2,0 1,0000 (1/5)=4.5909 , (1/4)=3.6256 (1/3)=2.6789 , (2/5)=2.2182 (3/5)=1.4892 , (2/3)=1.3541 (3/4)=1.2254 , (4/5)=1.1642 . 2 If x is an integer n = 1, 2, 3, ..., then Γ(n) = x n 1 x e dx 0 Γ(n+1) = n Γ(n) 3 Γ (p) Γ (1-p) = x p 1 0 1 x dx = 0 < p < 1 sin p 0 < p < 1 sin p , , Contoh a. x e 3 -x . dx ( 4 ) 3! 3 x 2 x 1 6 0 x e b. 3 2x 0 1 3 (4) 16 8 Contoh. x e 3 x 3 2x dx e 2 x d ( 2 x / 2) 0 2 dx , misalkan y 3 x 0 4 (3) 27 x = 1/9 y2 2/27 y. e 2 y dy 2/27 0 dx = 2/9 y dy Contoh. 3 x e- x dx misalkan 3 x y 0 x = y3 dx = 3 y2 dy y 3/ 2 e- y 3y 2dy 0 3 y 7/2e y dy 3 (9/2) 0 3x 7 5 3 1 2 2 2 2 315 16 4 Contoh. x e- 4 x dx x y mis 0 x = y2 dx = 2y dy (y ) 2 1/ 4 e- y 2y dy 0 2 y1 / 2 e- y y dy = 0 5 2 y 3 / 2 e- y dy 2 2 0 = 2. 1 2 2 2 3 1 3 2 Contoh mis x 3 y 3 e- x dx 0 x = y1/3 dx = 1/3 y-2/3 dy 1/3 y 2 / 3 1 1 3 3 e- y dy 0 atau Γ(4/3) Contoh. 2 - 4x x e dx 2 . misalkan 4x 2 y 0 x = ½ y1/2 dx = ¼ y-1/2 dy 1 4 -y ye 0 1 y-1/2 dy = 4 y 16 1/ 2 0 = Contoh . 1 = 3 16 2 1 1 32 4x 2 - 4x 2 ln 2 2 dx e dx 0 e - y dy 0 misalkan 4 x2 ln 2 = y 5 1 2 - y x= 4 ln 2 2 - 4x y 2 dx dy 4 ln 2 2 1 dx 0 0 e -y y - 1 2 4 ln 2 1 2 4 ln 2 dy 4 ln 2 1 Contoh . 3 misalkan ln x - y ln( 1/ x) dx . 0 x = e-y 1 1 0 3 ln x dx . - y 3 e y dy 0 atau dx = - e-y dy 1 -y y 3 e dy 0 4 1 1 ( ) ( ) 3 3 3 Fungsi Beta. Fungsi Beta dinyatakan sebagai berikut : 1 a. B(m , n) = x m 1 (1 x) n 1 dx convergen untuk n dan m 0 0 b. B(m , n) = B(n , m) π/2 c. sin 2n-1 cos2m-1 d 0 d. e. 1 B(m, n) 2 x p1 π 0 1 x dx Γ (p) ( 1 - p) sin pπ Γ( m ) . Γ ( n ) B(m,n ) Γ(mn) (0<p<1) 1 Contoh : Hitung x 8 ( 1 - x ) 4 dx B( 9,5 ) 0 ( 9 ) ( 5 ) ( 14 ) 8! 4! 1 13 ! 6435 6 1 Contoh x : Hitung 4 ( 1 - x )5 dx x y misal 0 x = y2 dx = 2ydy 1 y 1 8 2 y9 (1 y)5 dy ( 1 - y )5 2ydy 0 0 2 ( 10 ) ( 6 ) 2 B ( 10 , 6 ) = (16 ) 1 = 15015 1 Contoh (1- x : Hitung 3 misalkan x 3 y )-1/2 dx 0 x = y1/3 dx = 1 (1- y ) - 1 2 2 3 y dy 3 0 1 3 0 1 1 - 2 3 1 - 2/3 y dy 3 y (1- y ) - 1 2 dy 1 ( ) ( ) 1 1 1 1 3 2 B( , ) 2 5 3 3 3 ( ) 6 Contoh : Hitung 2 x2 2-x 0 misalkan x 2y dx dx = 2 dy 1 (2y) 2 2 dy 2 - 2y 0 8 1 B(3 , ) 2 2 8 2 8 2 1 y 2 (1- y ) - 1 2 dy 0 (3) ( ( 1 ) 2 7 ) 2 64 2 15 7 Contoh : Hitung 3 0 3 1 3x - x dx 2 0 dx x 3- x misalkan x 3y dx = 3 dy 1 (3 y) 1 2 ( 3 - 3y ) 1 2 1 3 dy B ( 2 0 , 1 ) 2 1 1 ( ) ( ) 2 2 2 Contoh (4-x : Hitung 2 misalkan x 2 4y )3/2 dx 0 x = 2y1/2 dx = y-1/2 dy 1 ( 4 - 4y ) 3/2 y-1/2 dy 0 1 43/2 ( 1 - y )3/2 y-1/2 dy 0 (1 / 2) ( 5/2 ) = 8 B ( ½ , 5/2 ) = 8 (3) 8 3 1 2 2 2 7 Contoh 4 misalkan x 4y 3 ( x - 3 ) ( 7 - x ) dx 3 dx = 4 dy 1 ( 4y 3 - 3 ) 1/4 ( 7 - 4y - 3 )1/4 4 dy 0 1 4 ( 4y )1/4 ( 4 - 4y )1/4 dy 8 B ( 0 8 1 1 4 4 ( 1/4 )(1 / 4) (5 / 2) 2 3 1 0 5 , 4 ) 4 ((1/4)) 2 1 ( 1 - y ) 4 3 y 2 dy 5 3 y2 ( 1 - y ) 4 dy 0 3 8 3 B ( 3 , 5) 3 (3) ( 5 ) ( 8 ) 1 35 10 Contoh : Hitung misalkan x 2 100y 100 - x 2 dx 0 1 x = 10 y 2 dx = 5 y 1 10( 1 - y ) 1 2 1 2 1 2 dy 1 2 50 y ( 1 - y ) dy 0 0 3 1 50 50 B ( , ) 2 2 2 /2 Contoh 1 2 1 5 y dy Hitung 1 1 ( ) ( ) 2 2 ( 2 ) 25 ctg d 0 /2 = ( cos )1/2 (sin ) -1/2 d 1 3 1 B( , ) 2 4 4 0 2m 1 1 2 2n 1 m 1 2 n 3 4 1 4 1 3 1 B( , ) 2 4 4 3 1 2 1 ( ) ( ) 4 4 ( 1 ) 2 Soal - soal 1 1. Hitung dx (1- x 0 n 1/ n ) misalkan x n sin 2 2 2. x 0 3 8 - x 3 dx misalkan x 3 8y 9 /2 3. /2 d cos 0 /2 4. cos 0 /2 tg d 0 sin cos-1/2 d 1/2 0 5. d -1/2 dx 1 x Hitung misalkan 4 x4 y 0 1 6. Buktikan (1 x ) p -1 ( 1 - x )q -1 dx 2p q 1 1 7. Carilah x e -x dx 0 ( p ) ( q ) . ( p q ) 3 Jwb . 2 8. Carilah m x e dx 2 2 Jwb . 0 9. Carilah x 2 2 e- 2x dx Jwb . 0 10. Carilah x 1 x dx 0 Jwb . 2m 2 16 3 3 TERIMA KASIH
© Copyright 2026 Paperzz