Matakuliah Tahun : K0124 / Matematika Teknik II : 2006/2007 PERTEMUAN 1 PARTIAL DERIVATIVES OF A FUNCTION OF TWO VARIABLES 1 Partial derivatives Given z f ( x, y ) as a function of two independent variables x and y. If x varies but y is fixed, then z is a function of x and the derivative of z with respect to x is given by f x ( x, y ) z f ( x x, y ) f ( x, y ) lim x x0 x and it is called the partial derivative of z f ( x, y ) with respect to x. 2 Conversely, if y varies but x is fixed, then z is a function of y and the derivative of z with respect to y is given by z f ( x, y y) f ( x, y) f y ( x, y) lim y y0 y and it is called the partial derivative of z f ( x, y ) with respect to y. 3 Example 13.1 2 2 z f ( x , y ) 2 x 3 xy 4 y . Then, Given z z fx 4 x 3 y, f y 3x 8 y. x y 4 Example 13.2 Given x2 y2 z g ( x, y ) . y x Then, z x y2 z x2 y gx 2 2 , gy 2 2 . x y x y y x 5 Example 13.3 Given z h( x, y) sin(2 x 3 y). Then, z z hx 2 cos( 2 x 3 y ), hy 3 cos( 2 x 3 y ). x y 6 Partial derivatives of higher orders z The partial derivative of x z f ( x, y) can be differentiated partially with respect to x and y, yielding the second partial derivatives 2 z z 2 z z f xx ( x, y ) , f xy ( x, y ) . 2 x x x yx y x 7 z Also, from can be obtained y 2 z z 2 z z f yx ( x, y) , 2 f yy ( x, y) . xy x y y y y If z f ( x, y ) and its partial derivatives are continuous, it can be proved that the order of differentiation is immaterial, i.e. 2 z 2 z . xy yx 8 Example 13.4 2 2 z f ( x , y ) x 3 xy y 5. Then, Given z z 2z 2z 2z 2 x 3 y, 3x 2 y, 3, 2 2. x y xy yx y 9 Example 13.5 Given z g ( x, y ) e x 2 xy . Then, z x 2 xy z x 2 xy ( 2 x y )e , xe , x y 2 2 2 2z z x xy 2 x xy 2 x 2 xy 2e (2 x y ) e , 2 x e , 2 x y 2 2 z x 2 xy x 2 xy z x 2 xy x 2 xy e x ( 2 x y )e , e x ( 2 x y )e . yx xy 10 Partial derivatives of implicit functions If z is defined implicitly as a function of independent variables x and y by the equation F ( x, y, z ) 0, then the partial derivatives z z and can be determined by the method x y shown in the following examples. 11 Example 13.6 Find z z and of the implicit function x 2 y 2 z 2 25. x y ( x 2 y 2 z 2 ) (25) z z x ,2 x 2 z 0, . x x x x z Similarly, ( x 2 y 2 z 2 ) (25) z z y ,2 y 2 z 0, . y y y y z 12 TERIMA KASIH 13
© Copyright 2026 Paperzz