Learning Outcomes • Mahasiswa akan dapat mengaplikasikan model simulasi ke berbagai permasalahan khususnya untuk simulasi atrian. Simulasi persediaan dalam berbagai contoh.. Bina Nusantara Outline Materi: • • • • • Bina Nusantara Pengertian Simulasi Atrian Simulasi Persediaan Simulasi Transpostrasi Contoh penggunaan Building a Simulation Model • General Principles – – The system is broken down into suitable components or entities The entities are modeled separately and are then connected to a model describing the overall system A bottom-up approach! • The basic principles apply to all types of simulation models – – – • In BPD (Birth and Death Processes) and OM situations computer based Stochastic Discrete Event Simulation (e.g. in Extend) is the natural choice – Bina Nusantara Static or Dynamic Deterministic or Stochastic Discrete or continuous Focuses on events affecting the state of the system and skips all intervals in between Steps in a BPD Simulation Project Phase 1 1. Problem formulation Problem Definition 2. Set objectives and overall project plan 4. Data Collection 3. Model conceptualization Phase 2 Model Building 5. Model Translation No Phase 3 6. Verified Experimentation Yes No No 7. Validated Yes Phase 4 8. Experimental Design Implementation 9. Model runs and analysis Yes Bina Nusantara 10. More runs No 11. Documentation, reporting and implementation Model Verification and Validation • Verification (efficiency) – Is the model correctly built/programmed? – Is it doing what it is intended to do? • Validation (effectiveness) – Is the right model built? – Does the model adequately describe the reality you want to model? – Does the involved decision makers trust the model? Two of the most important and most challenging issues in performing a simulation study Bina Nusantara Model Verification Methods • Find alternative ways of describing/evaluating the system and compare the results – Simplification enables testing of special cases with predictable outcomes Removing variability to make the model deterministic Removing multiple job types, running the model with one job type at a time Reducing labor pool sizes to one worker • Build the model in stages/modules and incrementally test each module – Uncouple interacting sub-processes and run them separately – Test the model after each new feature that is added – Simple animation is often a good first step to see if things are working as intended Bina Nusantara Validation - an Iterative Calibration Process The Real System Conceptual validation Calibration and Validation Conceptual Model 1. Assumptions on system components 2. Structural assumptions which define the interactions between system components 3. Input parameters and data assumptions Model verification Operational Model (Computerized representation) Bina Nusantara Example 1: Simulation of a M/M/1 Queue • • Assume a small branch office of a local bank with only one teller. Empirical data gathering indicates that inter-arrival and service times are exponentially distributed. – – • The average arrival rate = = 5 customers per hour The average service rate = = 6 customers per hour Using our knowledge of queuing theory we obtain – – – = the server utilization = 5/6 0.83 Lq = the average number of people waiting in line Wq = the average time spent waiting in line Lq = 0.832/(1-0.83) 4.2 • How do we go about simulating this system? – Bina Nusantara Wq = Lq/ 4.2/5 0.83 How do the simulation results match the analytical ones? Example 2: Antrian saluran Tunggal Misalkan data empiris tentang distribusi kurun waktu antara pertibaan dan distribusi waktu pelayanan sbb: Kurun waktu antara Pertibaan (menit) Peluang Kurun waktu (menit) Peluang 0-4 0,4 0-2 0,4 4-8 0,3 2-4 0,4 8 - 12 0,2 4-6 0,2 12 – 16 0,1 Variabel acak yang harus disimulasi secara langsung ialah : a. Kurun waktu antara pertibaan (T) b. Kurun waktu pelayanan (L), lalu c) Buatlah SIMULASI untuk menggambarkan satu periode waktu yg mencakup 10 pertibaan ? Bina Nusantara Struktur Simulasi untuk T Harga variabel acak pertibaan (b) Peluang f(b) Peluang kumulatif Selang 0-1 bilangan acak 2 0,4 0,4 0,0 -- 0,4 6 0,3 0,7 0,4 – 0,7 10 0,2 0,9 0,7 – 0,9 14 0,1 1,0 0,9 -- 1,0 Perlu dicatat bahwa titik tengah selang ditetapkan sebagai variabel acak.. Kemudian untuk struktur simulasi L dapat dilihat berikut ini : Bina Nusantara Struktur Simulasi untuk L Harga variabel acak pelayanan (t) Peluang f(t) Peluang kumulatif Selang 0-1 bilangan acak 1 0,4 0,4 0,0 -- 0,4 2 0,4 0,8 0,4 – 0,8 3 0,2 1,0 0,8 – 1,0 Maka satu simulasi untuk satu periode waktu yang mencakup 10 pertibaan adalah seperti berikut ini : Bina Nusantara Struktur Simulasi GI/G/1 Perti an U1 b Masuk waktu ( I) Panjang antrian Waktu habis antrian Waktu pd U2 t Selesai pd waktu Waktu pelayanan 1 -- -- 0 0 0 0 0,612 3 3 0 2 0,900 14 14 0 0 14 0,484 3 17 11 3 0,321 2 16 0 1 17 0,048 1 18 0 4 0,211 2 18 0 0 18 0,605 3 21 0 5 0,021 2 20 0 1 21 0,583 3 24 0 6 0,198 2 22 0 2 24 0,773 3 27 0 7 0,383 2 24 0 3 27 0,054 1 28 0 8 0,107 2 26 1 2 28 0,853 5 33 0 9 0,799 10 36 0 0 36 0,313 1 34 3 10 0,439 6 42 0 0 42 0,200 1 43 5 Bina Nusantara Bina Nusantara
© Copyright 2026 Paperzz