Learning Outcomes • Mahasiswa dapat memahami pemodelan kuantitaif yang ada di bidang Matematika danStatistika.. Outline Materi: • • • • • • • Pengertian Model Matematika & Statistika Sistem Modelling Dynamic model Matrix model Stochastic model Multivariate model Optimization model PEMODELAN KUANTITATIF : MATEMATIKA DAN STATISTIKA MODEL STATISTIKA: FENOMENA STOKASTIK MODEL MATEMATIKA: FENOMENA DETERMINISTIK DYNAMIC MODEL MODELLING SIMULATION Dynamics Equations Computer FORMAL Language ANALYSIS Special DYNAMO CSMP CSSL General BASIC DYNAMIC MODEL (2) DIAGRAMS SYMBOLS RELATIONAL LEVELS AUXILIARY VARIABLES RATE EQUATIONS PARAMETER SINK MATERIAL FLOW INFORMATION FLOW DYNAMIC MODEL: (3) ORIGINS Abstraction Computers Equations Steps Hypothesis Discriminant Function Simulation Other functions Exponentials Logistic Undestanding MATRIX MODEL MATHEMATICS Operations Additions Substraction Multiplication Inversion Matrices Eigen value Elements Dominant Types Eigen vector Square Rectangular Diagonal Identity Vectors Row Column Scalars MATRIX MODEL (2) DEVELOPMENT Interactions Groups Materials cycles Size Development stages Stochastic Markov Models STOCHASTIC MODEL STOCHASTIC Probabilities History Statistical method Other Models Dynamics Stability STOCHASTIC MODEL (2) Spatial patern Distribution Pisson Example Poisson Negative Binomial Binomial Negative Binomial Others Test Fitting STOCHASTIC MODEL (3) ADDITIVE MODELS Example Basic Model Error Estimates Analysis Parameter Variance Orthogonal Block Effects Experimental Treatments Significance STOCHASTIC MODEL (4) REGRESSION Model Example Error Linear/ Nonlinear functions Decomposition Equation Theoritical base Oxygen uptake Reactions Experimental Assumptions Empirical base STOCHASTIC MODEL (5) MARKOV Analysis Example Assumptions Analysis Transition probabilities Raised mire Disadvantage Advantages MULTIVARIATE MODELS(1) METHODS VARIATE Variable Classification Dependent Independent Descriptive Principal Component Analysis Predictive Discriminant Analysis Cluster Analysis Reciprocal averaging Canonical Analysis MULTIVARIATE MODEL (2) PRINCIPLE COMPONENT ANALYSIS Requirement Example Environment Organism Regions Correlation Eigenvalues Objectives Eigenvectors MULTIVARIATE MODEL (3) CLUSTER ANALYSIS Example Spanning tree Multivariate space Demography Rainfall regimes Minimum Similarity Single linkage Distance Settlement patern MULTIVARIATE MODEL (4) CANONICAL CORRELATION Example Correlation Partitioned Watershed Urban area Eigenvalues Irrigation regions Eigenvectors MULTIVARIATE MODEL (5) Discriminant Function Example Discriminant Calculation Villages Vehicles Test Structures OPTIMIZATION MODEL OPTIMIZATION Dynamic Meanings Indirect Simulation Minimization Experimentation NonLinear Linear Objective function Constraints Solution Examples Maximization Optimum Transportation Routes Optimum irrigation scheme Optimum Regional Spacing
© Copyright 2026 Paperzz