Learning Outcomes • Mahasiswa akan dapat menyelesaikan masalah permainan dengan metoda grafik. 2 Outline Materi: • Konsep Dasar permainan • Penyelesaian dgnMetoda Grafik • Contoh kasus.. 3 Metoda Grafik • Ada beberapa metode yang dapat digunakan untuk mencari nilai permainan antara lain: – – – – Metoda Grafik Metoda Analitis Metoda Aljabar Matriks Metoda Linear Programming.. 4 Aturan Permainan Semua permainan 2 x n (yaitu, pemain baris mempunyai dua strategi dan pemain kolom mempunyai n strategi) dan pemain m x 2 (yaitu pemain baris mempunyai m strategi dan pemain kolom mempunyai dua strategi) dapat diselesaikan secara grafik. Untuk dapat menyelesaikan permainan strategi campuran secara grafik, dimensi pertama matriks permainan harus 2. 5 • Jika seorang pemain dapat memilih salah satu dari dua strategi yang mungkin,maka situasi keputusan dari pemain dapat di gambarkan dalam grafik, Misalnya sbb: • Strategi 3 Strategi 1 10 Pilih C Pemain 9.5 Pemain Pilih A 7 1.0 6 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Probabiliti (Pemilihan Strategi 1) 0.2 0.1 00.0 6 • Penggambaran dapat dilakukan dengan memperhatikan cara penggambaran pada metoda linier programming metoda grafik. • CONTOH. 7 Glossary • • • • • • • Payoff/Reward Matrix Two Person Game Zero-sum Column domination Row domination Saddle/Equilibrium Point Strategies 8 Two-person zero-sum game with a saddle point Player #2 Player #1 1 2 3 Row Domination: A 6 9 9 B 5 7 8 C -4 -2 -3 (2) > (1) Payoff Matrix to Player #1 (3) > (1) Eliminate Row (1) Column Domination: A > C, B > C Eliminate Columns A, B 9 Reduced Matrix 2 3 C -2 -3 • The best strategy for player #1 is to choose 2. • The best strategy for player #2 is to choose C • This results in a saddle/equilibrium point which gives us these simple strategies for each player 10 Saddle Point 1 2 3 A 6 9 9 B 5 7 8 C -4 -2 -2 -3 The value shown is the smallest in its row - to player #2’s advantage and the largest in its column - to player #1’s advantage. 11 Mixed Strategy 1 2 3 A 7 8 -5 B 10 9 0 C -4 -1 6 D 2 5 8 Domination: • Row - none • Column - A<B eliminate B D>C eliminate D 12 Revised Matrix 1 2 3 A 7 8 -5 C -4 -1 6 Domination Row (2) > (1) 2 3 No further domination eliminate row (1) A 8 -5 C -1 6 13 Row strategies prob. p 1-p 2 3 A 8 -5 C -1 6 EA = 8p + (-5)(1 - p) = -5 + 13p EC = -1p + (6)(1 - p) = 6 - 7p 14 The best strategy for player #2 for a given p is to choose the green line. Knowing this, player #1 chooses the peek at p = 0.55 -5 + 13p = 6 - 7p 20p = 11 p = 11/20 = 0.55 V = -5 + 13(0.55) = 6 - 7(0.55) = 2.15 15 Column strategies prob. q 1-q 2 3 A 8 -5 C -1 6 E2 = 8q + (-1)(1 - q) = -1 + 9q E3 = -5q + (6)(1 - q) = 6 - 11q 16 The best strategy for player #1 for a given q is to choose the green line. Knowing this, player #2 chooses the low point at q = 0.35 -1 + 9q = 6 - 11q 20q = 7 q = 7/20 = 0.35 V = -1 + 9(0.35) = 6 - 11(0.35) = 2.15 17 Conclusions: Player #1 : (1) 0% (2) 55% (3) 45% Player #2 : (A) 35% (B) 0% (C) 65% (D) 0% Value of the Game (to Player #1) : 2.15 Further Considerations • • • • Linear programming Internet - JavaScript routine Non-zero sum games More than two players 18 19
© Copyright 2026 Paperzz