Learning Outcomes • Mahasiswa akan dapat menghubungkan masalah aplikasi ramalan dengan berbagai metoda yang ada. Bina Nusantara Outline Materi: • • • • Bina Nusantara Moving Average Eksponesial trend Regression trend Contoh .. Moving Average Method • MA is a series of arithmetic means. • Used if little or no trend. • Used often for smoothing. Demand in previous n periods MA n Bina Nusantara Moving Average Example You’re manager of a museum store that sells historical replicas. You want to forecast sales (in thousands) for months 4 and 5 using a 3-period moving average. Month 1 Month 2 Month 3 Month 4 Month 5 Bina Nusantara 4 6 5 ? ? Moving Average Forecast Month 1 2 3 4 5 6 Bina Nusantara Response Yi 4 6 5 ? ? ? Moving Total (n=3) NA NA NA 4+6+5=15 Moving Average (n=3) NA NA NA 15/3=5 Actual Demand for Month 4 = 3 Month 1 2 3 4 5 6 Bina Nusantara Response Yi 4 6 5 3 ? ? Moving Total (n=3) NA NA NA 4+6+5=15 Moving Average (n=3) NA NA NA 15/3 = 5 Moving Average Forecast Month Response Moving Moving Yi Total Average (n=3) (n=3) 1 4 NA NA 2 6 NA NA 3 5 NA NA 15 5 4 3 5 7 6+5+3=14 14/3=4.667 6 ? Bina Nusantara Actual Demand for Month 5 = 7 Month Response Moving Moving Yi Total Average (n=3) (n=3) 1 4 NA NA 2 6 NA NA 3 5 NA NA 15 4 3 5 5 7 6+5+3=14 14/3=4.667 6 ? Bina Nusantara Moving Average Forecasts Month Response Moving Moving Yi Total Average (n=3) (n=3) 1 4 NA NA 2 6 NA NA 3 5 NA NA 4 3 4+6+5=15 15/3=5.0 5 7 6+5+3=14 14/3=4.667 6 5+3+7=15 15/3=5.0 ? Bina Nusantara Weighted Moving Average Method • Gives more emphasis to recent data. • Weights decrease for older data. • Weights sum to 1.0. – May be based on intuition. – Sum of digits weights: numerators are consecutive. • 3/6, 2/6, 1/6 • 4/10, 3/10, 2/10, 1/10 WMA = Bina Nusantara Σ [(Weight for period n) (Demand in period n)] ΣWeights Weighted Moving Average: 3/6, 2/6, 1/6 Month 1 2 3 4 5 6 Bina Nusantara Response Yi 4 6 5 ? ? ? Weighted Moving Average NA NA NA 31/6 = 5.167 Weighted Moving Average: 3/6, 2/6, 1/6 Month 1 2 3 4 5 6 Bina Nusantara Response Yi 4 6 5 3 7 ? Weighted Moving Average NA NA NA 31/6 = 5.167 25/6 = 4.167 32/6 = 5.333 Moving Average Methods • Increasing n makes forecast: – Less sensitive to changes. – Less sensitive to recent data. • Weights control emphasis on recent data. • Do not forecast trend well. • Require historical data. Bina Nusantara Exponential Smoothing Method • Form of weighted moving average. – Weights decline exponentially. – Most recent data weighted most. • Requires smoothing constant (). – Usually ranges from 0.05 to 0.5 – Should be chosen to give good forecast. • Involves little record keeping of past data. Bina Nusantara Exponential Smoothing Equation • Ft = Ft-1 + (At-1 - Ft-1) – Ft = Forecast value for time t – At-1 = Actual value at time t-1 = Smoothing constant • Need initial forecast Ft-1 to start. – Could be given or use moving average. Bina Nusantara Exponential Smoothing Example You want to forecast product demand using exponential smoothing with = .10. Suppose in the most recent month (month 6) the forecast was 175 and the actual demand was 180. Month 6 Month 7 Month 8 Month 9 Month 10 Bina Nusantara 180 ? ? ? ? Exponential Smoothing - Month 7 Month Actual 6 180 7 ? 8 ? 9 ? 10 ? 11 ? Bina Nusantara Forecast, F t (α = .10) 175.00 (Given) 175.00 + .10(180 - 175.00) = 175.50 Ft = Ft-1 + α (At-1 - Ft-1) Exponential Smoothing - Month 8 Forecast, F t (α = .10) Month Actual 6 180 7 168 175.00 + .10(180 - 175.00) = 175.50 8 ? 175.50 + .10(168 - 175.50) = 174.75 9 ? 10 ? 11 ? Bina Nusantara 175.00 (Given) Ft = Ft-1 + α (At-1 - Ft-1) Exponential Smoothing Solution Forecast, F t (α = .10) Month Actual 6 180 7 168 175.00 + .10(180 - 175.00) = 175.50 8 159 175.50 + .10(168 - 175.50) = 174.75 9 ? 174.75 + .10(159 - 174.75) = 173.18 10 ? 11 ? Bina Nusantara 175.00 (Given) Ft = Ft-1 + α (At-1 - Ft-1) Exponential Smoothing Solution Forecast, F t (α = .10) Month Actual 6 180 7 168 175.00 + .10(180 - 175.00) = 175.50 8 159 175.50 + .10(168 - 175.50) = 174.75 9 175 174.75 + .10(159 - 174.75) = 173.18 10 190 173.18 + .10(175 - 173.18) = 173.36 11 ? 173.36 + .10(190 - 173.36) = 175.02 175.00 (Given) Ft = Ft-1 + α (At-1 - Ft-1) Bina Nusantara Exponential Smoothing Methods • Increasing α makes forecast: – More sensitive to changes. – More sensitive to recent data. • α controls emphasis on recent data. • Do not forecast trend well. – Trend adjusted exponential smoothing - p. 90-93 Bina Nusantara Forecast Effects of Smoothing Constant Ft = At - 1 + (1- )At - 2 + (1- )2At - 3 + ... Weights = Bina Nusantara Prior Period 2 periods ago 3 periods ago (1 - ) (1 - )2 = 0.10 10% 9% 8.1% = 0.90 90% 9% 0.9% Choosing - Comparing Forecasts A good method has a small error. Choose to produce a small error. Error = Demand - Forecast Error > 0 if forecast is too low Error < 0 if forecast is too high MAD = Mean Absolute Deviation: Average of absolute values of errors. MSE = Mean Squared Error: Average of squared errors. MAPE = Mean Absolute Percentage Error: Average of absolute value of percentage errors. Bina Nusantara Forecast Error Equations • Mean Absolute Deviation (MAD) n MAD | yi yˆ i | i1 n | forecast errors | n • Mean Squared Error (MSE) n MSE Bina Nusantara (y i yˆ i )2 i1 n forecast errors n 2 Forecast Error Equations • Mean Absolute Percentage Error (MAPE) | y i yˆ i | | forecast errors | yi i1 Actual MAPE n n n Bina Nusantara Forecast Error Example Actual 20 10 24 20 Bina Nusantara F1 19 15 22 21 F1 error 1 -5 2 -1 F2 18 13 21 18 F2 error 2 -3 3 2 MAD F1 = 9/4 = 2.25 F2 = 10/4 = 2.5 MSE F1 = 31/4 = 7.75 F2 = 26/4 = 6.5 MAPE F1 = 0.171 = 17.1% F2 = 0.156 = 15.6% Which Forecast is Best? Bina Nusantara MAD F1 = 9/4 = 2.25 F2 = 10/4 = 2.5 MSE F1 = 31/4 = 7.75 F2 = 26/4 = 6.5 MAPE F1 = 0.171 = 17.1% F2 = 0.156 = 15.6% Bina Nusantara
© Copyright 2026 Paperzz