b - 273 - Design of a Deep Borehole Tiltmeter J.C. HARRISON, J. LEVINE & C.M. MEERTENS, Boulder, CO with 2 figures Harrison, J.C., Levine, J. & Meertens, C.M., 1983: Design of a Deep Borehole Tiltmeter. Proceedings of the Ninth International Symposium on Earth Tides, pp. 2 7 3 - 2 8 1 . Abstract: A deep borehole tiltmeter.has been developed which can be operated below the near surface layers to reduce the influence o f meteorological effects. This is relatively inexpensive to build and to install. A 15 cm diameter borehole is cased with steel irrigation pipe and has a stainless steel instrument compartment 10 cm in internal diameter at the bottom of the hole. The tiltmeter is contained in a 2 m stainless capsule held against the sides of the hole with flat springs. The tilt sensors are mounted on a platform which can be leveled by means of wtorscontrolled from the surface, allowing for hole deviations of up to five degrees from the vertical. A number of different tilt sensors have been used on such platforms. Simple pendulums and horizontal pendulums have so far yielded the best results. A depth of 33 m is normally used, although this is not a critical aspect of the design, because the electronics are inside the instrument capsule. The instruments are capable of operating unattended for long periods of time at tidal sensitivity; results of our tidal measurements can be found as well in these proceedings. Keywords: borehole tiltmeter, secular tiit,.tilt tides, vertical pendulum. 1. Introduction A t the time of the Eighth International Symposium on Earth rides in Bonn, it was clear to many of us that there are important advantages to making earth tide tilt observations with borehole tiltmeters, and that many applications--such as the investigation of elastic inhomogeneities in the crust or earthquake prediction-would require deploying a considerable number of these instruments. We therefore set out to develop a borehole tiltmeter which would be relatively cheap to build and install; this not only meant building an inexpensive tiltmeter but it also meant using a small diameter hole and not going any deeper than necessary. 2 . Borehole design The holes we use are nominally 15 cm in diameter and 33 m deep. After the hole is drilled, a steel casing 135 rmn in diameter witha wall is pressed into the hole. The casing is shipped to the Publisher: E. Schwekerbart’sche Verlagsbuchhandlung, D-7000 Stuttgart - 274 - s i t e i n l e n g t h s of six m e t e r s , where i t i s w e l d e d i n t o a continuous w a t e r t i g h t p i p e a s i t i s lowered down t h e h o l e . The c a s i n g i s s e a l e d i n p l a c e b y means of cement poured i n t o t h e bottom of t h e h o l e b e f o r e t h e casing i s i n s e r t e d , and around t h e s i d e s of t h e casing a f t e r it i s i n place. The s t e e l c a s i n g t e r m i n a t e s a t t h e bottom i n a s t a i n l e s s s t e e l s e c t i o n t h a t i s 2.3 meters long and which i s used t o hold t h e t i l t m e t e r c a p s u l e . The bottom s e c t i o n i s 1 1 . 5 Cm i n o u t s i d e d i a m e t e r , and i t h a s a w a l l t h i c k n e s s of 6 mm. The t o p of t h i s s e c t i o n has a t r a n s i t i o n s e c t i o n t o t h e s t a n d a r d carbon s t e e l p i p e which cons t i t u t e s t h e r e s t of t h e c a s i n g . The bottom s e c t i o n i s c l o s e d a t i t s lower end by a p l a t e welded on i n t h e shop. A hemispherical knob i s welded t o t h e i n s i d e of t h e bottom p l a t e t o s u p p o r t t h e weight o f t h e t i l t m e t e r c a p s u l e . 3. I n s t r u m e n t c a p s u l e The i n s t r u m e n t c a p s u l e i s a 1 . 8 meter long s t a i n l e s s s t e e l t u b e which i s c l o s e d a t t h e bottom and has a p a i r of c o n t a c t p o i n t s and a f l a t s p r i n g welded on n e a r i t s t o p and a second p a i r w i t h a second f l a t s p r i n g n e a r i t s bottom. The t o p o f t h e c a p s u l e i s s e a l e d w i t h a cap a t t a c h e d by screws a n d t h a t c o n t a i n s an O-ring. The cap h a s a w a t e r - t i g h t opening f o r t h e e l e c t r i c a l c a b l e t o pass t h r o u g h , hooks f o r a t t a c h i n g t h e l i f t i n g c a b l e , and a p o s t f o r a t t a c h i n g t h e o r i e n t i n g rods. The c a p s u l e was designed t o minimize t i l t - s t r a i n coupling due t o c a v i t y e f f e c t s . HARRISON (1976) has shown t h a t t h e r e i s no c a v i t y e f f e c t i f t h e s i d e o f t h e borehole i s used a s a r e f e r e n c e a x i s f o r t h e t i l t m e t e r , and o n l y a s m a l l e f f e c t i f t h e c e n t e r o f t h e bottom o f t h e h o l e i s used a s one r e f e r e n c e p o i n t . The c a p s u l e i s r a i s e d and lowered by hand i n a few minutes u s i n g a s t a i n l e s s s t e e l l i f t i n g c a b l e a t t a c h e d t o t h e top cap. The l e n g t h o f t h e c a p s u l e a l s o improves t h e c o u p l i n g between t h e t i l t m e t e r and t h e E a r t h by i n c r e a s i n g t h e e f f e c t i v e l e v e r arm from a few c e n t i m e t e r s ( t h e l e n g t h of t h e t i l t m e t e r ) t o approximately two m e t e r s ( t h e l e n g t h o f t h e c a p u s l e ) . F i g u r e 1 shows t h e c a p s u l e i n s t a l l e d a t t h e bottom of t h e borehole. 4 . Capsule o r i e n t a t i o n To compare the t i l t s recorded by d i f f e r e n t i n s t r u m e n t s o r t o - 215 - compare t h e t i d a l t i l t with theory, i t i s n e c e s s a r y t o know t h e o r i e n t a t i o n of t h e t i l t m e t e r . Magnetic sensors i n s i d e t h e c a p s u l e which s e n s e t h e d i r e c t i o n o f t h e E a r t h ' s magnetic f i e l d cannot b e used i n t h i s i n s t a n c e s i n c e t h e c a s i n g i s magnetic. The c a p s u l e i t s e l f i s n o t v i s i b l e from t h e s u r f a c e , so t h a t w e cannot determine t h e o r i e n t a t i o n by s i g h t i n g on t h e c a p s u l e from t h e t o p of t h e h o l e . STEEL CASING I4 cm 0.0. 3 0 m LONG F i g . 1. A schematic diagram of t h e t i l t m e t e r c a p s u l e i n s t a l l e d a t t h e bottom of a borehole 33 meters deep. We have developed a system i n v o l v i n g a s e r i e s of l i g h t r o d s t o d e t e r m i n e t h e o r i e n t a t i o n of the c a p s u l e a t t h e bottom of t h e h o l e . A p o s t i s welded t o t h e t o p cap of t h e t i l t m e t e r c a p s u l e w i t h a f l a t s i d e o r i e n t e d s o t h a t t h e normal t o t h e f l a t s i d e i s a l o n g t h e a x i s o f one o f t h e t i l t m e t e r s . A d d i t i o n a l s e c t i o n s o f rod are a t t a c h e d as t h e c a p s u l e i s lowered. The f i r s t s e c t i o n a t t a c h e s t o - 276 the post on the capsule using a trapped ball and a detent to provide an easily removable coupling; subsequent sections bolt together with small screws. Each section is notched so that it can only be attached in one orientation. After the orientation of the top notch is determined using a transit and a compass, the entire series of rods is removed from the capsule by simply lifting gently to disconnect the bottom rod from the tiltmeter capsule. This method has been used to determine the azimuth of instruments at the bottom of holes 33meters deep with an uncertainty of about 1 O . It is difficult to extend this technique to holes much deeper than 33 meters since the weight of the rods becomes appreciable, and the capsule becomes very difficult to handle. 5 . Leveling platform The leveling platform mounts inside the tiltmeter capsule and is used to support and level the tilt sensors. It is supported on a three-point kinematic mount. Two of the supports are screws connected to small motors. These motors are driven from the surface and are used to re-zero the instrument. The leveling platform has a range of approximately five degrees in any direction, so that the instrument must be vertical to within five degrees to start with. This limited re-zeroing capability imposes some constraint on the drillers, but the required tolerance can be met in 33 meter deep holes. Figure 2 shows the tiltmeters and the leveling platform. 6 . Tilt sensors All of our instruments use mechanical tilt sensors. The sensors are pendulums mounted on fine wire suspensions, manufactured by Larry Burris of Instech, Inc. We have experimented with three types of sensors: simple pendulums 5 cm in length, small horizontal pendulums with a one-second free period, and a rather complex "straight line level" with a free period of three seconds. Our $est results t o datehave come from the horizontal pendulums, and we expect to use this type of sensor in our future instruments. In all of the sensors the pendulum is placed between two fixed plates separated by about 1 um to form two arms o f a capacitance bridge. The other two arms are formed by two fixed impedances, traditionally the center-tapped secondary o f a carefully balanced transformer. Two precision resistors are used to complete the - 277 If t h e two o u t e r p l a t e s a r e d r i v e n out-of-phase by a 2 1 kHz bridge. a c s i g n a l , t h e s i g n a l a t t h e c e n t e r p l a t e has a magnitude proport i o n a l t o t h e d e f l e c t i o n o f t h e center p l a t e from t h e e l e c t r i c a l midpoint of t h e system ( i . e . from t h e p o s t i o n a t which t h e p o t e n t i a l i n t h e gap i s t h e same as t h e mean of t h e outer p l a t e d r i v i n g v o l t a g e s ) , and a phase ( r e l a t i v e t o t h e d r i v i n g s i g n a l ) g i v i n g t h e d i r e c t i o n of t h e d e v i a t i o n . SUPWRT ROD FOR ELECTRONICS .. _ . SCALE: 0 t F i g . 2. platform t h e tilt shown i s INCHES I 2 1 S c a l e view o f t h e t i l t s e n s o r s mounted on t h e l e v e l i n g i n s i d e o f t h e c a p s u l e . The e l e c t r o n i c s package i s above sensors i n s i d e t h e c a p s u l e and i s n o t shown. A l s o n o t t h e thermal i n s u l a t i o n . 7 . Tiltmeter electronics - 278 Since both t h e amplitude and phase of t h e s i g n a l a t t h e c e n t e r p l a t e carry information, w e use a phase-sensitive d e t e c t o r t o d e r i v e a v o l t a g e p r o p o r t i o n a l t o t h e t i l t . The r e f e r e n c e f o r t h e phase d e t e c t o r i s obtained from t h e d r i v e s i g n a l t o t h e o u t e r The s i g n a l i n p u t t o t h e p h a s e - s e n s i t i v e d e t e c t o r i s d r i v e n plates. by a p r e a m p l i f i e r having a g a i n of s e v e r a l thousand. The a c t u a l a test t a b l e and a d j u s t i n g t h e g a i n t o y i e l d an o v e r a l l s e n s i t i v i t y a t t h e o u t p u t of nominally 2 v o l t s / m i c r o - r a d i a n . gain of the instrument is set by running t h e tilt s e n s o r on The electronkcboards a r e designed and b u i l t by J e r r y Larson o f Maryland I n s t r u m e n t a t i o n . An e q u a l l y d i f f i c u l t problem i s t h e s e n s i t i v i t y o f t h e system t o f l u c t u a t i o n s i n the p a r a s i t i c capacitances i n t h e c i r c u i t ( e s p e c i a l l y i n t h e components t h a t d r i v e t h e o u t e r p l a t e s ) and between t h e connecting w i r e s and ground. The c a p a c i t a n c e between t h e c e n t e r p l a t e and e i t h e r end p l a t e i s of o r d e r 3 p f , and a f u l l s c a l e t i l t , of o r d e r 5 m i c r o - r a d i a n s , r e s u l t s i n a change of only about one p a r t p e r m i l l i o n i n t h i s c a p a c i t a n c e . Thus t h e e n t i r e system must have s t r a y c a p a c i t a n c e s whose v a l u e s change by l e s s than a small f r a c t i o n o f a p i c o f a r a d , a n d i n p r a c t i c e , t h i s r e q u i r e ment i s f a r more s t r i n g e n t than t h e need f o r high e l e c t r i c a l g a i n . We have addressed t h i s requirement by keeping t h e system a s s m a l l as p o s s i b l e and by p l a c i n g t h e e n t i r e e l e c t r o n i c s package i n t h e t e m p e r a t u r e - s t a b i l i z e d environment a t t h e bottom o f t h e h o l e . The d r i v e v o l t a g e f o r t h e o u t e r p l a t e s i s o b t a i n e d from a small step-up transformer. The secondary of t h e t r a n s f o r m e r d r i v e s a pair- of matched r e s i s t o r s t o ground; i n t h e c i r c u i t , t h e b r i d g e i s formed between t h e two c a p a c i t a n c e s o f t h e t i l t s e n s o r and t h e two p r e c i s i o n r e s i s t o r s , and t h e balance may be trimmed by i n s e r t i n g a small p o t e n t i o m e t e r i f d e s i r e d . Although we have n o t found t h i s t o be d e s i r a b l e , i t has been n e c e s s a r y t o a d j u s t t h e r e l a t i v e phase of t h e two o u t p u t s s o t h a t t h e two p l a t e s a r e d r i v e n e x a c t l y out o f phase. Unless t h i s i s done q u i t e c a r e f u l l y , t h e s i g n a l a t t h e i n p u t s t a t e does n o t go t o zero even a t t h e e l e c t r i c a l c e n t e r due t o t h e a p p r e c i a b l e q u a d r a t u r e v o l t a g e . The quadrature v o l t a g e may be l a r g e enough t o s a t u r a t e t h e i n p u t s t a g e , if t h e system i s s u f f i c i e n t l y o u t of b a l a n c e , thereby l i m i t i n g t h e s e n s i t i v i t y of t h e system. The trimming c a p a c i t o r s r e q u i r e d t o cancel t h e quadrature v o l t a g e a r e on t h e o r d e r of a few p i c o f a r a d s S O t h a t l e a d d r e s s i s c r i t i c a l . The e n t i r e c i r c u i t i s enclosed i n a s h i e l d e d box t o minimize changes i n t h e s t r a y c a p a c i t a n c e s . Never- - 279 - t h e l e s s , i t i s p o s s i b l e t h a t some o f o u r long-term t i l t s and s o m e o f t h e r e s i d u a l s e n s i t i v i t y t o temperature changes a r e caused by changes i n t h e v a l u e s of some of t h e s e components w i t h a r e s u l t i n g change i n t h e b a l a n c e p o i n t o f t h e c a p a c i t a n c e b r i d g e . 8 . D i g i t i z i n g systems Every h o l e has i t s own d i g i t i z e r . The most important advantage of t h e d i g i t i z e r i s t h a t i t ' e l i m i n a t e s t h e need € o r t r a n s m i t t i n g a n a l o g t i l t i n f o r m a t i o n on t h e s u r f a c e where i t i s s u b j e c t t o n o i s e pickup. It a l s o i n c r e a s e s t h e i s o l a t i o n between h o l e s and p r e v e n t s l a r g e ground l o o p s between widely-spaced i n s t r u m e n t s . The d i g j t i z e r i n each h o l e i s made up o f an analog m u l t i p l e x o r , an a n a l o g - t o d i g i t i z e r c o n v e r t e r , and a c o n t r o l s e c t i o n which i s made up of approximately 25 i n t e g r a t e d c i r c u i t s . The d i g i t i z e r communicates w i t h t h e r e c o r d i n g system v i a two o p t i c a l l y i s o l a t e d coaxial cables using a b i t - s e r i a l transmission system. The t r a n s m i s s i o n system i s t h e same a s o r d i n a r y RS-232C e x c e p t t h a t t h e v o l t a g e l e v e l s a r e s t a n d a r d TTL l e v e l s r a t h e r t h a n t h e b i - p o l a r l e v e l s used i n t h e RS-232C p r o t o c o l . By o p t i c a l l y i s o l a t i n g t h e c a b l e s , t h e i n s t r u m e n t i s decoupled from t h e ground a t t h e r e c o r d i n g system which may be l o c a t e d s e v e r a l hundred m e t e r s away. The Boulder s i t e i s connected by a d e d i c a t e d telephone l i n e t o a PDP 1 1 / 3 4 computer on t h e U n i v e r s i t y o f Colorado campus. T h i s computer i n t e r r o g a t e s t h e d a t a l o g g e r s e v e r y 6 minutes and s t o r e s t h e v a l u e s on d i s k . A t t h e E r i e s i t e (24 km from Boulder), t h e d a t a l o g g e r s a r e i n t e r r o g a t e d by a l o c a l microprocessor which s t o r e s up t o s i x hours of d a t a . The d a t a a r e t r a n s m i t t e d t o Boulder over a r a d i o l i n k once p e r hour. 9 . Power supply The power consumption of t h e e l e c t r o n i c s package d e s c r i b e d above t o g e t h e r with t h e d i g i t i z i n g system i s approximately 7 w a t t s . This i s somewhat more 'than can be c o n v e n i e n t l y s u p p l i e d by b a t t e r i e s . All o f o u r e x i s t i n g s i t e s have commercial power nearby. The power supply w i l l be a r e s t r i c t i o n on s i t e s e l e c t i o n f o r t h e f o r e s e e a b l e future. The d a t a l o g g e r boards and t h e DC-DC c o n v e r t e r t h a t s u p p l i e s power t o t h e t i l t m e t e r s suspend i n a p l a s t i c c a p s u l e about 5 m i n t o t h e b o r e h o l e from t h e s u r f a c e . The DC-DC c o n v e r t e r allows us t o d e f i n e a completely independent ground system f o r t h e t i l t m e t e r s , t h u s i s o l a t i n g them from s u r f a c e e l e c t r i c a l n o i s e . 1 0 . Summary We have developed a borehole t i l t m e t e r t h a t i s capable o f opera t i n g for long periods o f time a t t i d a l s e n s i t i v i t y . In addition t o t h e t i l t m e t e r and i t s a s s o c i a t e d e l e c t r o n i c s , we have c o n s t r u c t e d a p p r o p r i a t e a n c i l l a r y hardware t o a c q u i r e and analyze d a t a from many widely s e p a r a t e d instruments. W e c u r r e n t l y have s i x of t h e s e i n s t r u m e n t s i n o p e r a t i o n . R e s u l t s t o d a t e are d e s c r i b e d i n a companion paper i n t h i s volume. ACKNOWLEDGEMENTS This work i s supported i n p a r t by t h e A i r Force Geophysics Laboratory and by t h e National Bureau o f Standards. REFERENCES H a r r i s o n , J . C . , 1976. Cavity and topographic e f f e c t s i n tilt and s t r a i n , J . Geophys. Res., 81: 319-328. H a r r i s o n , J . C . & Meertens, C.M. C o o p e r a t i v e I n s t i t u t e f o r Research i n Environmental S c i e n c e s Campus Box 449 U n i v e r s i t y o f Colorado Boulder, CO 80309 Levine , J. J o i n t I n s t i t u t e f o r Laboratory Astrophysics Campus Box 440 U n i v e r s i t y o f Colorado Boulder, CO 80309
© Copyright 2025 Paperzz