“Arise! Awake! Stop not till the Goal is reached” 1 /6 PROBLEMS on TRIGONOMETRY 1. (With Hints/Solutions) Prove that, (i) tan 70 = tan 20 + 2 tan50. (ii) tan 50 = tan 40 + 2.tan 10 . (iii) tan 70 = 2tan40 + tan20 + 4.tan10. [HINTS: (i) Since 70 + 20 = 90 Now, tan(70 20 ) tan 70 tan 20 1 tan 70.tan 20 tan 70 tan 20 2.tan(70 20 ) tan 70 tan 20 2.tan 50 , [Note that, If A + B = 90, then tan(A B) tan A tan B tan A tan B 2.tan(A B) this is an identity 1 tan A.tan B Use this identity, to prove such type of problems. Choose values of A & B such that A + B = 90. In such type of problems value of (A – B) (here 50) will also be present. ] [HINTS: (ii) Let A = 50° and B = 40°, A + B = 90° Then, tan A tan B 2.tan(A B) tan 50 tan 40 2.tan10 tan 50 tan 40 2.tan10 ] [HINTS: (iii) If A + B = 90°, then tan A tan B tan(A B) tan A tan B 2.tan(A B) tan A tan B 2.tan(A B) (i) 1 tan A.tan B In (i), putting, A=70°, B=20°, tan 70 tan 20 2.tan 50 (ii) tan 50 tan 40 2.tan10 (iii) Again In (i), putting, A=50°, B=40°, By (ii) & (iii), tan 70 tan 20 2.(tan 40 2 tan10 ) tan 70 2 tan 40 tan 20 4 tan10 (proved) ] 2. Prove that, (i) cot 70 + 4 cos70 = 3 (iii) 4.sin 50 – 3.tan 50 = 1. [HINTS: (i) LHS cot 70 4cos 70 cos 70 cos 50 cos 50 sin 70 sin 70 cos 70 2.2cos 70.sin 70 sin 70 cos 70 2sin140 sin 70 [ sin140 sin(90 50 ) cos 50 ] 2cos 60.cos10 cos 50 (ii) tan 70 + tan 10 – tan50 = 3. (iv) tan 20 + tan 70 = 2.cosec 40. cos10 cos 50 sin 70 2 cos 30. cos 20 cos 20 2 3 3 RHS ] 2 [HINTS: (ii) LHS tan 70 tan10 tan 50 tan(60 10 ) tan(60 10 ) tan10 tan 60 tan10 tan 60 tan10 3 tan10 3 tan10 tan10 tan10 1 tan 60 . tan10 1 tan 60 . tan10 1 3 tan10 1 3 tan10 3 tan10 1 3 tan10 2 3 tan10 1 3 tan10 1 3 tan 10 3.2 3 tan10 2 tan10 tan10 3 tan 3 10 (0342) 262 4499 1 3tan 2 10 3. tan10 3 tan10 tan3 10 1 3 tan 2 10 3.tan 30 3 RHS ] CONFI-HS-PR&SOL-TRIG-02-161304 A Mathematics Center for Excellence “Arise! Awake! Stop not till the Goal is reached” 2 /6 [HINTS: (iii) LHS 4sin 50 3 tan 50 2.2 sin 50.cos 50 3 sin 50 3 sin 50 2 cos 50 2 sin100 2 cos 50 2 cos10 2 sin 60 sin 50 2 cos10 cos10 cos110 cos10 cos110 cos 50 cos 50 cos 50 2 cos 60 cos 50 1 RHS ] cos 50 1 2 [HINTS:(iv) LHS tan 20 tan 70 tan 20 cot 20 2 cos ec40 sin 20 cos 20 3. 2 sin 20 cos 20 2 If tan(A B) sin C 1 , prove that, tanA.tanB = tan2C. tan A sin 2 A 2 2 [HINTS: tan(A B) sin C 1 sin C sin A cos(A B) sin(A B) cos A 2 2 tan A sin A sin( A A B) sin 2 C sin A sin 2 A sin A cos(A B) sin 2 C 2 1 sin C 4. sin Asin B cos(A B) sin A sin B 2 sin C sin A sin B 1 cos(A B) tan A tan B tan 2 C (proved) ] 2 . cos A cos B cos 3 B and *If sin A cos(A B) sin A 1 2 . sin A sin B sin 3 B ,P.T, sin( A B) . 3 [HINTS: 2.cos A cos B cos3 B (i) and 2.sin A sin B sin 3 B (ii) Applying (ii)×cosB – (i) ×sinB, 2.sin(A B) sin B.cos B sin 3 B.cos B sin B.cos B cos3 B.sin B 1 sin B.cos B sin 2B (iii) 2 Adding the squares of (i) & (ii), 2 cos B cos3 B 2 sin B sin 3 B 2 1 2(cos 4 B sin 4 B) cos6 B sin 6 B 2 1 2cos 2B 1 3cos 2 B.sin 2 B 2 8cos 2B 3 4cos 2 B.sin 2 B 0 8cos 2B 3 sin 2 2B 0 8cos 2B 3 3cos 2 2B 0 3cos 2 2B 8cos 2B 3 0 1 sin ce cos 2B 3 3 1 1 1 1 From (iii) sin 2 (A B) 1 sin(A B) proved.] 8 9 9 3 Find a & b such that the inequality a ≤ 3.cos x + 5.sin(x– /6) ≤ b holds good x. 5 3 5 1 5 3 [HINTS: 3cos x 5sin x 3cos x sin x cos x cos x sin x 6 2 2 2 2 3cos 2B 1 cos 2B 3 0 5. cos 2B 1 5 3 1 5 3 19 cos x sin x 19.cos x [where, cos & sin ] 2 19 2 19 2 19 2 19 Now x, 19 19.cos x 19 Hence a 19 (0342) 262 4499 & b 19 CONFI-HS-PR&SOL-TRIG-02-161304 A Mathematics Center for Excellence
© Copyright 2025 Paperzz