A DIAGONAL METRIC WORKSHEET Consider the following general diagonal metric: ds2 = –A(dx0)2 + B(dx1)2 + C(dx2)2 + D(dx3)2 where dx0, dx1, dx2, and dx3 are completely arbitrary coordinates and A, B, C, and D are arbitrary functions of any or all of the coordinates. This worksheet (adapted from results listed in Rindler, Essential Relativity, 2/e, a Springer-Verlag, 1977) allows you to quickly calculate the components of Cno and Rno /+ R a nao for any specific special case of such a metric. In this worksheet, I use the following shorthand notation: 2A 22 B A0 / 0 , B12 / 1 2 , and so on. 2x 2x 2x To use this worksheet, start by crossing out each tabulated term that is zero for the specific metric in question. For the remaining terms, write the term’s value in the space above that term. For the Ricci tensor components, you can then gather the terms in the space provided at the bottom. To adapt this worksheet to smaller dimensional spaces or spacetimes, treat the metric components corresponding to any nonexistent coordinates as if they had the value 1 and the remaining metric components as being independent of the nonexistent coordinates. CHRISTOFFEL SYMBOLS 0 C00 = 1 2A A0 0 C100 = C01 = 0 C11 = 1 2A B0 0 C22 = 1 2A C0 0 C33 = 1 C11 = 1 2B B1 1 1 C12 = C21 = 1 1 C01 = C10 = 1 C00 = 1 2B 1 2C 1 2D A3 A1 1 C22 =- 21B C1 1 2C C0 C122 = C221 = 1 2D D0 C133 = C331 = 3 C11 =- 21D B3 C200 = C002 = 1 2A 1 2A A2 1 2C C1 C222 = 1 2C 1 2B B2 D1 3 C22 =- 21D C3 RICCI TENSOR COMPONENTS (following three pages) C113 = C311 = C322 = C223 = C2 C233 = C332 = 1 2A A3 1 2B B3 1 =0 other Cno 1 2C 2 =0 other Cno 2 C33 =- 21C D2 1 2D C300 = C003 = 0 =0 other Cno D0 1 C33 =- 21B D1 2 C11 =- 21C B2 A2 C033 = C330 = 3 C00 = B0 A1 C022 = C220 = 2 C00 = 1 2B 1 2A 1 2D D2 C333 = 1 2D D3 3 =0 other Cno C3 R00 = 0 + 1 2B A11 + 1 2C A22 + 1 2D A33 B00 - 1 2C C00 - 1 2D D00 + 0 - 1 2B + 0 + 1 4B 2 B 20 + 1 4C 2 C 20 + 1 4D 2 D 20 + 0 + 1 4AB A0 B0 + 1 4AC A0 C0 + 1 4AD A0 D0 - 1 4BA A1 A1 - 1 4B 2 A1 B1 + 1 4BC A1 C1 + 1 4BD A1 D1 - 1 4CA A2 A2 + 1 4CB A2 B2 - 1 4C 2 A2 C2 + 1 4CD A2 D2 - 1 4DA A3 A3 + 1 4DB A3 B3 + 1 4DC A3 C3 - 1 4D 2 A3 D3 B00 + 0 - 1 2C B22 - 1 2D B33 A11 + 0 - 1 2C C11 - 1 2D D11 0 + 1 4C 2 C 21 + 1 4D 2 D 21 + 1 4AC B0 C0 + 1 4AD B0 D0 + 1 4BC B1 C1 + 1 4BD B1 D1 R00 = R11 = 1 2A - 1 2A + 1 4A 2 A 21 + - 1 4A 2 B0 A0 - + 1 4BA B1 A1 + - 1 4CA B2 A2 + 1 4CB B2 B2 + 1 4C 2 B2 C 2 - 1 4CD B2 D2 - 1 4DA B3 A3 + 1 4DB B3 B3 - 1 4DC B3 C3 + 1 4D 2 B3 D3 R11 = 1 4AB B0 B0 0 R22 = C00 - 1 2B C11 + 0 - 1 2D C33 A22 - 1 2B B22 + 0 - 1 2D D22 0 + 1 4D 2 D 22 C0 C0 + 1 4AD C0 D0 C1 C1 - 1 4BD C1 D1 + 1 4CD C2 D2 C3 C3 + 1 4D 2 C3 D3 1 2A - 1 2A + 1 4A 2 A 22 + 1 4B 2 B 22 + - 1 4A 2 C0 A0 + 1 4AB C 0 B0 - - 1 4BA C1 A1 + 1 4B 2 C 1 B1 + 1 4BC + 1 4CA C2 A2 + 1 4CB C2 B2 + 0 - 1 4DA C3 A3 - 1 4DB C3 B3 + 1 4DC D00 - 1 2B D11 - 1 2C D22 + 0 A33 - 1 2B B33 - 1 2C C33 + 0 0 1 4AC R22 = R33 = 1 2A - 1 2A + 1 4A 2 A 23 + 1 4B 2 B 23 + 1 4C 2 C 23 + - 1 4A 2 D0 A0 + 1 4AB D0 B0 + 1 4AC D0 C0 - 1 4AD D0 D0 - 1 4BA D1 A1 + 1 4B 2 D1 B1 - 1 4BC D1 C1 + 1 4BD D1 D1 - 1 4CA D2 A2 - 1 4CB D2 B2 + 1 4C 2 D2 C2 + 1 4CD D2 D2 + 1 4DA D3 A3 + 1 4DB D3 B3 + 1 4DC D3 C3 + R33 = 0 R01 = 1 4AC + - 1 2D A1 C0 + 1 4AD 1 2B - 1 2D + 1 4AD - 1 2C + 1 4AC - 1 2D + 1 4BD - 1 2C + 1 4BC - 1 2B + 1 4CB 1 2C C01 D01 A1 D0 + 1 4C 2 C0 C1 + 1 4D 2 D0 D1 + 1 4BC B0 C1 + 1 4BD B0 D1 + 1 4B 2 B0 B2 + 1 4D 2 D0 D2 + 1 4CB C 0 B2 + 1 4CD C0 D2 + 1 4B 2 B0 B3 + 1 4C 2 C0 C3 + 1 4DB D0 B3 + 1 4DC D0 C3 + 1 4A 2 A1 A2 + 1 4D 2 D1 D2 + 1 4CA C1 A2 + 1 4CD C1 D2 + 1 4A 2 A1 A3 + 1 4C 2 C1 C3 + 1 4DA D1 A3 + 1 4DC + 1 4A 2 A2 A3 + 1 4B 2 B2 B3 + 1 4DA D2 A3 + 1 4DB D 2 B3 R01 = R02 = + 1 4AB B02 A2 B0 D02 A2 D0 R02 = R03 = + 1 4AB 1 2B B03 A3 B0 C03 A3 C0 R03 = R12 = + 1 4BA 1 2A A12 B2 A1 D12 B2 D1 R12 = R13 = + 1 4BA 1 2A A13 B3 A1 C13 B3 C 1 D1 C3 R13 = R23 = + R23 = 1 4CA 1 2A A23 C3 A2 B23 C3 B2
© Copyright 2026 Paperzz