Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Lower extremity - bones Lower Extremity Tolerances based on PMHS experiments Standards Pelvis Mechanical axis: 5 degree to vertical axis Anatomy Long bones fractures - classification Bone tolerances Injury mechanisms Injury criteria and levels, standards Countermeasures Thigh Leg New Delhi, December 4, 2010 Foot Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Movement directions Classification of joints z Flexion z Extension z Adduction z Abduction z Rotation • Fully movable joint – the hip and ankle • Partially movable joint – the inter metatarsal joint • Immovable joint – the sacroiliac joint – the pubic symphysis Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Frontal view of the male and female pelvis Anatomy of the hip joint Main anatomical structure Sidan 1 Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Moment-angle characteristics of the hip joint Anatomy of the knee failure of joint failure of joint physiological movement Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Anatomy of the foot-ankle complex Movement of the ankle joint Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting The types of fractures according to loading Physiological movement of joints of extremities Kapandji [1970], White and Panjabi [1978], Frankel and Nordin [1980] Sidan 2 Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Femur strength Tibia and fibula strength Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Lower extremity injuries in the front and side car accidents General injury patterns of extremities in accidents • • • • Bone Fractures Joint Dislocation Sprain and Rupture of Soft Tissues Nerve System Injuries States 1986 Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Motorcycle accidents injury distribution (non fatal accidents) head fractures with concussion 7% Injuries to pelvic region • pelvic injuries severe face injuries 7% severe neck injuries 1% – – – – – upper extremity injuries 40% soft tissue injuries 5%, nerve, vessels injuries 2% avulsions of muscle insertions (sport mainly) isolated fractures of the pelvic ring (minor impacts) multiple fractures of fractures-dislocations (common) injuries to the sacrum and coccyx (not serious but painful) associated soft tissue injuries (bladder, urethra, vagina, vascular injuries...) • hip injuries – avulsions of the epiphysis – traumatic hip dislocations and fracture-dislocations (acetabulum) – fractures of the neck of the femur lower extremity injuries 59% Sidan 3 Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Injury mechanisms to lower extremity in frontal impacts Pelvis: injury mechanisms Frontal impact Factors influencing lower extremity injuries Lateral impact More factors: age, belt use, pre-impact breaking, car weight,.. Femoral shaft fracture Car interior deformation Fractured patella Knee ligament injury Toepan local intrusion Posterior hip dislocation Intrapelvic (femur neck, trochanter)fracturedislocations and fractured pelvis Fracture - dislocation Foot pedals, foot entrapment Sliding and twisting on the pedals Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Major injuries to lower extremity in car-pedestrian accidents Injury mechanisms of the knee joint in pedestrian accidents Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Damage mechanism of knee joint Fractures of the ankle and direction of forces Shearing displacement Lateral impact Compressive force Medial impact Shearing force Impact force : Ligament with high risk of damage : Bone with high risk of fracture Ground reaction force Bending deformation Abduction tibial fracture Kajzer et al. 1997 Sidan 4 Adduction tibial fracture Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Pelvis impact response - tolerances Force-deflection response of pelvis • Vertical loading – 3.7 kN dynamic -> bilateral dislocation of the sacroiliac joint – 3.5 kN static -> similar kind of injury (Fasola et al. 1955) • Frontal loading – 2.7 kN at the pubis -> fracture of the pubic rami (Fasolaet et al. 1955) – 8.9 - 25.6 kN at the knee -> hip/pelvic fractures (Melvin et al. 1980) – 37 kN noted -> not fractures (Nusholtz 1982) • Lateral loading – Fracture force: 4.9 - 11.9 kN for males, 4.4 - 8.2 kN for females (Ramet, Cesari 1979 - 1983) – Average force for AIS 2-3: 8.6 kN for males, 5.6 kN for females – Impact Force = 193.85 Wc - 4710.6, Wc - body weight -> for 50th percentile male: 9.8 kN – even study from UMTRI and University of Heidelberg Lateral impact to greater trochanter, pendulum diameter 150 mm, mass 23.4 kg, speed 16.2-33.8 km/h. Peak pelvis acceleration and pelvic deformation not reliable measures. Ratio of pelvic deformation to pelvic width correlate with pubic rami fracture: 25% probability of fracture at 27% pelvic compression Viano et al. 1989 Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Test setup and registered parameters Studies on pelvis impact tolerance Biomechanical data in sitting posture which simulates driver or passenger of a car in the lateral impact situation. 1979 1980 1982 Ramet and Cesari IRCOBI Cesari et al. 24th STAPP Cesari and Ramet 26th STAPP 1985 Cesari et al. 9th ESV Nusholtz et al. 26th STAPP Haffner 10th ESV Pelvic Lateral Deformation Table Accelerometer Wing fixation screw Pre-load (400 N) Distance between iliacs Spring Load cell (1) Pelvic Force V=32 km/h Impact Force = Ram mass Acceleration Ram Styrodure R (100 120 50) Load cell (2) Knee fixation plate Biomechanical data in standing posture which simulates pedestrian of car-pedestrian obtained in 2003 (Matsui, Kajzer). Simulated ground Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Pelvic Fracture Risk Curve Picture from experiments - top view 1.0 n=11 0.8 0.6 0.4 9.6 kN 0.2 8.9 kN 0.0 0 2 4 8 10 12 14 6 Normalized Impact Force (kN) Impact force of 8.9 kN — 20% risk of pelvic fracture Impact force of 9.8 kN — 50% risk of pelvic fracture Sidan 5 Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting PMHS: experiment with bodyparts or tissues Tolerance levels of upper and lower leg • Femur force EEVC WG 10 ≤ 4 kN 4.23 kN 5.28kN 7.1 - 7.7 kN (static axial compression) 11.6 kN (dynamic axial compression) • Femur bending moment EEVC WG 10 ≤ 220 Nm 310 Nm (males static) • Tibia acceleration EEVC WG 10 ≤ 150 g fractures 170 - 270 g (average 222 g) no fracture 185 - 243 g (average 202 g) 124 - 207 Nm (static bending moment) 280 - 320 Nm (dynamic bending moment) Set-up in experiments: Tolerance of the knee joint at lateral impact in shearing. Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Levels of knee force and moment in various studies Tolerance levels of the knee EEVC WG 10 ≤ 6mm at 4 kN • Shearing Test setup Shearing 12 mm (no preload, quasistatic) 16-28 mm (preload, dynamic) 2.4-2.9 kN shearing force 400-500 Nm bending moment Bending Study Kajzer 1999 Kajzer 1997 Impact velocity level [km/h] 20 40 15 20 Knee shearing force [kN] 2.4 (SD 0.2) 2.6 (SD 0.5) 1.8 (SD 0.4) 2.6 (SD 0.5) Knee bending moment [Nm] 418 (SD 100) 489 (SD 141) Kajzer et al. Kajzer 1999 Kajzer 1997 20 40 1.3 (SD 0.5) 1.5 (SD 0.6) 307 (SD 147) 331 (SD 79) Kajzer et al. 15 20 101 (SD 21) 123 (SD 35) • Bending EEVC WG 10 ≤ 15° 11° (dynamic) - 19° (quasistatic, no prelad) 15-16° (preload dynamic) Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Setup of four-point knee bending test Bhalla’s results compared with response os FLEX-PLI and TRL-PLI • Konosu and Tanahashi 2003 Bhalla et al., 2003 Sidan 6 Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Tibia injury criterion Tibia Index (TI) Femur Injury Criterion (FIC) TI=(M/Mc) + (F/Fc) < 1.0 and Fmax <8 kN F (kN) =23.14 - 0.71 T (ms), for T<20 ms where: F (kN) = 8.9 kN, for T>=20 ms Mc=225 Nm and Fc=35.9 kN where: Basis: Static bending tests of tibia (Yamada) F is the axial compressive force Bone properties: T the primary load pulse duration. ultimate compressive stress = 210 Mpa ultimate tensile stress = 150 MPa Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Tolerance levels of the ankle joint Safety countermeasures • Ankle moment (quasi -static) – 33 Nm in dorsiflexion – 40 Nm in plantarflexion – 34 Nm in inversion – 48 Nm in eversion • Ankle bending angle – 34 deg. in inversion (quasi -static) – 32 deg. In eversion (quasi -static) • Intrusion - Footwell structural reinforcements - Toepan padding - Reinforcement of car body and door • Pedal modifications • Knee bolster - Bolster airbag • Seat - Seat cushion restraint system Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Functions of the knee bolster Methods to reduce foot impact force • • • • • Mechanically retract brake upon impact - foot may slip off pedal during retraction • Allow ‘soft’ brake arm to compress into the toepan • Brake assembly initially stiff and against toepan Sidan 7 to control kinematics to distribute impact loads to absorb occupant energy to maximally protect against injury of the lower extremities Janusz Kajzer - Kabimec Consulting Janusz Kajzer - Kabimec Consulting Protection of lower extremities of vulnerable road users General principle: • Reduce local stiffness of the car-front components during an impact To be implemented by: • using energy-absorbing material and structure and pedestrian protection airbag (PPA) • increasing the clearance between hood and rigid components underneath eg. engine etc (moveable hood) Active safety: • Accident free driving system, accident avoidance system also… speed reduction and……. Sidan 8
© Copyright 2026 Paperzz