The Future of Research in Russia: biosecurity projects G. Yu. Laptev PhD in Biology ООО Biotrof 20 November 2012 T-RFLP analysis Advantages: 1. Convenient for study of livestock GIT microbial community structure. 2. Discovery of new GIT microorganisms and identification of their role in the digestion of feed 3. Possible to follow the age, diet and disease related changes in the bacterial population 4. Detection of pathogenic microorganisms Correlation between bacterial content in bull’s rumen and ruminal digestion Terminal restriction fragment length, bp рН Volatile fatty acids Ammonia Methanogenic archaea Indicators рН Volatile fatty acids Ammoni a Family Clostridiaceae n.d. -0.60 n.d. Family Eubacteriaceae n.d. 0.73 n.d.. Family Lachnospiraceae n.d. n.d. -0.65 Family Alicyclobacillaceae 0.63 n.d. -0.76 Family Lactobacillaceae n.d. 0.90 0.63 Phylum Fusobacteria n.d. n.d. -0.83 Bacteia Indicators 68.83 -0.87 -0.99 0.99 74.11 -0.78 -0.97 0.98 91.95 -0.88 -0.99 0.99 102.69 -0.98 -0.96 0.96 248.26 0.84 0.99 -0.99 251.67 0.93 0.99 -0.99 292.09 0.84 0.99 -0.99 509.65 0.74 0.95 -0.96 Fungi 52.11 0.97 0.79 -0.77 53.81 0.98 0.82 -0.81 Nonculturable bacteria 87.34 0.34 -0.63 -0.72 56.17 0.98 0.8 -0.77 Nonculturable bacteria 90.98 0.58 n.d. -0.55 73.68 0.97 0.8 -0.77 Nonculturable bacteria 199.4 -0.60 0.52 0.51 152.07 -0.99 -0.91 0.9 155.39 0.77 -0.8 n.d. 157.73 0.77 -0.8 n.d. 175.56 0.77 -0.8 n.d. 219.58 -0.91 -0.66 0.64 “Probiotic Cleaners” Funded by Russian Ministry of Education and Science, government contract #16.512.11.2029 of 11 February 2011 Содержание аммиака в воздухе на свинофермах (мг/м3). Treatment with Agrotrof Control Experiment Before treatment 9.04± 0.42 8.89± 0.36 1st treatment (7 days) 10.01± 0.36 5.92± 0.16 2nd treatment (14 days) 9.84± 0.44 4.6± 0.14 3rd treatment (21 days) 9.98± 0.39 4.7± 0.14 4th treatment (28 days) 10.6± 0.37 5.3± 0.19 5th treatment (42 days) 10.91± 0.51 6.0± 0.24 6th treatment (56 days) 10.82± 0.48 6.4± 0.24 Biological Product Физико-химические свойства навозных стоков до и после внесения биопрепарата. before Indicators after use of bioproduct Suspended material, mg/L 80120 14608 Dry residue, mg/L 86600 21900 COD in mixed sample, mg/L 159744 63488 рН 6,74 7,90 Total nitrogen, mg/L 4405 3640 Ammonia nitrogen, mg/L 2375 3105 Total phosphorus in mixed sample (Р2О5), mg/L 5077 911 Total phosphorus in filtered sample (Р2О5), mg/L 35 59 Total potassium in mixed sample (К2О), mg/L 3205 1956 Microbiological specifications of manure effluents, before and after adding the biological agent Бактерии Аммонифицирующие Уробактерии Численность микроорганизмов до внесения препарата после внесения препарата клеток/мл 7 7 2,5·10 2,5·10 5 4 2,0·10 2,0·10 Эффективность применения биопрепарата для утилизации стоков Indicators Experiment Control Number of cattle heads at the beginning of experiment 1800 2866 Average weight per head (kg) at the end of experiment 101.2 102.7 Death loss 127 284 Death loss (%) 7.0 10.0 Average daily gain, g 670 616 Concentration of ammonia in the air at Noviy Svet pig complex in Gatchina District (mg/m3). MAC – 20.0 mg/m3. Experiment scenarios Treatment Distance above the floor 1.5 m No treatment 1.0 m 1.5 m 1.0 m Ventilation is ON. Measurements for three replications. 1 12.8±3.2 13.6±3.4 15.8±4.0 16.2±4.1 2 12.6±3.2 13.8±3.5 15.6±3.9 16.2±4.1 3 12.6±3.2 13.6±3.4 15.8±4.0 16.4±4.1 Ventilation is OFF. Measurements for three replications. 1 22.2±5.6 21.4±5.4 28.1±7.0 28.4±7.0 2 22.6±5.7 21.8±5.5 28.4±7.1 28.6±7.2 3 22.2±5.7 21.8±5.5 28.4±7.1 28.6±7.2 Physical and chemical characteristics of manure effluents sampled from left and right sides of section 32 before and after the triple treatment with Agrotrof product Right side Left side Section 32 Indicators before after before after Treatment with Agrotrof 24.06.08 16.07.08 24.06.08 16.07.08 Suspended matter, mg/L 6660 34400 10640 114900 Dry residue, mg/L 12220 52310 15790 123990 рН 7.65 6.99 7.16 7.23 COD (organic compounds) in mixed sample, mg/L 20000 71000 16667 144000 COD in filtered sample, mg/L 10300 32000 8300 27000 Total nitrogen in mixed sample, mg/L 2023 4506 1948 6746 1687 2612 1423 2911 1409 1850 1007 1757 301 2090 521 2993 218 1082 422 1061 1289 2082 1202 2016 1274 1815 1174 1902 Total nitrogen in filtered sample, mg/L Ammonia nitrogen N-NH4, mg/L Total phosphorus in mixed sample, mg/L Total phosphorus in filtered sample, mg/L Total potassium in mixed sample, mg/L Total potassium in filtered sample, mg/L Experimental Design Options Control Number of cattle heads Weight Agrotrof treatment plan for animal stalls before experimen t 2866 24.5 Without treatment Experiment 1800 24.5 1st month: once in 7 days 2nd month: once in 10 days 3rd month: once in 15 days Cost Efficiency Indicators Experiment Number of cattle heads at the beginning of 1800 Control 2866 experiment Implementation, number of heads Initial weight (kg) 1650 2582 24.5 24.5 Average weight per head (kg) at the end of 101.6 102.7 experiment Death loss 127 284 Death loss (%) 7.0 10.0 Average daily weight gain, (g). 670 616 • Contract number: 16.515.11.5063 • Topic: Development of technological basis for processing beet pulp into feed • Priority Area: 1.5. – Environmental Management • Critical Technology: Environment state monitoring and forecasting, pollution prevention and response. • Duration: 1 January 2012 – 20 June 2012 • Planned Funding: 17.5 mln rub. • Budget allocation - 14.0 mln rub • Extra funds - 3.5 mln rub • Contractor: OOO „BIOTROF‟ • Director: G.Yu. Laptev, PhD 13 Beet pulp as a by-product of sugar production Sugar beet, 1000 kg Preparation for processing Extraction of juice Extraction Wet pulp, 540 kg Sugar crystallization Water extraction Boiling and centrifuge Granulated sugar, 150 kg Pressed pulp, 290 kg Drying Dry pulp, 60 kg Beet pulp accounts for the major part (85-90%) of beet factory waste (appr. 22-24 mln t/yr). Fresh beet pulp (including pressed pulp) quickly turns sour and cannot be stored. Beet pulp decomposes quickly, releasing toxic decay products (ammonia, skatole, indole, mycotoxins, etc.). This raises the environmental hazard profile of beet pulp from class V to class IV and increases the environmental impact. 15 Chemical composition of beet pulp from different processing factories, g in kg of natural feed Prot ein 732 Pho Calci spho um rus Fat Fibe r Sug ar Ash 20.2 0.8 40.7 34.8 12.4 0.2 2.4 858 12.6 1.0 25.4 11.7 9.0 0.1 1.2 Liski-Sakhar 863 12.5 1.0 22.9 18.2 7.3 0.1 Sadovskiy Sugar Factory 936 10.0 0.5 19.5 2.4 6.2 0.1 Factory Moistur e Voronezh-Sakhar Yelan-Kolenovskiy Sugar Factory 1.1 1.1 16 Bacteriological and mycological tests of beet pulp Factory Liski-Sakhar: fresh Microorganisms patogenic nonpatogenic C. freundii, titre 103 Cryptococcus OGCh-11000 D/g after week’s storage in a pit E. coli, titre 105 - - after 2 week’s storage in a pit E. coli, titre 105 - ОGCh-16000 D/g enterobacteria, titre105 enterobacteria, titre105 ОGCh-5340 D/g OGCh-7330 D/g - OGCh-14000 D/g Voronezh-Sakhar - Yelan-Kolenovskiy Sugar Factory - Sadovskiy Sugar Factory E. coli, titre 105 17 Organoleptic assessment of silage made of pulp (after one month of storage) Silage Color Beet pulp without additives - control Light-grey Beet pulp + preservation agent light Smell Distinctly sour Slightly sour Presence of mold small mold growth under film no 18 Chemical composition of siloed pulp, % of dry solids Forage Protein Fat Fiber Nitrogen-free extractive substance Metabolic energy, MJ Pulp – initial substance 75.1 6.2 144.1 724.1 9.55 74.8 19.7 200.6 646.7 9.12 75.3 17.5 173.9 679.5 9.37 Beet pulp without additives – control Beet pulp + preservation agent 19 Study design for milk cows Group Analogues Number of heads Feeding specifics 1-control cows 10 Basic diet (BD) 10 BD1, including beet pulp prepared with an added agent 10 BD1 + probiotic agent to optimize digestion (Cellobakterin) 2-experimental 3-experimental Cows Cows 20 Lactation curve for newly calved cows 21 Study design for fattening bulls b Analogue Number of heads Feeding specifics 1-control Bulls 10 Basic diet (BD) 2-experimental Bulls 10 BD1, including beet pulp prepared with a preservation agent 3-experimental bulls 10 BD1 + prebiotic agent to optimize digestion 22 Bull body weight increase during the experiment (on average per one head in 100 days, n=10) Indicator Group 1-control 2-experimental 3-experimental 324.7±2.08 322.9±1.23 325.9±1.38 415.0±2.57 419.9±3.17 427.1±3.06 gross, kg 90.3±1.89 97.0±2.75 101.2±2.58 daily average, g 903±18.86 970±27.53 1012±25.81 in % to control 100 107.4 112.1 Body weight, kg: at the beginning of experiment at the end of experiment Body weight gain: 23 Results of T-RFLP-analysis Microbial count, % Microorganisms, Control 1 experimental 2 experimental systematics (BD) (BD1) (BD1+probiotic) 11.15 ± Phylum Bacteroidetes 2.88 13.98 ± 3.95 8.99 ± 1.2 Uncultured Bacteroidetes 0.54 ± 0.24 1.19 ± 0.89 1.22 ± 0.58 Family Bacteroidaceae 1.48 ± 0.99 1.21 ± 0.39 0.87 ± 0.17 Family Flavobacteriaceae 5.74 ± 2.41 6.47 ± 3.0 4.24 ± 0.54 Family Flexibacteraceae 2.98 ± 0.73 4.83 ± 1.2 2.53 ± 0.42 Family Prevotellaceae 0.42 ± 0.56 0.29 ± 0.16 0.14 ± 0.1 Thermoanaerobacteriaceae 1 ± 0.06 0.67 ± 0.47 10.79 ± 3.28 Family Clostridiaceae 9.99 ± 1.35 8.49 ± 0.88 7.15 ± 2.02 Family 24 Family Eubacteriaceae 5.79 ± 1.7 5.35 ± 1.35 7.83 ± 2.2 Family Lachnospiraceae 25.93 ± 1.41 21.33 ± 1.17 21.27 ± 5.44 Family Peptostreptococcaceae 0.06 ± 0.08 0.27 ± 0.18 0.77 ± 0.05 Family Ruminococcaceae 4.83 ± 0.74 4.45 ± 0.67 2.89 ± 0.26 Family Veillonellaceae 5.54 ± 0.62 4.4 ± 0.76 5.05 ± 0.34 Order Bacillales 1.7 ± 0.33 4.79 ± 1.41 3.48 ± 0.97 Family Bacillaceae 1.46 ± 0.41 3.7 ± 0.81 2.8 ± 0.3 Family Alicyclobacillaceae 0.05 ± 0.02 0.43 ± 0.27 0.45 ± 0.52 Family Paenibacillaceae 0.2 ± 0.1 0.67 ± 0.45 0.24 ± 0.17 Order Lactobacillales 0.32 ± 0.15 0.65 ± 0.25 0.42 ± 0.21 Family Lactobacillaceae 0.32 ± 0.15 0.63 ± 0.25 0.42 ± 0.21 Family Enterococcaceae 0 003 ± 0.03 0 Family Bifidobacteriaceae 1.37 ± 0.29 0.81 ± 0.22 0.4 ± 0.14 Family Pseudomonadaceae 1.52 ± 0.45 2.84 ± 0.28 2.99 ± 1.72 Family Burkholderiaceae 0.63 ± 0.41 0.72 ± 0.56 1.17 ± 0.05 Family Enterobacteriaceae 1.93 ± 0.86 1.49 ± 0.5 2.63 ± 0.14 Phylum Actinobacteria 9.27 ± 1.95 6.31 ± 0.38 8.08 ± 0.72 Family Staphylococcus 0.04 ± 0.04 0.21 ± 0.18 0.06 ± 0.07 Family Helicobacteraceae 0.28 ± 0.37 0.07 ± 0.05 0 Phylum Fusobacteria 1.53 ± 0.24 1.73 ± 0.38 0.81 ± 0.25 Phylum-level unclassified bacteria 16.74 ± 1.77 20.55 ± 2.09 15.21 ± 0.49 25 Business Analitica Company Data • Russian beer market is the 5th largest in the world • Growth in 2007 amounted to 17% • Amount of waste grows every year, brewer‟s draff is the major part of beer industry waste. • 2,876,000 t of brewer‟s draff was produced in 2007. Brewer’s draff fungal community Aspergillus sp. Link ex Fries Aspergillus fumigatus Fresenius Aspergillus niger van Tieghem Aspergillus versicolor Tiraboshi Fusarium oxysporum E.F. Sm.Swingle Penicillium chryzogenium Thom Penicillium notatum Westl. Penicillium purpurogenum Stoll Penicillium sp. Link ex Fries Penicillium tomii Maire Saccaromyces cereviseae Meyen Dynamics of mycotoxins concentration (mg/kg) Determination by enzyme immunoassay 24 hours Aflatoxin В1 Т-2 toxin Ochratoxin (MPL = 0.05 mg/kg) 0 2 5 7 24 hours (MPC=0.1 mg/kg) 0.0069 mpl mpl 0.0063 mpl mpl 0.0065 mpl mpl mpl mpl 0.083 Desoxynivalenol ZEA Fumonisin 0.27 0.027 0.38 mpl 0.1 0.17 0.34 mpl 0.025 n/d 0.036 n/d (MPC=1.0 mg/kg) 0 2 5 7 Brewer‟s draff from factory Preparation of working solution (1 L per 8 t of brewer‟s draff) Silage trench Sealed to create anaerobic conditions Dosing pump Brewer‟s Draff Preservation Schematic
© Copyright 2025 Paperzz