TARGET COURSE FOR IIT-JEE 2011 PHASE- ALL CHEMISTRY, MATHEMATICS & PHYSICS TEST NO. 3 [TR-2(I)] (TAKE HOME) PAPER – I Date : 13/2/2011 MAX MARKS: 243 Time : 3 : 00 Hrs. Name : _________________________________________________________ Roll No. : __________________________ INSTRUCTIONS TO CANDIDATE 1. Please read the instructions given for each question carefully and mark the correct answers against the question numbers on the answer sheet in the respective subjects. 2. The answer sheet, a machine readable Optical Mark Recognition (OMR) is provided separately. 3. Do not break the seal of the question-paper booklet before being instructed to do so by the invigilators. B. MARKING SCHEME : Each subject in this paper consists of following types of questions:Section - I 4. Multiple choice questions with only one correct answer. 3 marks will be awarded for each correct answer and –1 mark for each wrong answer. 5. Multiple choice questions with multiple correct option. 3 marks will be awarded for each correct answer and No negative marking. 6. Passage based single correct type questions. 3 marks will be awarded for each correct answer and –1 mark for each wrong answer. Section - III 7. Numerical response (single digit integer answer) questions. 3 marks will be awarded for each correct answer and No negative marking for wrong answer. Answers to this Section are to be given in the form of single integer only (0 to 9) C.FILLING THE OMR : 8. Fill your Name, Roll No., Batch, Course and Centre of Examination in the blocks of OMR sheet and darken circle properly. 9. Use only HB pencil or blue/black pen (avoid gel pen) for darking the bubbles. 10. While filling the bubbles please be careful about SECTIONS [i.e. Section-I (include single correct, reason type, multiple correct answers), Section –II ( column matching type), Section-III (include integer answer type)] Section –I Section-II Section-III For example if only 'A' choice is correct then, the correct method for filling the bubbles is For example if Correct match for (A) is P; for (B) is R, S; for (C) is Q; for (D) is P, Q, S then the correct method for filling the bubbles is Ensure that all columns are filled. Answers, having blank column will be treated as incorrect. Insert leading zeros (s) A B C D E For example if only 'A & C' choices are correct then, the correct method for filling the bublles is A B C D E the wrong method for filling the bubble are The answer of the questions in wrong or any other manner will be treated as wrong. 1 A B C D P Q R S T '6' should be filled as 0006 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 '86' should be filled as 0086 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 '1857' should be filled as 1857 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 Corporate Office : CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 lines), Fax (0744) 3040050 email : [email protected]; Website : www.careerpointgroup.com SEAL A.GENERAL : Important Data (egRoiw.kZ vk¡dM+s) Atomic Masses: H = 1, C = 12, K = 39, O = 16, Fe= 56, N= 14, I = 127, Ca = 40, Mg = 24, Al = 27, F = 19, Cl = 35.5, S = 32, (ijek.kq nzO;eku) Na = 23 Constants : R = 8.314 Jk–1mol–1, h = 6.63 × 10–34 Js , C = 3 × 108 m/s, e = 1.6 × 10–19 Cb,me = 9.1 × 10–31Kg, (fu;rkad) : RH = 1.1 × 107 m–1, log 2 = 0.3010, log 3 = 0.4771, log(5.05) = 0.7032; ln2 = 0.693; ln 1.5 = 0.405; ln3 = 1.098 Space for Rough Work (jQ+ dk;Z gsrq LFkku) Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 1 CHEMISTRY Section – I [k.M - I Questions 1 to 8 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. + 3 marks will be given for each correct answer and – 1 mark for each wrong answer. iz'u 1 ls 8 rd cgqfodYih iz'u gSaA izR;sd iz'u ds pkj fodYi (A), (B), (C) rFkk (D) gSa, ftuesa ls dsoy ,d fodYi lgh gSA OMR 'khV esa iz'u dh iz'u la[;k ds le{k viuk mÙkj vafdr dhft;sA izR;sd lgh mÙkj ds fy, + 3 vad fn;s tk;asxs rFkk izR;sd xyr mÙkj ds fy, 1 vad dkVk tk;sxkA Q.1 If in the fermentation of sugar in an enzymatic solution that is 0.12 M, the concentration of the sugar is reduced to 0.06 M in 10 h and to 0.03 M in 20 h. What is the order of the reaction ? (A) 1 (B) 2 (C) 3 (D) 0 Q.1 ;fn 'kdZjk ds fd.ou esa ,Utkbeh; foy;u esa tksfd 0.12 M gSA 'kdZjk dh lkUnzrk 10 ?k.Vs esa 0.06 M rFkk 20 ?k.Vs esa 0.03 M cp tkrh gSA vfHkfØ;k dh dksfV D;k gS ? (A) 1 (B) 2 (C) 3 (D) 0 Q.2 Some graph are sketch for the reaction A → B (assuming different orders). Where 'α' represent the degree of dissociation - Q.2 A → B vfHkfØ;k dks fHkUu dksfV;ks dk ekurs gq, dqN vkjs[k [khpsa tkrs gSA tgk¡ 'α' fo;kstu dh ek=kk dks (B) [a] (A)[a] t (A)[a] (B) [a] t t 1 (C) [a] n'kkZrk gS t 1 (C) [a] 1 1 t t The order of reaction are respectively (A) 0, 1, 2 (B) 1, 0, 2 (C) 2, 0, 1 (D) 1, 2, 0 vfHkfØ;k dh dksfV Øe'k% gS & (A) 0, 1, 2 (C) 2, 0, 1 (B) 1, 0, 2 (D) 1, 2, 0 Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 1 Q.3 Q.4 A crystal is made of particle X, Y, & Z. X forms fcc packing. Y occupies all octahedral voids of X and Z occupies all tetrahedral voids of X, if all the pariticles along on body diagonal are removed then the formula of the crystal would be (A) XYZ2 (B) X2YZ2 (D) X5Y4Z8 (C) X8Y4Z5 Q.3 If the rms velocity of nitrogen and oxygen molecule are same at two different temperature and same pressure then pick the wrong statement (A) Average speed of molecules is also same Q.4 ;fn ukbVªkstu rFkk vkWDlhtu v.kq dk oxZ ek/; ewy osx] nks fHkUu rki rFkk leku nkc ij leku gks] rks xyr dFku dk pquko dhft, & (A) v.kqvksa dh vkSlr pky Hkh leku jgrh gS (B) ukbVªkstu rFkk vkWDlhtu dk ?kuRo (gm/lt) Hkh leku jgrk gS (C) izR;sd xSl ds eksyks dh la[;k Hkh leku jgrh gSA (D) v.kqvksa dk lokZf/kd laHkkfor osx Hkh leku jgrk gSA Q5 ,fFky DyksjkbM (C2H5Cl), ,fFkyhu dh gkbMªkstu DyksjkbM ds lkFk vfHkfØ;k }kjk fufeZr fd;k tkrk gS prq"Qydh; fjfDr;ksa dks xzg.k djrk gSA ;fn dk; fod.kZ ds vuqfn'k lHkh d.kksa dks gVk fn;k tk, rks fØLVy dk lw=k gksxk & (A) XYZ2 (C) X8Y4Z5 (B) Density (gm/lt) of nitrogen and oxygen is also equal (C) Number of moles of each gas is also equal (D) most probable velocity of molecules is also equal Q.5 Ethyl chloride (C2H5Cl), is prepared by reaction of ethylene with hydrogen chloride X, Y, rFkk Z d.kksa ls feydj ,d fØLVy fufeZr gksrk gSA X, fcc ladqy cukrk gSA Y, X dh lHkh v"VQydh; fjfDr;ksa dks xzg.k djrk gS rFkk Z, X dh lHkh C2H4(g) + HCl (g) → C2H5Cl(g) ; ∆H = – 72.3 kJ What is the value of ∆E (in kJ), if 70 g of ethylene and 73 g of HCl are allowed to react at 300 K (A) – 69.8 (B) –180.75 (C) –174.5 (D) –139.6 (B) X2YZ2 (D) X5Y4Z8 C2H4(g) + HCl (g) → C2H5Cl(g) ; ∆H = – 72.3 kJ ∆E (kJ esa) dk eku D;k gksxk \ ;fn 300 K ij ,fFkyhu ds 70 g rFkk HCl ds 73 g fØ;k djrs gS (A) – 69.8 (C) –174.5 (B) –180.75 (D) –139.6 Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 2 Q.6 Q.7 What is the equivalent weight of H2SO4 in the reaction ? H2SO4 + NaI → Na2SO4 + I2 + H2S + H2O (A) 12.25 (B) 49 (C) 61.25 (D) None of these Q.6 For the reaction Q.7 H+ + H2SO4 + NaI → Na2SO4 + I2 + H2S + H2O (A) 12.25 (B) 49 (C) 61.25 Select correct statements : (A) From the following reaction ∆H = q1 CO(g) + O2(g) → CO2(g), heat of formation of CO2 (g) is q1 (B) From the following reaction 1 C(graphite) + O2(g) → CO(g) ∆H = q2 2 heat of combustion of carbon is q2 (C) From the above reactions, heat of combustion CO2 is q1 + q2 (D) From the above reactions, heat of combustion of CO(g) is q1 and that of carbon is q1 + q2 (D) buesa ls dksbZ ugha vfHkfØ;k + – CH3COCH3 + Br2 H→ CH3COCH2Br + H+ + Br– ds fy, fuEu vkadM+s ,df=kr fd, x, [,flVksu] [Br2] [H+] vfHkfØ;k dh nj 0.15 0.025 0.025 6 × 10–4 (Ms–1) 0.15 0.050 0.025 6 × 10–4 (Ms–1) 0.20 0.025 0.025 8.0 × 10–4 (Ms–1) 0.15 0.025 0.050 12 × 10–4 (Ms–1) CH3COCH3 rFkk Br2 ds lUnHkZ eas vfHkfØ;k dh dksfV gS (A) 0, 1 (B) 1, 0 (C) 1, 1 (D) 1, 2 CH3COCH3 + Br2 → CH3COCH2Br + H + Br the following data was collected [Acetone] [Br2] [H+] Rate of reaction 0.15 0.025 0.025 6 × 10–4 (Ms–1) 0.15 0.050 0.025 6 × 10–4 (Ms–1) 0.20 0.025 0.025 8.0 × 10–4 (Ms–1) 0.15 0.025 0.050 12 × 10–4 (Ms–1) The order of the reaction with respect to CH3COCH3 and Br2 respectively are (A) 0, 1 (B) 1, 0 (C) 1, 1 (D) 1, 2 Q.8 fuEu vfHkfØ;k esa H2SO4 dk rqY;kadh Hkkj D;k gS ? Q.8 lgh dFku gS : (A) fuEu vfHkfØ;k ls ∆H = q1 CO(g) + O2(g) → CO2(g), CO2 (g) ds fuekZ.k dh Å"ek q1 gSA (B) fuEu vfHkfØ;k esa] 1 C(xzsQkbV) + O2(g) → CO(g) ∆H = q2 2 dkcZu ds ngu dh Å"ek q2 gS (C) mijksDr vfHkfØ;k esa CO2 ds ngu dh Å"ek q1 + q2 gSA (D) mijksDr vfHkfØ;kvksa esa CO(g) ds ngu dh Å"ek q1 rFkk dkcZu dh q1 + q2 gSA Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 3 Questions 9 to 13 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which MULTIPLE (ONE OR MORE) is correct. Mark your response in OMR sheet against the question number of that question. + 3 marks will be given for each correct answer and no negative marks. iz'u 9 ls 13 rd cgqfodYih iz'u gaSA izR;sd iz'u ds pkj fodYi (A), (B), (C) rFkk (D) gSa] ftuesa ls ,d ;k ,d ls vf/kd fodYi lgh gaSA OMR 'khV esa iz'u dh iz'u la[;k ds le{k vius mÙkj vafdr dhft,A izR;sd lgh mÙkj ds fy, + 3 vad fn;s tk;saxs rFkk dksbZ _.kkRed vadu ugha gSA Q.9 Q.9 0.1 M solution of KI reacts with excess of H2SO4 and KIO3 solution, according to equation + 5I– + IO3– + 6H → 3I2 + 3H2O ; vf/kD; ls fØ;k djrk gS] fuEu lehdj.k ds vuqlkj + 5I– + IO3– + 6H → 3I2 + 3H2O ; which of the following statement is correct (A) 200 ml of the KI solution react with 0.004 mole KIO3 (B) 100 ml of the KI solution reacts with 0.006 mole of H2SO4 (C) 0.5 litre of the KI solution produced 0.005 mole of I2 (D) Equivalent weight of KIO3 is equal to Q.10 molecular Weight 5 3 moles of the gas C2H6 is mixed with 60 gm of this gas and 2.4 × 1024 molecules of the gas is removed. The left over gas is combusted in the presence of excess oxygen then (NA = 6 × 1023) (Density of water = 1 gm/ml) (A) 2 moles of C2H6 left for combustion (B) Volume of CO2 at S.T.P. produced after combustion 44.8 litre (C) Volume of water produced is 54 ml (D) None KI dk 0.1 M foy;u] H2SO4 rFkk KIO3 foy;u ds fuEu esa dkSulk dFku lgh gS & (A) KI foy;u dk 200 ml, KIO3 ds 0.004 eksy ls fØ;k djrk gS (B) KI foy;u dk 100 ml , H2SO4 ds 0.006 eksy ls fØ;k djrk gS (C) KI foy;u dk 0.5 yhVj, I 2 ds 0.005 eksy cukrk gS v.kqHkkj (D) KIO3 dk rqY;kadh Hkkj; ds cjkcj gksrk gS 5 Q.10 C2H6 xSl ds 3 eksyks dks blh xSl ds 60 gm esa feyk;k tkrk gS rFkk bl xSl ds 2.4 × 1024 v.kqvksa dks fudky fn;k tkrk gSA 'ks"k cph xSl dk vkWDlhtu ds vf/kD; esa ngu fd;k tkrk gS] rks & (NA = 6 × 1023) (ty dk /kuRo = 1 gm/ml) (A) ngu gsrq C2H6 ds 2 eksy cprs gS (B) S.T.P ij 44.8 yhVj ds ngu ds i'pkr CO2 dk vk;ru curk gSA (C) fufeZr ty dk vk;ru 54 ml gS (D) dksbZ ugha Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 4 Q.11 One mole of ideal diatomic gas (CV = 5 cal) was Q.11 calories as unit of energy and Kelvin for temp) izkjEHk esa 25°C rFkk 1 L dh voLFkk ls ,d eksy vkn'kZ f)ijekf.od xSl (CV = 5 cal) dks 100°C rFkk vk;ru 10 L dh voLFkk esa :ikUrfjr fd;k x;kA vc bl izØe ds fy, (R = 2 calories/mol/K) (ÅtkZ dh bdkbZ ds :i esa dSyksjh rFkk rki ds fy, dsfYou yhft,) (A) ∆H = 525 (A) ∆H = 525 transformed from initial 25°C and 1 L to the state when temperature is 100°C and volume 10 L. Then for this process (R = 2 calories/mol/K) (take (B) ∆S = 5 ln 373 + 2ln 10 298 (B) ∆S = 5 ln (C) ∆E = 525 (D) ∆G of the process can not be calculated using given information Q.12 (C) ∆E = 525 (D) nh Q.12 Choose the correct statements : (A) temperature, enthalpy and entropy are state functions (B) for reversible and irreversible both isothermal expansion of an ideal gas, change in internal energy and enthalpy is zero (C) state function are exact differential Which is correct match for no. of radial node (A) 3 s, 2 (B) 2 p, 0 (C) 4 d, 1 (D) 4 p, 2 xbZ tkudkjh ls ∆G Kkr ugha fd;k tk ldrk lR; dFku pqfu, : (A) rki, ,UFkSYih o ,.VªkWih voLFkk Qyu gksrs gS (B) vkn'kZ xSl ds mRØe.kh; o vuqRØe.kh; çlkj nksuksa ds fy,] vkUrfjd ÅtkZ] ,UFkSYih esa ifjorZu 'kwU; gksrk gS (C) voLFkk Qyu ;FkkFkZ vodyt gksrs gS (D) pØh; (D) for cyclic process ∆G = 0 Q.13 373 + 2ln10 298 Q.13 çØe ds fy, ∆G = 0 gksrk gS fuEu esa ls fdlesa jsfM;y uksMksa dh la[;k lgh lqesfyr gS (A) 3 s, 2 (C) 4 d, 1 (B) 2 p, 0 (D) 4 p, 2 Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 5 This section contains 2 paragraphs; passage- I has 2 bl [k.M esa 2 x|ka'k fn;s x;s gSa] x|ka'k -I esa 2 cgqfodYih multiple choice questions (No. 14 & 15) and passage- II iz'u (iz'u 14 o 15) gSa rFkk x|ka'k-II esa 3 cgqfodYih iz'u has 3 multiple (No. 16 to 18). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Mark your response in OMR sheet against the question (iz'u 16 ls 18) gSaA izR;sd iz'u ds pkj fodYi (A), (B), (C) rFkk (D) gSa, ftuesa ls dsoy ,d fodYi lgh gSA OMR 'khV number of that question. + 3 marks will be given for esa iz'u dh iz'u la[;k ds le{k viuk mÙkj vafdr dhft;sA each correct answer and – 1 mark for each wrong izR;sd lgh mÙkj ds fy;s + 3 vad fn;s tk,saxs rFkk izR;sd answer. xyr mÙkj ds fy, 1 vad dkVk tk;sxkA Passage # 1 (Ques. 14 to 15) x|ka'k # 1 (iz- 14 ,oa 15) Some amount of ''20V'' H2O2 is mixed with excess KI of acidified solution of KI. The iodine so liberated H2O2 Q.15 The volume of H2O2 solution is (A) 11.2 ml (B) 37.2 ml (C) 5.6 ml (D) 22.4 ml dh dqN ek=kk feyk;h tkrh gSA vuqekiu ds fy, bl izdkj fu"dkflr vk;ksMhu dks 0.1 N Na2S2O3 ds required 200 ml of 0.1 N Na2S2O3 for titration. Q.14 ds vEyh;dr̀ foy;u ds vkf/kD; ds lkFk ''20V'' 200 ml vko';d Q.14 H2O2 foy;u gksrs gSA dk vk;ru gS - (A) 11.2 ml (C) 5.6 ml The mass of K2Cr2O7 needed to oxidise the above Q.15 H2O2 ds (B) 37.2 ml (D) 22.4 ml mijksDr foy;u ds vk;ru dks vkWDlhdr̀ djus volume of H2O2 solution- gsrq K2Cr2O7 dk vko';d Hkkj gS - (Atomic mass of Cr = 52) (Cr dk (A) 3.6 g (B) 0.8 g (C) 4.2 g (D) 0.98 g (A) 3.6 g (B) 0.8 g (C) 4.2 g (D) 0.98 g ijek.kq Hkkj 52) Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 6 Passage # 2 (Ques. 16 & 18) x|ka'k # 2 (iz- 16 ,oa 18) Grahm's Law of Diffusion : The phenomenons of spontaneous intermixing of gases against the law of gravitation is known as diffusion. If diffusion occurs through small orifice of the container, then it is known as effusion. The rate of effusion is defined as, r = PA 2πRTM folj.k ds fy, xzkg~e dk fu;e: xq:Rokd"kZ.k ds fo:) og izfØ;k ftlesa xSlksa dk lrr~ :i ls feJ.k gksrk jgrk gS] folj.k dgykrh gSA ;fn ik=k ds NksVs fNnz ls folj.k laiUu gksrk gS] rks ;g fu%lj.k dgykrk gSA , fu%lj.k dh nj dks] r = where P is partial pressure of the gas A is area of cross-section of the orifice of the container and M is the molar mass of the container. Rate of diffusion = = Q.16 2πRTM }kjk ifjHkkf"kr fd;k tkrk gS] tgk¡ P, xSl dk vkaf'kd nkc gSA A ik=k ds fNnz dk vuqizLFk dkV dk {ks=kQy gS rFkk M ik=k dk eksyj Hkkj gSA folj.k dh nj = fu%lfjr vk;ru = fo%lfjr eksy le; le; nkc voueu r; nwjh = = t le; Vol. effused Moles effused = Time Time Pr essure drop dis tance travelled = t time 1 mole of gas A and 4 moles of gas O2 is taken inside the vessel, which effuse through the small orifice of the vessel having same area of crosssection and at the same temperature, then which the correct % of effused volume of gas A and O2 initially respectively ? (Assume that the gas A does not react with O2 gas and molar mass of gas A is 2 g) (A) 50%, 50% (B) 60%, 40% (C) 30%, 70% (D) 10%, 90% PA Q.16 ,d ik=k esa A xSl ds 1 eksy rFkk O2 xSl ds 4 eksy fy, tkrs gS] ;fn vuqizLFk dkV ds leku {ks=kQy rFkk leku rki ij ik=k ds NksVs fNnz ls xSlsa fu%lfjr gksrh gS] rks izkjEHk eas xSl A rFkk O2 ds fu%lfjr vk;ru dk lgh izfr'kr D;k gS ? (dYiuk djsa fd xSl A rFkk xSl O2 ijLij fØ;k ugha djrh rFkk A dks eksyj Hkkj 2 g gS) (A) 50%, 50% (C) 30%, 70% (B) 60%, 40% (D) 10%, 90% Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 7 Q.17 Which of the following is correct for diffusion ? Q.17 (A) ∆G must be positive (A) ∆G /kukRed (B) ∆H must be negative (C) ∆S /kukRed (D) ∆S must be negative Q.18 from the end "P" and "Q" of the cylinder respectively. The cylinder has the area of crosssection A, shown as under gksuk pkfg, ,d csyukdkj ik=k ds "P" rFkk "Q" fljksa ls xSl "X" ds 1 eksy rFkk xSl "Y" ds 2 eksy izos'k djrs gSA csyukdkj ik=k ds vuqizLFk dkV dk {ks=kQy A gS] tSls fuEu fp=k esa n'kkZ;k gS A X gksuk pkfg, gksuk pkfg, (D) ∆S _.kkRed 1 mole of gas "X" and 2 moles of gas "Y" enters P gksuk pkfg, (B) ∆H _.kkRed (C) ∆S must be positive Q.18 fuEu esa dkSulk folj.k ds fy, gS ? Q Y A P Q X Y The length of the cylinder is 150 cms. The gas "X" intermixes with gas "Y" at the point A. If the bl csyukdkj ik=k dh yackbZ 150 cms gSA fcUnw A ij molecular weight of the gases X and Y is 20 and 80 xSl "X" rFkk xSl "Y" ijLij vifefJr gksrh gSA respectively, then what will distance of point A from Q ? ;fn xSls X rFkk Y dk v.kqHkkj Øe'k% 20 o 80 gks] rks (A) 75cms (B) 50 cms A dh Q ls nwjh D;k gksxh ? (C) 100 cms (D) 90 cms (A) 75cms (B) 50 cms (C) 100 cms (D) 90 cms Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 8 Section - III [k.M - III This section contains 9 questions (Q.1 to 9). +3 marks will be given for each correct answer and no negative marking. The answer to each of the questions is a SINGLE-DIGIT INTEGER, ranging from 0 to 9. The appropriate bubbles below the respective question numbers in the OMR have to be darkened. For example, if the correct answers to question numbers X, Y, Z and W (say) are 6, 0, 9 and 2, respectively, then the correct darkening of bubbles will look like the following : X Y Z W 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 bl [k.M esa 9 (iz-1 ls 9) iz'u gaSA izR;sd lgh mÙkj ds fy;s +3 vad fn;s tk,saxs rFkk dksbZ _.kkRed vadu ugha gSA bl [k.M esa izR;sd iz'u dk mÙkj 0 ls 9 rd bdkbZ ds ,d iw.kk±d gSaA OMR esa iz'u la[;k ds laxr uhps fn;s x;s cqYyksa esa ls lgh mÙkj okys cqYyksa dks dkyk fd;k tkuk gSA mnkgj.k ds fy, ;fn iz'u la[;k ¼ekusa½ X, Y, Z rFkk W ds mÙkj 6, 0, 9 rFkk 2 gkas, rks lgh fof/k ls dkys fd;s x;s cqYys ,sls fn[krs gSa tks fuEufyf[kr gSA Q.1 Q.1 A near ultraviolet photon of 300 nm is absorbed by X 0 1 2 3 4 5 6 7 8 9 300 nm Y 0 1 2 3 4 5 6 7 8 9 Z 0 1 2 3 4 5 6 7 8 9 W 0 1 2 3 4 5 6 7 8 9 dk ,d fudVre ijkcsxa yh QksVkWu ,d xSl a gas and then re-emitted as two photons. One }kjk vo'kksf"kr gksrk gS rFkk rc ;g nks QksVkWuksa ds :i photon is red with wavelength 760 nm. What would esa iquZ mRlftZr gksrk gSA 760 nm rjaxnS/;Z ds lkFk ,d be QksVkWu yky gSA f}rh; QksVkWu dh rjaxnS/;Z (nm esa) gksxh ? the wavelength of the second photon (in nm) ? Given the answer by multiply 10–2 vius mÙkj dks 10–2 ls xq.kk djds nhft,A Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 9 Q.2 The density of steam at 100.0ºC and 1 × 105 pascal Q.2 is 0.6 kg m–3. Calculate the compressibility factor 100.0ºC o 1 × 105 ikLdy ij] Hkki dk ?kuRo 0.6 kg m–3 gSA bu vkdM+ksa ls lEihM~;rk xq.kkad (Z) Kkr dhft,A (Z) from these data. Q.3 The neutralisation of a solution of 1.2 g of a Q.3 o mnklhu yo.k v'kqf) ds feJ.k ;qDr inkFkZ ds 1.2 g foy;u 0.5 N NaOH dk 18.9 mL iz;qDr (consumed) djrk gSA KMnO4 foy;u ds lkFk mipkfjr djus ij inkFkZ ds 0.4 g inkFkZ dks 0.25 N KMnO4 foy;u ds 21.55 mL foy;u dh vko';drk gksrh gSA feJ.k esa KHC2O4.H2O dh izfr'krrk gSA vius mÙkj dks 2×10–1ls xq.kk djds nhft,A Q.4 ty ds ,d uewus esa bldh dBksjrk dsoy CaSO4 ds dkj.k gksrh gSA tc ty dks _.kk;u fofue; jsftu ls xqtkjk tkrk gSA SO42– vk;u] OH– ls izfrLFkkfir gks tkrk gSA bl uewus ds 25.00 mL uewus dks bl rjg mipkfjr fd;k tkrk gS ftlds QyLo:i blds vuqekiu ds fy, 1.00 × 10–3 M H2SO4 ds 21.58 mL dh vko';drk gksA ty ds uewus dh dBksjrk dk CaSO4 dh ppm esa O;Dr dhft,A ekuk fd ty dk ?kuRo 1 g mL–1 gSA vius mÙkj dks 10–2 ls xq.kk djds nhft,A substance containing a mixture of H2C2O4. 2H2O, KHC2O4.H2O and impurity of a neutral salt consumed 18.9 mL of 0.5 N NaOH. On treatment with KMnO4 solution, 0.4 g of the substance needed 21.55 mL of 0.25 N KMnO4 solution. What is percentage of KHC2O4.H2O in the mixture ? Given the answer by multiply 2×10–1. Q.4 A sample of water has its hardness due only to CaSO4. When the water is passed through an anion exchange resin, SO42– ions are replaced by OH–. A 25.00 mL sample of this water sample so treated requires 21.58 mL of 1.00 × 10–3 M H2SO4 for its titration. What is hardness of the water sample expressed in ppm of CaSO4 ? Assume that density of water is 1 g mL–1. Given the answer by multiply 10–2 H2C2O4. 2H2O, KHC2O4.H2O Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 10 Q.5 For the reaction aA → x P when [A] = 2.2 mM the Q.5 –1 rate was found to be 2.4 mMs . On reducing concentration of A to half, the rate changes to 0.6m Ms–1. The order of reaction with respect to A is Q.6 A reaction P → Q is completed 25% in 25 min 50% aA → x P ,d vfHkfØ;k ds fy, tc [A] = 2.2 mM gks] rks osx 2.4 mMs–1 ik;k x;kA A dh lkUnzrk vk/kh djus ij osx ifjofrZr gksdj 0.6m Ms–1 gks tkrk gSA A ds lkis{k vfHkfØ;k dh dksfV gS Q.6 completed in 25 min, if [P] is halved, 25% completed in 50 min if [P] is doubled. The order of reaction is P → Q vfHkfØ;k 25 fefuV 25% iw.kZ gksrh gS] ;fn [P] dks vk/kk djsa rksa 25 fefuV esa 50% iw.kZ gks tkrh gS] ;fn [P] dks nqxquk djs] rks 50 fefuV esa 25% gks tkrh gSA vfHkfØ;k dh dksfV gS Q.7 RbI crystallizes in b.c.c. structure in which each Rb+ is surrounded by eight iodide ions each of radius 2.17 Å. Find the length of one side of RbI unit cell. (in Å) Q.7 RbI, b.c.c. lajpuk esa fØLVyhdr̀ gksrk gS ftlesa 2.17 Å dh f=kT;k okys 8 vk;ksMkbM vk;uksa }kjk izR;sd Rb+ vk;u f?kjk jgrk gSA RbI bdkbZ dksf"Vdk ds ,d Qyd dh yEckbZ Kkr dhft,A (Å esa) Q.8 An oxybromate compound, KBrOx, where x is unknown, is analysed and found to contain 52.92 % Br. what is the value of x ? Q.8 ,d vkWDlhczksesV ;kSfxd KBrOx, tgk¡ x vKkr gS] dks fo'ys"k.k fd;k tkrk gS rFkk blesa 52.92 % Br ik;k tkrk gSA x dk eku D;k gS? Q.9 Potassium chlorate (KClO4) is made in the following sequence of reactions Cl2(g) + KOH → KCl + KClO + H2O KClO → KCl + KClO3 KClO3 → KClO4 + KCl What mass of Cl2 is needed to produce 1.0 kg of KClO4 ? (Give your answer in Kg and in the form of nearest whole number) Q.9 fuEufyf[kr vfHkfØ;k Øe }kjk ikSVsf'k;e DyksjsV (KClO4) fufeZr fd;k tkrk gS Cl2(g) + KOH → KCl + KClO + H2O KClO → KCl + KClO3 KClO3 → KClO4 + KCl KClO4 ds 1 kg dk fuekZ.k djus gsrq Cl2 dk fdruk Hkkj vko';d gS (viuk mÙkj Kg esa rFkk fudVre iw.kZ la[;k esa ns) Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 11 MATHEMATICS Section – I [k.M - I Questions 1 to 8 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and – 1 marks for each wrong answer. iz'u 1 ls 8 rd cgqfodYih iz'u gSaA izR;sd iz'u ds pkj fodYi (A), (B), (C) rFkk (D) gSa, ftuesa ls dsoy ,d fodYi lgh gSA OMR 'khV esa iz'u dh iz'u la[;k ds le{k viuk mÙkj vafdr dhft;sA izR;sd lgh mÙkj ds fy, + 3 vad fn;s tk;asxs rFkk izR;sd xyr mÙkj ds fy, 1 vad dkVk tk;sxkA Q.1 ekuk x ≤ 2 ds fy, f ′ (x) ≥ 5 gS rFkk f(2) = 10 rc- Q.1 Q.2 Let f ′ (x) ≥ 5 for x ≤ 2 and f(2) = 10. Then(A) f(0) ≤ –40 (B) f(–1) ≤ –5 (A) f(0) ≤ –40 (B) f(–1) ≤ –5 (C) f(x) ≥ 5x (D) f(1) ≥ 20 (C) f(x) ≥ 5x (D) f(1) ≥ 20 Which of the following functions satisfy conditions of Rolle's Theorem- Q.2 (A) f(x) = |x –1| + |x –3|, x ∈ [1, 2] (B) g(x) = 1 – 3 (A) f(x) = |x –1| + |x –3|, x ∈ [1, 2] x 2 , x ∈ [–1, 1] 1 2 − sin | x |, x ≠ 0 (C) h(x) = ,x∈ x 0, x=0 (B) g(x) = 1 – 3 x 2 , x ∈ [–1, 1] 1 2 − sin | x |, x ≠ 0 (C) h(x) = ,x∈ x 0, x=0 1 1 − π , π (D) None of these Q.3 fuEu esa ls dkSulk Qyu jksy izes; dh 'krks± dks larq"V djrk gS- 1 1 − π , π (D) buesa ls dksbZ ugha If f(x) = x3 + ax2 + ax + x(tan θ + cot θ) is increasing Q.3 ;fn f(x) = x3 + ax2 + ax + x(tan θ + cot θ) lHkh okLrfod 3π for all real x and if θ ∈ π, , then 2 3π x ds fy, o/kZeku gS rFkk ;fn θ ∈ π, gS, rc 2 (A) a2 –3a – 6 < 0 (A) a2 –3a – 6 < 0 (C) a2 –3a – 6 ≤ 0 2 (C) a –3a – 6 ≤ 0 (B) a2 –3a – 6 > 0 2 (D) a –3a – 6 ≥ 0 (B) a2 –3a – 6 > 0 (D) a2 –3a – 6 ≥ 0 Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 12 Q.4 For what values of a, m and b LMVT is applicable Q.4 to the function f(x) for x ∈ [0, 2]; f(x) ; x ∈ [0, 2] ij ysx a kz t a ek/;eku izes; ykxw gksrh gS; x=0 3 f(x) = − x 2 + a 0 < x < 1 mx + b 1 ≤ x ≤ 2 x=0 3 f(x) = − x 2 + a 0 < x < 1 mx + b 1 ≤ x ≤ 2 (A) a = 3, m = –2, b = 0 (B) a = 3, m = –2, b = 4 (C) a = 3, m = 2, b = 0 (D) No such a, m, b exist Q.5 ωr ω r +1 r −1 If A(r) = ω ωr ω2 r ω2 r + 2 (A) a = 3, m = –2, b = 0 (B) a = 3, m = –2, b = 4 (C) a = 3, m = 2, b = 0 (D) bl izdkj ds dksbZ a, m, b fo|eku ugha ωr + 2 ωr +1 , where ω is ω2 r + 4 Q.5 complex cube root of unity, then(A) A(r) is singular only if r is even (B) A(r) is singular only if r is odd (C) A(r) is singular (D) A(r) is non singular Q.6 a, m ,oa b ds fdu ekuksa ds fy, fuEu Qyu 2 − 2 − 4 If A = − 1 3 4 , then A is 1 − 2 − 3 Q.6 (A) Idempotent matrix (B) Involuntary matrix (C) Nilpotent matrix of index 2 (D) Nilpotent matrix of index 3 ωr ωr +1 ωr + 2 r −1 ωr ωr +1 , tgk¡ ω bdkbZ dk ;fn A(r) = ω ω2 r ω2 r + 2 ω2 r + 4 lfEeJ ?kuewy gS, rc(A) A(r) vO;qRØe.kh; gS dsoy ;fn r le gS (B) A(r) vO;qRØe.kh; gS dsoy ;fn r fo"ke gS (C) A(r) vO;qRØe.kh; gS (D) A(r) O;qRØe.kh; gS 2 − 2 − 4 ;fn A = − 1 3 4 gS, rc A gS 1 − 2 − 3 (A) oxZle vkO;wg (B) vUrZoyuh; vkO;wg (C) ?kkr 2 dk 'kwU;Hkkoh vkO;wg (D) ?kkr 3 dk 'kwU;Hkkoh vkO;wg Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 13 Q.7 The number of solution of the equation log (–2x) = 2 log (x + 1) is(A) zero (B) 1 (C) 2 (D) None of these Q.7 lehdj.k log (–2x) =2log (x + 1) ds gyksa dh la[;k gksxh(A) 'kwU; (B) 1 (C) 2 (D) buesa ls dksbZ ugha Q.8 If a > 2, roots of the equation (2 – a)x2 + 3ax –1 = 0 are- Q.8 ;fn a > 2 gS, rks lehdj.k (2 – a)x2 + 3ax –1 = 0 ds ewy gksaxs(A) ,d /kukRed ,oa ,d _.kkRed (B) nksuksa _.kkRed (C) nksuksa /kukRed (D) nksuksa dkYifud (A) one positive and one negative (B) both negative (C) both positive (D) Both imaginary Questions 9 to 13 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which MULTIPLE (ONE OR MORE) is correct. Mark your response in OMR sheet against the question number of that question. + 3 marks will be given for each correct answer and no negative marks. iz'u 9 ls 13 rd cgqfodYih iz'u gaSA izR;sd iz'u ds pkj fodYi (A), (B), (C) rFkk (D) gSa] ftuesa ls ,d ;k ,d ls vf/kd fodYi lgh gaSA OMR 'khV esa iz'u dh iz'u la[;k ds le{k vius mÙkj vafdr dhft,A izR;sd lgh mÙkj ds fy, +3 vad fn;s tk;saxs rFkk dksbZ _.kkRed vadu ugha gSA Q.9 Q.9 Which of the following when simplified reduces to unity(A) log3log27log464 (B) 2 log18( 2 + 8 ) (C) log 2 (D) – log ( (A) log3log27log464 (B) 2 log18( 2 + 8 ) 2 10 + log 2 5 2 −1) fuEu esa ls dkSulk ljy djus ij bdkbZ esa ifjofrZr gks tkrk gS- 2 (C) log 2 10 + log 2 5 ( 2 + 1) (D) – log ( 2 −1) ( 2 + 1) Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 14 Q.10 If the quadratic equation (ab –bc)x2 + (bc –ca)x + ca – ab = 0, a, b, c ∈ R has both the roots equal, then(A) both roots are equal to zero (B) both roots are equal to 1 (C) a, c, b are in H.P. (D) ab2c2, b2a2c, a2c2b are in A.P. Q.11 πe eπ ππ + ee + + = 0 hasx−π−e x−e x−π Q.10 (ab –bc)x2 + (bc –ca)x + ca – ab = 0, a, b, c ∈ R ds nksuksa ewy leku gSa] rc (A) nksuksa ewy 'kwU; ds cjkcj gksaxs (B) nksuksa ewy 1 ds cjkcj gksaxs (C) a, c, b g-Js- esa gksaxs (D) ab2c2, b2a2c, a2c2b l-Js- esa gksaxs Q.11 (A) one real root in (e, π) and other in (π – e, e) (B) ,d okLrfod ewy (e, π) esa rFkk nwljk (π,π + e) esa (C) two real roots in (π – e, π + e) (D) No real roots (C) (π – e, π + e) esa nks okLrfod ewy (D) dksbZ okLrfod ewy ugha For the curve represented parametrically by the Q.12 equations x = 2ln cot t + 1, and y = tan t + cot t (A) tangent at t = π/4 is parallel to x-axis (B) normal at t = π/4 is parallel to y-axis (C) tangent at t = π/4 is parallel to line y = x (D) tangent and normal intersect at the point (2, 1) Q.13 πe eπ ππ + ee + + = 0 j[krk gSx−π−e x−e x−π (A) ,d okLrfod ewy (e, π) esa rFkk nwljk (π – e, e) esa (B) one real root in (e, π) and other in (π,π + e) Q.12 ;fn f}?kkr lehdj.k Let A, B be square matrices of same order with trace of A2 = 5, trace of B2 = 125 and trace of BA = 25. If C = AB, D = A + B, E = A – B, then(A) trace of C = 25 (B) trace of D2 = 180 (D) trace of DE = –120 (C) trace of E2 = 80 Q.13 izkpfyd lehdj.kksa x = 2ln cot t + 1 rFkk y = tan t + cot t }kjk iznf'kZr oØ ds fy, (A) t = π/4 ij Li'khZ x-v{k ds lekUrj gksxh (B) t = π/4 ij vfHkyEc y-v{k ds lekUrj gksxk (C) t = π/4 ij Li'khZ] js[kk y = x ds lekUrj gksxh (D) Li'khZ ,oa vfHkyEc] fcUnq (2, 1) ij izfrPNsn djrs gSa ekuk A, B leku dksfV ds oxZ vkO;wg gSa ftlesa A2 dk Vsªl = 5, B2 dk Vsl ª = 125 ,oa BA dk Vsl ª = 25. ;fn C = AB, D = A + B, E = A – B gS, rc(A) C dk Vsªl = 25 (B) D2 dk Vsªl = 180 2 (C) E dk Vsªl = 80 (D) DE dk Vsªl = –120 Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 15 This section contains 2 paragraphs; passage- I has 2 multiple choice questions (No. 14 & 15) and passage- II has 3 multiple (No. 16 to 18). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. +3 marks will be given for each correct answer and – 1 marks for each wrong answer. Passage # 1 (Ques. 14 & 15) If roots of the equation x4 –12x3 + bx2 + cx + 81 = 0 are positive. Q.14 Q.15 The value of b is(A) –54 (B) 54 (C) 27 (D) –27 Roots of equation 2bx + c = 0 is (A) – 1 2 (B) 1 2 (C) 1 bl [k.M esa 2 x|ka'k fn;s x;s gSa] x|ka'k -I esa 2 cgqfodYih iz'u (iz'u 14 o 15) gSa rFkk x|ka'k-II esa 3 cgqfodYih iz'u (iz'u 16 ls 18) gSaA izR;sd iz'u ds pkj fodYi (A), (B), (C) rFkk (D) gSa, ftuesa ls dsoy ,d fodYi lgh gSA OMR 'khV esa iz'u dh iz'u la[;k ds le{k viuk mÙkj vafdr dhft;sA izR;sd lgh mÙkj ds fy;s + 3 vad fn;s tk,saxs rFkk izR;sd xyr mÙkj ds fy, 1 vad dkVk tk;sxkA x|ka'k # 1 (iz- 14 ls 15) ;fn lehdj.k x4 –12x3 + bx2 + cx + 81 = 0 ds ewy /kukRed gSA Q.14 b dk eku gksxk(A) –54 Q.15 (D) –1 (B) 54 (C) 27 (D) –27 lehdj.k 2bx + c = 0 ds ewy gksaxs(A) – 1 2 (B) 1 2 (C) 1 (D) –1 x|ka'k # 2 (iz- 16 ls 18) Passage # 2 (Ques. 16 - 18) v( x) v( x) dy in a different If y = ∫ f (t ) dt , let us define dx u ( x) dy = v′(x) f 2(v(x)) – u′ (x) f 2(u(x)) and dx the equation of tangent at (a, b) as manner as ;fn y = ∫ f (t ) dt gS, ekuk u ( x) ifjHkkf"kr djrs gSa tSls dy dks fofHkUu rjhds ls dx dy = v′(x) f 2(v(x)) – u′ (x) f 2(u(x)) dx rFkk (a, b) ij Li'khZ dk lehdj.k dy y – b = (x – a) dx ( a ,b ) dy y – b = (x – a) dx ( a ,b ) Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 16 x2 Q.16 If y = ∫ t dt , then equation of tangent at x = 1 is 2 x2 Q.16 x (A) y = x + 1 (C) y = x –1 x Q.17 If f(x) = ∫ e t 2 /2 x (B) x + y = 1 (D) y = x (A) y = x + 1 (C) y = x –1 (1 − t 2 ) dt , then f ′(x) at x = 1 is- x Q.17 1 (A) 0 If y = ∫ x (A) 0 ;fn f(x) = ∫ e t (B) x + y = 1 (D) y = x 2 /2 (1 − t 2 ) dt gS, rks x = 1 ij f ′(x) gS- 1 (B) 1 (C) 2 x4 Q.18 ;fn y= ∫ t 2 dt gS, rks x = 1 ij Li'kZ js[kk dk lehdj.k gS ln t dt then lim+ x →0 3 (B) 1 (D) –1 (A) 0 (C) 2 x4 dy isdx (C) 2 (B) 1 Q.18 ;fn y = ∫ ln t dt x3 (D) –1 (A) 0 (B) 1 gS] rks lim+ x →0 (D) –1 dy gSdx (C) 2 (D) –1 [k.M - III Section - III This section contains 9 questions (Q.1 to 9). +3 marks will be given for each correct answer and no negative marking. The answer to each of the questions is a SINGLE-DIGIT INTEGER, ranging from 0 to 9. The appropriate bubbles below the respective question numbers in the OMR have to be darkened. For example, if the correct answers to question numbers X, Y, Z and W (say) are 6, 0, 9 and 2, respectively, then the correct darkening of bubbles will look like the following : bl [k.M esa 9 (iz-1 ls 9) iz'u gaSA izR;sd lgh mÙkj ds fy;s +3 vad fn;s tk,saxs rFkk dksbZ _.kkRed vadu ugha gSA bl [k.M esa izR;sd iz'u dk mÙkj 0 ls 9 rd bdkbZ ds ,d iw.kk±d gSaA OMR esa iz'u la[;k ds laxr uhps fn;s x;s cqYyksa esa ls lgh mÙkj okys cqYyksa dks dkyk fd;k tkuk gSA mnkgj.k ds fy, ;fn iz'u la[;k ¼ekusa½ X, Y, Z rFkk W ds mÙkj 6, 0, 9 rFkk 2 gkas, rks lgh fof/k ls dkys fd;s x;s cqYys ,sls fn[krs gSa tks fuEufyf[kr gSA Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 17 X 0 1 2 3 4 5 6 7 8 9 Q.1 Y 0 1 2 3 4 5 6 7 8 9 Z 0 1 2 3 4 5 6 7 8 9 W X 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 If p and q are the roots of the quadratic equation Q.1 x2 – (α – 2)x – α –1 = 0, then minimum value of Y 0 1 2 3 4 5 6 7 8 9 Z 0 1 2 3 4 5 6 7 8 9 W 0 1 2 3 4 5 6 7 8 9 ;fn p ,oa q f}?kkr lehdj.k x2 – (α – 2)x – α –1 = 0, ds ewy gSa] rks p2 + q2 dk U;wure eku gksxkA p2 + q2 is equal to Q.2 The equation x3 – 6x2 + 9x + λ = 0 have exactly one Q.2 root in (1, 3) then λ ∈ (α, β) then (β – α) is Q.3 esa gS rFkk λ ∈ (α, β) gS] rks (β – α) dk eku gksxk A If x2 + λx + 1 = 0 and (b – c)x2+ (c–a)x + (a –b) = 0 Q.3 have both the roots common then [λ + 7] is (where Let f(x) = ;fn x2 + λx + 1 = 0 ,oa (b – c)x2+ (c–a)x + (a –b) = 0 ds nksuksa ewy mHk;fu"B gSa] rks [λ + 7] gS (tgk¡ [.] egÙke [.] denotes the greatest integer function) Q.4 lehdj.k x3 – 6x2 + 9x + λ = 0 dk Bhd ,d ewy (1, 3) iw.kk±d Qyu dks iznf'kZr djrk gS) x2 + 2 , 1 ≤ x ≤ 3, where [.] represents [ x] Q.4 greatest integer function then least value of f(x) is x2 + 2 , 1 ≤ x ≤ 3, (tgk¡ [.] egÙke iw.kk±d ekuk f(x) = [ x] Qyu dks iznf'kZr djrk gS) rc f(x) dk U;wure eku gksxkA Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 18 Q.5 Q.6 Let α be the angle in radians between x2 y2 + =1 and the circle x2 + y2 = 12 at their 36 4 k , then points of intersection. If α = tan–1 2 3 find the value of 'k' cos ( x + α) cos ( x + β) cos ( x + γ ) If f(x) = sin ( x + α) sin ( x + β) sin ( x + γ ) sin (β − γ ) and f(2) = 3 then find x Q.7 Q.5 x2 + y2 = 12 1 Q.6 15 r =1 x 1 Q.7 If f(x) satisfies the equation f ( x + 1) f ( x + 8) f ( x + 1) = 0 for all real x. 1 2 −5 2 3 λ Q.8 1 0 2 If A = and A = 8A + kI2, then find the − 1 7 value of |k| 25 ∑ f (r ) Kkr dhft,A r =1 1 3 3x 1 2 4 1 1 ;fn f(x) fo"ke Qyu gS rFkk blds fo"ke eku g(x) ds cjkcj gSa] rks λ dk eku Kkr dhft,, ;fn λf(1) g(1) = 4 gksA ;fn lHkh okLrfod x ds fy,] f(x) lehdj.k f ( x + 1) f ( x + 8) f ( x + 1) 1 2 2 3 −5 λ = 0 dks larq"V djrk gSA ;fn f vkorZukad 7 okyk vkorhZ Qyu gS] rks |λ| dk eku gSA If f is periodic with period 7 then value of |λ| is. Q.9 gS, rks 'k' dk eku Kkr 2 3 ekuk f(x) = sin 2πx 2 x x function and its odd values is equal to g(x) then find the value of λ, if λf(1) g(1) = 4 Q.8 k cos ( x + α) cos ( x + β) cos ( x + γ ) f(x) = ;fn sin ( x + α) sin ( x + β) sin ( x + γ ) sin (β − γ ) sin ( γ − α) sin (α − β) 1 rFkk f(2) = 3 gS] rks f (r ) Let f(x) = sin 2πx 2 x 2 1 . If f(x) be an odd x3 3x 4 1 rFkk oÙ̀k dhft,A 25 ∑ y2 =1 4 ds e/; muds izfrPNsn fcUnq ij fLFkr dks.k gS ;fn α = tan–1 sin ( γ − α) sin (α − β) 1 15 x2 + 36 ekuk α (jsfM;u esa) Q.9 1 0 2 ;fn A = rFkk A = 8A + kI2 gS, rks |k| dk − 1 7 eku Kkr dhft,A Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 19 PHYSICS Section – I [k.M - I Questions 1 to 8 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. + 3 marks will be given for each correct answer and – 1 mark for each wrong answer. iz'u 1 ls 8 rd cgqfodYih iz'u gSaA izR;sd iz'u ds pkj fodYi (A), (B), (C) rFkk (D) gSa, ftuesa ls dsoy ,d fodYi lgh gSA OMR 'khV esa iz'u dh iz'u la[;k ds le{k viuk mÙkj vafdr dhft;sA izR;sd lgh mÙkj ds fy, + 3 vad fn;s tk;asxs rFkk izR;sd xyr mÙkj ds fy, 1 vad dkVk tk;sxkA Q.1 ,d le:i pdrh ftldk nzO;eku 2 kg o f=kT;k 4m ls ,d vU; pdrh ftldh f=kT;k 1m o dsUnz O' gS] dkVk x;k gSA 'ks"k cps Hkkx dk pdrh ds yEcor o O ls xqtjus okyh ,d v{k ds ifjr% u;k tM+Ro vk?kw.kZ gS– (O iwjh pdrh dk dsUnz gS ) Q.1 From a uniform disc of mass 2 kg and radius 4m a small disc of radius 1m with centre O' is extracted. The moment of inertia of remaining portion about an axis passing through O perpendicular to plane of disc is (O is the centre at whole disc) 2m O' O 4m (A) 16 kg m2 (C) Q.2 255 kg m 2 16 2m O' O 4m (A) 16 kg m2 255 (C) kg m 2 16 (B) 12 kg m2 (D) 247 kg m 2 16 A ball of mass m is projected from a point P on the ground as shown in the figure. It hits a fixed smooth vertical wall at a distance l from P. Choose the most appropriate option. Q.2 (B) 12 kg m2 247 (D) kg m 2 16 m nzO;eku dh ,d xsan dks tehu ls fcUnq P ls iz{ksfir fd;k x;k gS] fp=k esa n'kkZ;s vuqlkj ;g fcUnq P ls l nwjh ij fLFkr ,d ?k"kZ.kghu m/oZ nhokj ij Vdjkrk gSA fuEu esa ls lokZf/kd lgh fodYi pqfu,s& Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 20 u u P θ l (A) xsan P ij ykSVsxh ;fn l = {kSfrt ijkl dk vk/kk (B) xsan fcUnq P ij ykSVsxh ;fn l ≤ {kSfrt ijkl dk l (A) the ball will return to the point P if l = half of the horizontal range (B) the ball will return to the point P if l ≤ half of the horizontal range. (C) the ball can not return to the initial point if l > half of the horizontal range (D) the ball will return to the initial point, if the collision elastic and l < half of the range Q.3 θ P Block A of mass M = 2kg is connected to another block B of mass 1 kg with a string and a spring of force constant k = 600 N/m as shown in the figure. Initially spring is compressed to 10cm and whole system is moving on a smooth surface with a velocity v = 1 m/s. At any time thread is burnt, the velocity of block A, when B, is having maximum velocity w.r.t. ground, is (all the surfaces are frictionless) vk/kk (C) xsan izkjfEHkd fcUnq ij ugha ykSV ldrh ;fn l > {kSfrt ijkl dk vk/kk (D) xsan izkjfEHkd fcUnq ij ykSVsxh ;fn VDdj izR;kLFk gks rFkk l < ijkl ds vk/ks ls Q.3 M = 2kg nzO;eku ds ,d CykWd A dks 1 kg nzO;eku ds vU; CykWd B ls Mksjh rFkk k = 600 N/m cy fu;rkad dh fLizax ls fp=kkuqlkj tksM+k x;k gSA izkjEHk esa fLizax dks 10cm ladwfpr fd;k tkrk gS rFkk iwjk fudk; fpduh lrg ij osx v = 1 m/s ls xfr djrk gSA fdlh Hkh le; Mksjh dks tyk;k tk;s] rks CykWd A dk osx] tc B /kjkry ds lkis{k vf/kdre osx j[krk gS] gS ¼lHkh lrg ?k"kZ.kjfgr gS½ v v m M (A) zero (B) 1 m/s m B M A (C) 3 m/s B (D) none (A) 'kwU; (B) 1 m/s A (C) 3 m/s (D) dksbZ ugha Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 21 Q.4 Two identical vessels are filled with equal amounts of ice. The vessels are made of different materials. If the ice melts in the two vessels in times t1 and t2 respectively then their thermal conductivities are in the ratio : (A) t2 : t1 Q.5 (B) t 22 : t12 (C) t1 : t2 Q.5 (C) t1 : t2 (D) t12 : t 22 ,d df̀".kdk P nj ls fofdj.k mRlftZr djrh gS mldk rki T gSA bl rki ij rjaxnS/;Z ftl fofdj.k vf/kdre rhozrk j[krh gS λ0 gSA ;fn vU; T' ij fofdfjr 'kfDr P' rFkk vf/kdre rhozrk λ0 gS rc 2 (A) P'T' = 32 PT (C) P'T' = 8 PT (B) P'T' = 16 PT (D) P'T' = 4 PT The potential energy of a particle of mass 1 kg is , U = 10 + (x – 2)2. Here, U is in joule and x in metres. On the positive x-axis particle travels upto x = + 6 m. Choose the wrong statement : (A) On negative x-axis particle travels upto x = –2m (B) The maximum kinetic energy of the particle is 16 J (C) The period of oscillation of the particle is 2 π second (D) None of the above (B) t 22 : t12 tc ij rki ij rjaxnS/;Z intensity is Q.6 nks le:i ik=kksa dks cQZ dh leku ek=kk ls Hkjk x;k gSA ik=k fHkUu-fHkUu inkFkksZ ds cus gq, gSA ;fn nks ik=kksa esa cQZ Øe'k% t1 o t2 le; esa fi?kyrh gS rc mudh Å"eh; pkydrkvksa dk vuqikr gS (A) t2 : t1 (D) t12 : t 22 A black body emits radiation at the rate P when its temperature is T. At this temperature the wavelength at which the radiation has maximum intensity is λ0. If at another temperature T' the power radiated is P' & wavelength at maximum λ0 then 2 (A) P'T' = 32 PT (C) P'T' = 8 PT Q.4 Q.6 (B) P'T' = 16 PT (D) P'T' = 4 PT 1 kg æO;eku ds ,d d.k dh fLFkfrt ÅtkZ U = 10 + (x – 2)2 gSA ;gk¡ U twy esa rFkk x ehVj esa gSA /kukRed x-v{k ij d.k x = + 6 m rd pyrk gSA xyr dFku pqfu;s & (A) _.kkRed x-v{k ij d.k x = –2m rd pyrk gS (B) d.k dh vf/kdre xfrt ÅtkZ 16 J gS (C) d.k dk nksyudky 2 π lsd.M gS (D) mijksDr esa ls dksbZ ugha Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 22 Q.7 On a cold winter day the temperature of atmosphere is – TºC. The cylindrical diagram shown is made of insulating material and it contains water at 0ºC. If L is latent heat of fusion of ice, ρ is density of ice and KR is thermal conductivity of ice, the time taken for total mass of water to freeze is - Q.7 ,d lnhZ ds 'khry fnu] ok;qe.My dk rki – TºC gSA fp=k esa iznf'kZr csyukdkj ik=k ,d dqpkyd inkFkZ ls cuk gS rFkk blesa 0ºC ij ikuh Hkjk gSA ;fn cQZ ds xyu dh xqIr Å"ek L gS] cQZ dk ?kuRo ρ rFkk cQZ dh Å"eh; pkydrk KR gks] rks ikuh ds dqy nzO;eku dks teus esa yxk le; gS & H H 2R 2R ρLH 2 ρLH 2 H2 (A) 2 (B) (C) (D) 2kT kT ρLkT H kT ρL Q. 8 Two blocks of masses m & M are moving with speeds v1 & v2 (v1 > v2) in the same direction on frictionless surface respectively. M being ahead of m. An ideal spring of force constant K is attached to back side of M (as shown). The maximum compression of spring is v2 v1 m (A) v1 m K (C) (v1 – v2) (A) Q. 8 ρL H 2 kT ?k"kZ.kghu lrg ij leku fn'kk esa xfr djrs gSA M, m ls vkxs gSA K cy fu;rkad dh ,d vkn'kZ fLçax (n'kkZ;s vuqlkj) M ds ihNs dh rjQ tksM+h xbZ gSA fLçax dk vf/kdre ladwpu gS mM (D) None of these K (M + m) v2 v1 m (A) v1 M K H2 ρLH 2 ρLH 2 (C) (D) 2kT kT ρLkT m o M æO;eku ds nks CykWd v1 o v2 (v1 > v2) pky ls M (B) v2 (B) m K (C) (v1 – v2) M (B) v2 mM (D) buesa K ( M + m) M K ls dksbZ ugha Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 23 Questions 9 to 13 are multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which MULTIPLE (ONE OR MORE) is correct. Mark your response in OMR sheet against the question number of that question. + 3 marks will be given for each correct answer and no negative marks. iz'u 9 ls 13 rd cgqfodYih iz'u gaSA izR;sd iz'u ds pkj fodYi (A), (B), (C) rFkk (D) gSa] ftuesa ls ,d ;k ,d ls vf/kd fodYi lgh gaSA OMR 'khV esa iz'u dh iz'u la[;k ds le{k vius mÙkj vafdr dhft,A izR;sd lgh mÙkj ds fy, + 3 vad fn;s tk;saxs rFkk dksbZ _.kkRed vadu ugha gSA Q.9 In which of the following cases the centre of mass of a rod is certainly not at its centre? (A) the density continuously increases from left to right (B) the density continuously decreases from left to right (C) the density decreases from left to right up to the centre and then increases (D) the density increases from left to right up to the centre and then decreases Q.9 Q.10 A disc is given an initial angular velocity ω0 and placed on a rough horizontal surface as shown in figure. The quantities which will not depend on the coefficient of friction is/are Q.10 buesa ls fdu fLFkfr;ksa esa NM+ dk nzO;eku dsUnz fuf'pr :i ls blds dsUnz ij ugha gksxk? (A) ?kuRo ckbZa vksj ls nkbZa vksj lrr :i ls c<+rk tk;s (B) ?kuRo ckbZa vksj ls nkbZa vksj lrr :i ls de gksrk tk;s (C) ?kuRo ckbZa ls nkbZa vksj dsUnz rd ?kVrk tk;s vksj blds i'pkr c<+rk tk;s (D) ?kuRo nkbZa vksj dsUnz rd c<+rk tk;s vkSj blds i'pkr ?kVrk tk;sA ,d pdrh dks izkjfEHkd dks.kh; Roj.k ω0 nsdj fp=kkuqlkj ,d [kqjnjh {kSfrt lrg ij j[kk tkrk gSA jkf'k;k¡ tks ?k"kZ.k xq.kkad ij fuHkZj ugha djsxh] gS ω0 ω0 (A) The time until rolling begins (B) The displacement of the disc until rolling begins (C) The velocity when rolling begins (D) The work done by the force of friction (A) yq<+dus ls igys rd dk le; (B) yq<+dus ls igys rd dk pdrh dk foLFkkiu (C) osx tc yq<+duk izkjEHk gksrk gS (D) ?k"kZ.k cy }kjk fd;k x;k dk;Z Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 24 Q.11 In an elastic collision between two particles (A) the total kinetic energy of the system is always constant (B) the kinetic energy of the system before collision is equal to the kinetic energy of the system after collision (C) the linear momentum of the system is conserved (D) none of these Q.11 nks d.kksa ds e/; izR;kLFk VDdj esa– (A) fudk; dh dqy xfrt ÅtkZ ges'kk fu;r jgrh gS (B) VDdj ds igys fudk; dh xfrt ÅtkZ VDdj ds ckn fudk; dh xfrt ÅtkZ ds cjkcj gksrh gS (C) fudk; dk js[kh; laosx lajf{kr jgrk gS (D) buesa ls dksbZ ugha Q.12 A gas is enclosed in a cylinderical vessel with initial volume V0, temperature T0 and pressure P0. Initially spring is in its natural length. Now gas is heated such that its new volume is 2V0. Piston and surface of cylinder is perfectly insulating. Now choose the correct one - Q.12 ,d xSl ,d csyukdkj ik=k esa ifjc) gS rFkk mldk izkjfEHkd vk;ru V0, rki T0 rFkk nkc P0 gSA izkjEHk esa fLizax viuh okLrfod yEckbZ esa gSA vc xSl dks bl izdkj xeZ fd;k tkrk gS fd mldk u;k vk;ru 2V0 gSA fiLVu rFkk csyu dh lrg iw.kZr;k dqpkyd gSA vc lgh dFku dk p;u dhft;s - Area = A A Area = A k A Atmospheric Pressure (P0) (A) Final pressure of the gas is P0 + k Atmospheric Pressure (P0) kV0 A2 (B) work done by atmospheric pressure is – P0V0 (C) work done by the gas is P0V0 (D) temperature of gas remains constant (A) xSl dk vafre nkc P0 + kV0 A2 gS (B) ok;qe.Myh; nkc }kjk fd;k x;k dk;Z – P0V0 gS (C) xSl }kjk fd;k x;k dk;Z P0V0 gS (D) xSl dk rki fu;r jgrk gS Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 25 Q.13 The rate of fall of temperature of two identical solid spheres of different materials are equal at a certain temperature then (A) Their specific heat capacities are equal (B) Their heat capacities are equal (C) Their specific heat capacities are proportional to their densities (D) Their specific heat capacities are inversely proportional to their densities This section contains 2 paragraphs; passage- I has 2 multiple choice questions (No. 14 & 15) and passage- II has 3 multiple (No. 16 to 18). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. Mark your response in OMR sheet against the question number of that question. + 3 marks will be given for each correct answer and – 1 mark for each wrong answer. Passage # 1 (Ques. 14 & 15) In the figure shown a disc A of mass m and radius r is fixed with the help of nail in a smooth horizontal (x-y) plane with its plane horizontal. The co-ordinates of the centre of the disc A are r r another identical disc B of having , 2 2 mass and radius same as that of A moving along −r with its plane horizontal in x-y the line x = 2 Q.13 fHkUu-fHkUu inkFkkZs ds nks le:i Bksl xksyksa ds rki de gksus dh nj fdlh fuf'pr rki ij leku gksrh gS] rks & (A) mudh fof'k"V Å"ek /kkfjrk,sa cjkcj gSA (B) mudh Å"ek /kkfjrk,sa cjkcj gSA (C) mudh fof'k"V Å"ek /kkfjrk,sa muds ?kuRoksa ds lekuqikrh gSA (D) mudh fof'k"V Å"ek /kkfjrk,sa muds ?kuRoksa ds O;qRØekuqikrh gSA bl [k.M esa 2 x|ka'k fn;s x;s gSa] x|ka'k -I esa 2 cgqfodYih iz'u (iz'u 14 o 15) gSa rFkk x|ka'k-II esa 3 cgqfodYih iz'u (iz'u 16 ls 18) gSaA izR;sd iz'u ds pkj fodYi (A), (B), (C) rFkk (D) gSa, ftuesa ls dsoy ,d fodYi lgh gSA OMR 'khV esa iz'u dh iz'u la[;k ds le{k viuk mÙkj vafdr dhft;sA izR;sd lgh mÙkj ds fy;s + 3 vad fn;s tk,saxs rFkk izR;sd xyr mÙkj ds fy, 1 vad dkVk tk;sxkA x|ka'k # 1 (iz- 14 ,oa 15) uhps n'kkZ;s fp=k esa ,d pdrh A ftldk nzO;eku m o f=kT;k r gS] ,d ?k"kZ.kghu {kSfrt ry esa bldk ry {kSfrt eas jgrs gq, ,d dhy }kjk fQDl gSA pdrh A r r ds dsUnz dk funsZ'kkad , gSA 2 2 ,d vU; pdrh B ftldk nzO;eku o f=kT;k A ds leku gS] x= −r 2 js[kk ds vuqfn'k xfr'khy gS] bldk ry Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 26 plane with speed v0, makes elastic impact with A. The time of impact is ∆t. In elastic impact kinetic energy of the system is conserved. All surface are frictionless. {kSfrt ry esa x-y ry esa jgrs gq, v0 pky ls xfr djrs gq, A ds lkFk izR;kLFk :i ls VDdj djrh gSA VDdj dk le; ∆t gSA izR;kLFk VDdj esa fudk; dh xfrt ÅtkZ lajf{kr jgrh gSA lHkh lrgsa ?k"kZ.kghu gSa& y y A A x v0 B Q.14 (− î + ĵ) 2 v0 (C) − v 0 î Q.15 B Q.14 The velocity of the disc B after collision is (A) (B) − (D) x v0 v0 2 ( VDdj ds i'pkr pdrh B dk osx gS – (A) î ) v0 − î + ĵ 2 (− î + ĵ) 2 v0 (B) − (C) − v 0 î Net average force exerted by the surface and nail on the disc A during impact under the assumption mg is very small compared to impulsive force Q.15 (D) v0 2 ( î ) v0 − î + ĵ 2 VDdj ds nkSjku pdrh A ds lrg o dhy ij vkjksfir usV vkSlr cy D;k gksxk (;g ekurs g,q fd) mg vkosx cy dh rqyuk esa cgqr de gS (A) mv 0 (î + ĵ) / ∆t (A) mv 0 (î + ˆj) / ∆t (B) − mv 0 (î + ˆj) / ∆t (B) − mv 0 (î + ĵ) / ∆t (C) 2 mv 0 (î + ĵ) / ∆t (C) 2 mv 0 (î + ĵ) / ∆t (D) 2 mv 0 (î − ĵ) / ∆t (D) 2 mv 0 (î − ĵ) / ∆t Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 27 Passage # 2 (Ques. 16 to 18) This question concern two balloons and two identical cylinders of gas. One cylinder contains helium, monoatomic gas of molecular mass 4g mol–1. The other contain nitrogen, a diatomic gas of molecular mass 28 g mol–1. The balloons are identical and each is connected to one of the cylinders. Both gas may assumed to ideal and both cylinder weigh the same amount of gas. Initially cylinder was closed. Temperature of both cylinder is same. x|ka'k # 2 (iz- 16 ls 18) bl ç'u esa nks xqCckjs rFkk XkSl ds nks le:i csyu gSA ,d csyu esa 4g mol–1 vkf.od æO;eku dh ,dyijek.kq ghfy;e xSl Hkjh gSA nwljs esa 28 g mol–1 vkf.od æO;eku dh f}ijek.kqd ukbVªkstu xSl Hkjh gSA xqCckjs ,dleku gS rFkk çR;sd ,d csyu ls tqMk+ gqvk gSA nksuksa xSl dks vkn'kZ eku ldrs gS rFkk nksuksa csyuksa esa leku ek=kk dh xSl Hkjh gSA çkjEHk esa csyu cUn FksA nksuksa csyu dk rki leku gS & Q.16 When the cylinders are opened, then (A) Helium balloon will be inflated faster (B) Nitrogen balloon will be inflated faster (C) Both balloon will be inflated simultaneously (D) Data are not sufficient to say any thing about rate of inflation Q.16 tc csyu [kqys gS] rc & s k (A) ghfy;e okyk xqCckjk rsth ls Qwyx s u okyk xqCckjk rsth ls Qwyxs k (B) ukbVªkt (C) nksuksa xqCckjs ,d lkFk Qwyasxs (D) Qwyus dh nj ds ckjs esa dqN Hkh dgus ds fy;s vk¡dM+s vi;kZIr gS Q.17 If both balloons are filled with same number of moles of gas n. If both the balloons are now heated at constant pressure by supplying the same quantity H of Heat (thermal energy) to each. Due to heating, temperature of gases in balloon increase. ∆T is temperature difference between initial and final temperature then ∆THe : ∆TN 2 is equal to : Q.17 ;fn nksuksa xqCckjksa esa Hkjh xbZ xSlksa ds eksyks dh la[;k n leku gSA ;fn nksuksa xqCckjksa dks fu;r nkc ij çR;sd dks leku ek=kk H dh Å"ek (Å"eh; ÅtkZ) nsdj xeZ fd;k tkrk gSA rks xeZ djus ds dkj.k] xqCckjs esa xSlksa dk rki c<+rk gSaA çkjfEHkd rFkk vfUre rki ds e/; rkikUrj ∆T gS rc ∆THe : ∆TN 2 cjkcj gS & (A) 5 7 (B) 7 5 (C) 3 5 (D) 5 3 (A) 5 7 (B) 7 5 (C) 3 5 (D) 5 3 Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 28 Q.18 Find the difference between the volumes of the two balloon after heating (where P is the initial pressure of balloon) 4H 3H 2H 6H (B) (D) (A) (C) 35P 35P 35P 35P Q.18 xeZ djus ds ckn nksuksa xqCckjksa ds vk;ruksa ds e/; vUrj Kkr dhft;s (tgk¡ P xqCckjs dk çkjfEHkd nkc gS) (A) 4H 35P (B) 3H 35P (C) 2H 35P (D) 6H 35P [k.M - III Section - III This section contains 9 questions (Q.1 to 9). +3 marks will be given for each correct answer and no negative marking. The answer to each of the questions is a SINGLE-DIGIT INTEGER, ranging from 0 to 9. The appropriate bubbles below the respective question numbers in the OMR have to be darkened. For example, if the correct answers to question numbers X, Y, Z and W (say) are 6, 0, 9 and 2, respectively, then the correct darkening of bubbles will look like the following : X Y Z W 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 bl [k.M esa 9 (iz-1 ls 9) iz'u gaSA izR;sd lgh mÙkj ds fy;s +3 vad fn;s tk,saxs rFkk dksbZ _.kkRed vadu ugha gSA bl [k.M esa izR;sd iz'u dk mÙkj 0 ls 9 rd bdkbZ ds ,d iw.kk±d gSaA OMR esa iz'u la[;k ds laxr uhps fn;s x;s cqYyksa esa ls lgh mÙkj okys cqYyksa dks dkyk fd;k tkuk gSA mnkgj.k ds fy, ;fn iz'u la[;k ¼ekusa½ X, Y, Z rFkk W ds mÙkj 6, 0, 9 rFkk 2 gkas, rks lgh fof/k ls dkys fd;s x;s cqYys ,sls fn[krs gSa tks fuEufyf[kr gSA X 0 1 2 3 4 5 6 7 8 9 Y 0 1 2 3 4 5 6 7 8 9 Z 0 1 2 3 4 5 6 7 8 9 W 0 1 2 3 4 5 6 7 8 9 Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 29 Q.1 A weightless inextensible string which first runs over a fixed weightless pulley D and then coils on a spool B of outer radius R and inner radius R/2 tightly. The smaller pulley of spool can roll without sliding along a horizontal fixed rail, as shown. The total mass of the spool is M. The axis O of the spool is perpendicular to the plane of the drawing and moment of inertia relative to O is 1/2 MR2. If the end A of the string is pulled downward with constant acceleration g/2, then tension in the string is nMg/2. Find n. (String does not slip on spool.) Q.1 ,d Hkkjghu vfoLrkfjr Mksjh tks igys ,d n`<+ Hkkjghu f?kjuh D ds Åij rFkk fQj ckg~; f=kT;k R rFkk vkUrfjd f=kT;k R/2 ds Liwy B dh dq.Myh ij dls gq;s xfr djrh gSA Liwy dh NksVh f?kjuh ,d {kSfrt n`<+ iVjh ij n'kkZ;s vuqlkj fcuk fQlys yq<+d ldrh gSA Liwy dk dqy nzO;eku M gSA Liwy dh v{k O fp=k ds ry ds yEcor~ gS rFkk O ds lkis{k tM+Ro vk?kw.kZ 1/2 MR2 gSA ;fn Mksjh dks g/2 Roj.k ls uhps dh vksj [khapk tkrk gS] rc Mksjh esa ruko nMg/2 gSA n Kkr dhft,A ¼Mksjh Liwy ij fQlyrh ugha gSA½ B C R O R/2 B C R O R/2 D A Q.2 D A g/2 A solid ball of mass m and radius r spinning with angular velocity ω falls on a horizontal slab of mass M with rough upper surface (coefficient of friction µ) and smooth lower surface. Immediately after collision the normal component of velocity of the ball remains half of its value just before collision and it stops spinning. Find the velocity of the sphere in horizontal direction immediately after impact (given : Rω = 5) Q.2 g/2 m nzO;eku rFkk r f=kT;k dh ,d Bksl xsn a ω dks.kh; osx ls pØ.k djrh gqbZ M nzO;eku dh ,d {kSfrt iV~Vhdk ftldh Åijh lrg [kqjnjh (?k"kZ.k xq.kkad µ) rFkk fupyh lrg fpduh gS] ij fxjrh gSA VDdj ds rqjUr ckn xsan ds osx dk yEcor~ ?kVd mlds VDdj ds Bdh igs ds eku dk vk/kk gks tkrk gS rFkk pØ.k djuk can dj nsrh gSA VDdj ds rqjUr ckn xksys dk {kSfrt fn'kk esa osx Kkr dhft, (fn;k gS: Rω = 5) Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 30 ω ω m m v v M M Q.3 A small ball is projected from point P towards a vertical wall as shown in figure. It hits the wall when its velocity is horizontal. Ball reaches point P after one bounce on the floor. The coefficient of restitution assuming it to be same for two collisions is n/2. All surfaces are smooth. Find the value of n. Q.3 ,d NksVh xsan dks P fcUnq ls ,d Å/okZ/kj nhokj dh vksj fp=kkuqlkj iz{ksfir fd;k tkrk gSA og nhokj ij tc Vdjkrh gS mldk osx {kSfrt gSA xsan fcUnq P ij Q'kZ ij ,d mNky ds ckn igq¡prh gSA ;g ekfu;s fd nks VDdjksa ds fy;s izR;koLFkku xq.kkad leku n/2 gSA lHkh lrg fpduh gSA n dk eku Kkr dhft,A P P Q.4 The room heater can provide only 16ºC in the room when the temperature outside is – 20ºC. It is not warm and comfortable, that is why the electric stove with power of 1 kW is also plugged in together these two devices maintain the room temperature of 22ºC. Determine the thermal power of the heater in kW. Q.4 dejs okyk ghVj dejs esa dsoy 16ºC rki miyC/k djk ldrk gS tc ckgj dk rki – 20ºC gSA ;g xeZ rFkk vkjkenk;d ugha gS] bl dkj.k 1 kW dh 'kfDr dk ,d fo|qr LVkso Hkh pkyw fd;k tkrk gSA nks ;qfDr;ka ,d lkFk dejs dk rki 22ºC cuk;s j[krh gSA ghVj dh Å"eh; 'kfDr kW esa Kkr djsA Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 31 Q.5 Q.6 In a bowl (with lid) we put together some amount of water (of mass m) and the same mass of ice both being at 0ºC. After 160 minutes the entire ice was melted. After how much time (in minutes) (approx.) melting of ice, the temperature of water increases by 1ºC. (Newton law of cooling is applicable here), temperature of air is 25ºC and latent heat of ice is 80 cal/gm is given. Q.5 Identical six rods are used to form given figure. Rods AB, BC & AC form equilateral triangle. The temperature of point B is (in °C) can be written as 10x. Find x. Q.6 [50°C] E U;wVu dk 'khryu dk fu;e ykxw gksrk gS) ok;q dk rki 25ºC rFkk cQZ dh xqIr Å"ek 80 cal/gm nh xbZ gSA ,d leku N% NM+sa fn;s x;s fp=k dks cukus esa iz;qä dh xbZ gSA NM+s AB, BC rFkk AC ,d leckgq f=kHkqt cukrh gSA fcUnq B dk rki (°C esa) 10x :i esa fy[kk tk ldrk gSA x Kkr djsaA [50°C] E B [100°C] D <+Ddu;qä ,d ckmy esa ge ikuh (m æO;eku dk) dh dqN ek=kk rFkk leku æO;eku dh cQZ dks 0ºC ij lkFk-lkFk j[krs gSA 160 feuV ckn iwjh cQZ fi?ky tkrh gSA cQZ ds fi?kyus ds fdrus le; ckn (feuV esa), ikuh dk rki 1ºC ls c<+ tkrk gSA (;gk¡ A B [100°C] D C F [0°C] A C F [0°C] Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 32 Q.7 The density of the core of a planet is ρ1 and that of the outer shell is ρ2. The radii of the core and that of the planet are R and 2R respectively. The acceleration due to gravity at the surface of the planet is same as at a depth R. The ρ1/ρ2 can be written as n/3. Find n. R Q.8 Q.9 Q.7 ,d xzg dh dksj ¼vkUrfjd dks'k½ dk ?kuRo ρ1 rFkk ckgjh dks'k dk ?kuRo ρ2 gSA dksj rFkk xzg dh f=kT;k,sa Øe'k% R rFkk 2R gSA xzg dh lrg ij xq:Roh; Roj.k] R xgjkbZ ij xq:Roh; Roj.k ds cjkcj gSA ρ1/ρ2 dks n/3 ds :i esa fy[k ldrs gSAa rks n Kkr djsaA R 2R ρ1 ρ1 ρ2 ρ2 A satellite is revolving round the earth in a circular orbit of radius ‘a’ with velocity v0. A particle is projected from satellite in a forward direction with 5 relative velocity v = – 1 v . Then it is found 4 0 that the maximum distance of particle from earth's na centre is . Then the value of n is 3 Q.8 A disc of radius '5cm' rolls on a horizontal surface with linear velocity v = 1 î m/s and angular velocity 50 rad/sec. Height of particle from ground on rim of disc which has velocity in vertical direction is (in cm) y ω v x Q.9 2R ,d mixzg iF̀oh ds pkjksa vksj ‘a’ f=kT;k dh oÙ̀kh; d{kk esa v0 osx ls pDdj yxk jgk gSA mixzg ls ,d d.k dks 5 vkxs dh fn'kk esa vkisf{kd osx v = – 1 v0 ls 4 iz{ksfir fd;k tkrk gSA rc ;g ik;k tkrk gS fd iF̀oh ds dsUnz ls d.k dh vf/kdre nwjh na gSA rc 3 n dk eku gS '5cm' f=kT;k dh ,d pdrh ,d {kSfrt lrg ij v = 1 î m/s js[kh; osx rFkk 50 rad/sec dks.kh; osx ls yq<d + rh gSA pdrh dh fje ij /kjkry ls d.k dh Å¡pkbZ tks Å/okZ/kj fn'kk esa osx j[krk gS] gS (cm esa) y ω v x Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 33 Space for Rough Work (jQ+ dk;Z gsrq LFkku) Space for rough work Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 34 MAX MARKS: 243 Time : 3 : 00 Hrs. Date : 13/2/2011 Name : _________________________________________________________ Roll No. : __________________________ INSTRUCTIONS TO CANDIDATE A. lkekU; : 1. Ñi;k izR;sd iz'u ds fy, fn, x, funsZ'kksa dks lko/kkuhiwoZd if<+;s rFkk lEcfU/kr fo"k;kas esa mÙkj&iqfLrdk ij iz'u la[;k ds le{k lgh mÙkj fpfUgr dhft,A 2. mRrj ds fy,] OMR vyx ls nh tk jgh gSA 3. ifjoh{kdksa }kjk funsZ'k fn;s tkus ls iwoZ iz'u&i=k iqfLrdk dh lhy dks ugha [kksysaA SEAL B. vadu i)fr: bl iz'ui=k esa izR;sd fo"k; esa fuEu izdkj ds iz'u gSa:[k.M – I 4. cgqfodYih izdkj ds iz'u ftuesa ls dsoy ,d fodYi lgh gSA izR;sd lgh mÙkj ds fy, 3 vad fn;s tk;saxs o izR;sd xyr mÙkj ds fy, 1 vad ?kVk;k tk,xkA 5. cgqfodYih izdkj ds iz'u ftuesa ls ,d ;k ,d ls vf/kd fodYi lgh gSaA izR;sd lgh mÙkj ds fy, 3 vad fn, tk;saxs rFkk dksbZ _.kkRed vadu ugha gSA 6. x|ka'k ij vk/kkfjr cgqfodYih izdkj ds iz'u ftuesa ls dsoy ,d gh fodYi lgh gSaA izR;sd lgh mÙkj ds fy, 3 vad fn, tk;saxs rFkk izR;sd xyr mÙkj ds fy, 1 vad ?kVk;k tk;sxkA [k.M – III 7. x.kukRed izdkj ds iz'u gSaA izR;sd lgh mÙkj ds fy, 3 vad fn;s tk;saxs rFkk xyr mÙkj ds fy, dksbZ _.kkRed vadu ugha gSA bl [k.M esa mÙkj bdkbZ iw.kk±d esa nhft, (tSls 0 ls 9)A C. OMR dh iwfrZ : 8. OMR 'khV ds CykWdksa esa viuk uke] vuqØek¡d] cSp] dkslZ rFkk ijh{kk dk dsUnz Hkjsa rFkk xksyksa dks mi;qDr :i ls dkyk djsaA 9. xksyks dks dkyk djus ds fy, dsoy HB isfUly ;k uhys/dkys isu (tsy isu iz;ksx u djsa) dk iz;ksx djsaA 10. dì;k xksyks dks Hkjrs le; [k.Mks dks lko/kkuh iwoZd ns[k ysa [vFkkZr [k.M I (,dy p;ukRed iz'u] dFku izdkj ds iz'u] ds iz'ufor ), [k.M -III work (iw.kkZd mÙkj izdkj ds iz'u½] cgqp;ukRed iz'u), [k.M –II (LrEHk lqesyu izdkj Space rough Section –I Section-II Section-III For example if only 'A' choice is correct then, the correct method for filling the bubbles is For example if Correct match for (A) is P; for (B) is R, S; for (C) is Q; for (D) is P, Q, S then the correct method for filling the bubbles is Ensure that all columns are filled. Answers, having blank column will be treated as incorrect. Insert leading zeros (s) A B C D E For example if only 'A & C' choices are correct then, the correct method for filling the bublles is A B C D E the wrong method for filling the bubble are The answer of the questions in wrong or any other manner will be treated as wrong. A B C D P Q R S T '6' should be filled as 0006 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 '86' should be filled as 0086 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 '1857' should be filled as 1857 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 Corporate Office : CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 lines), Fax (0744) 3040050 email : [email protected]; Website : www.careerpointgroup.com 1 Corporate Office: CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 (6 line) || IIT Target || Page # 35
© Copyright 2026 Paperzz