Complexity in Linear Systems: A Chaotic Linear Operator

Hindawi
Complexity
Volume 2017, Article ID 6020213, 8 pages
https://doi.org/10.1155/2017/6020213
Research Article
Complexity in Linear Systems: A Chaotic Linear Operator on
the Space of Odd 2πœ‹-Periodic Functions
Tamás Kalmár-Nagy1 and Márton Kiss2
1
Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics,
Budapest, Hungary
2
Institute of Mathematics, Faculty of Natural Sciences, Budapest University of Technology and Economics, Budapest, Hungary
Correspondence should be addressed to Tamás Kalmár-Nagy; [email protected]
Received 28 July 2016; Revised 6 December 2016; Accepted 28 December 2016; Published 22 February 2017
Academic Editor: Sylvain Sené
Copyright © 2017 Tamás Kalmár-Nagy and Márton Kiss. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.
Not just nonlinear systems but infinite-dimensional linear systems can exhibit complex behavior. It has long been known that twice
the backward shift on the space of square-summable sequences 𝑙2 displays chaotic dynamics. Here we construct the corresponding
operator C on the space of 2πœ‹-periodic odd functions and provide its representation involving a Principal Value Integral. We
explicitly calculate the eigenfunction of this operator, as well as its periodic points. We also provide examples of chaotic and
unbounded trajectories of C.
1. Introduction
Linear systems have commonly been thought to exhibit relatively simple behavior. Surprisingly, infinite-dimensional linear systems can have complex dynamics. In particular, Rolewicz in 1969 [1] showed that the backward shift 𝐡 multiplied
by 2 (i.e., 2𝐡) on the space of square-summable sequences 𝑙2
exhibits transitivity (and thus gives rise to chaotic dynamics). A nice exposition of dynamics of infinite-dimensional
operators is given in [2, 3] and the recent books [4, 5].
While chaoticity of linear operators is at first puzzling and
the backward shift example seems contrived, these operators
are not rare. In fact, Herrero [6] and Chan [7] showed that
chaotic linear operators are dense (with respect to pointwise
convergence) in the set of bounded linear operators. In addition to 2𝐡 there are many examples of chaotic linear operators
including weighted shifts [8], composition operators [9],
and differentiation and translations [10–12]. It has also been
argued in [13, 14] that nonlinearity is not necessarily required
for complex behavior; an infinite-dimensional state space can
also provide the ingredients of chaotic dynamics.
Several recent papers explore chaotic behavior of linear
systems (see, e.g., [15, 16]). Bernardes et al. [17], for example,
obtain new characterizations of Li-Yorke chaos for linear
operators on Banach and Fréchet spaces.
Here we construct a chaotic linear operator by β€œlifting” 2𝐡
to the space 𝐿 2 of square-integrable functions (more precisely
to the Hilbert space 𝐿 2 (0, πœ‹) of 2πœ‹-periodic odd functions).
Our main tool in finding the expression for the backward
shift is utilizing a smidgen of distribution theory and Cauchy’s
principal value, a method for obtaining a finite result for a singular integral. The principal value (PV) integral (see, e.g., [18],
p. 457) of a function 𝑓 about a point 𝑐 ∈ [π‘Ž, 𝑏] is given by
𝑏
PV ∫ 𝑓 (π‘₯) 𝑑π‘₯
π‘Ž
π‘βˆ’πœ€
= lim (∫
πœ€β†’0+
π‘Ž
𝑓 (π‘₯) 𝑑π‘₯ + ∫
𝑏
𝑐+πœ€
(1)
𝑓 (π‘₯) 𝑑π‘₯) .
The PV integral is commonly used in many fields of
physics. A review of developments in the mathematics and
methods for Principal Value Integrals is presented in [19].
Cohen et al. [20] examine first-order PV integrals and analyze
several of their important properties. The structure of the
paper is the following. In Section 2 we relate the backward
shift on 𝑙2 to a shift on 𝐿 2 (0, πœ‹). We state and prove a theorem
2
Complexity
about expressing this shift on 𝐿 2 (0, πœ‹) in terms of a PV
integral. In Section 3 we define and analyze the corresponding chaotic operator C on 𝐿 2 (0, πœ‹), including finding its
eigenvectors and periodic points. We provide examples of
unbounded and chaotic trajectories of C. In Section 4 we
draw conclusions. We also show that utilizing the representation of operator C one can obtain principal values of certain
integrals.
Definition 2 in the Appendix), B𝑃𝑛 πœ‘ β†’ Bπœ‘ in 𝐿 2 (0, πœ‹).
Then a subsequence tends to Bπœ‘ almost everywhere. Hence
if we prove that B𝑃𝑛 πœ‘(𝑑) tends to Aπœ‘(𝑑) for all fixed 𝑑, then
Aπœ‘ = Bπœ‘ almost everywhere as functions in 𝐿 2 (0, πœ‹); that is,
A = B on D(0, πœ‹). Finally, D(0, πœ‹) is a dense set in 𝐿 2 (0, πœ‹);
thus A = B on the whole space 𝐿 2 (0, πœ‹).
Proof. We start from
2. A Chaotic Linear Operator on the Space of
2πœ‹-Periodic Odd Functions
𝑛
2 πœ‹
= ∫ 𝑓 (πœ‰) ( βˆ‘ sin π‘˜πœ‰ sin (π‘˜ βˆ’ 1) 𝑑) π‘‘πœ‰.
πœ‹ 0
π‘˜=1
The backward shift 𝐡 on the infinite-dimensional Hilbert
space 𝑙2 of square-summable sequence is defined as
π΅π‘Ž = (π‘Ž2 , π‘Ž3 , . . .) ,
(2)
2
where π‘Ž = (π‘Ž1 , π‘Ž2 , . . .), such that βˆ‘βˆž
< ∞. The
𝑛=0 |π‘Žπ‘› |
Hilbert space 𝐿 2 (0, πœ‹) of square-integrable functions is isomorphic with 𝑙2 (by the Riesz-Fischer theorem) and is a
natural functional representation of the sequence space 𝑙2 .
By odd extension, elements of 𝐿 2 (0, πœ‹) can be viewed as odd
2πœ‹-periodic square-integrable functions so that 𝐿 2 (0, πœ‹) is
also isomorphic with the space of odd 2πœ‹-periodic squareintegrable functions. Now we β€œlift” π‘Ž ∈ 𝑙2 to 𝐿 2 (0, πœ‹) by the
summation
∞
𝑓 (𝑑) = βˆ‘ π‘Žπ‘› sin 𝑛𝑑.
(3)
sin π‘˜πœ‰ sin (π‘˜ βˆ’ 1) 𝑑
= sin π‘˜πœ‰ sin π‘˜π‘‘ cos 𝑑 βˆ’ sin π‘˜πœ‰ cos π‘˜π‘‘ sin 𝑑
For test functions πœ‘ ∈ D(0, πœ‹) and 𝑑 ∈ (0, πœ‹) we get
∞
∞
𝑛=1
𝑛=1
B𝑓 (𝑑) = βˆ‘ π‘Žπ‘›+1 sin 𝑛𝑑 = βˆ‘ π‘Žπ‘› sin (𝑛 βˆ’ 1) 𝑑.
πœ‹
2∞
βˆ‘ (∫ 𝑓 (πœ‰) sin (𝑛 + 1) πœ‰ π‘‘πœ‰) sin 𝑛𝑑
πœ‹ 𝑛=1 0
πœ‹
2
βˆ‘ (∫ 𝑓 (πœ‰) sin π‘›πœ‰ π‘‘πœ‰) sin (𝑛 βˆ’ 1) 𝑑.
πœ‹ 𝑛=1 0
π‘˜=1
0
π‘˜=1
Taking 𝑛 β†’ ∞ limit and utilizing (A.1) and (A.2) yield
(5)
lim B𝑃𝑛 πœ‘ (𝑑) = cos 𝑑 ⟨(𝛿 (πœ‰ βˆ’ 𝑑) βˆ’ 𝛿 (πœ‰ + 𝑑)) , πœ‘ (πœ‰)⟩
π‘›β†’βˆž
1
πœ‰βˆ’π‘‘
πœ‰+𝑑
sin 𝑑 ⟨(P cot
+ P cot
) , πœ‘ (πœ‰)⟩ .
2πœ‹
2
2
(11)
Since
(6)
cot
πœ‰βˆ’π‘‘
πœ‰+𝑑
+ cot
2
2
=2
=
Theorem 1. B𝑓(𝑑) can be expressed as
πœ‹
1
sin 𝑑 sin πœ‰
PV ∫
𝑓 (πœ‰) π‘‘πœ‰.
πœ‹
cos
𝑑 βˆ’ cos πœ‰
0
(10)
β‹… sin 𝑑 ∫ πœ‘ (πœ‰) βˆ‘ (sin π‘˜ (πœ‰ βˆ’ 𝑑) + sin π‘˜ (πœ‰ + 𝑑)) π‘‘πœ‰.
Our main result is the following.
B𝑓 (𝑑) = 𝑓 (𝑑) cos 𝑑 βˆ’
1
πœ‹
𝑛
πœ‹
(4)
βˆ’
=
𝑛
0
Therefore
∞
1
cos 𝑑
πœ‹
B𝑃𝑛 πœ‘ (𝑑) =
β‹… ∫ πœ‘ (πœ‰) βˆ‘ (cos π‘˜ (πœ‰ βˆ’ 𝑑) βˆ’ cos π‘˜ (πœ‰ + 𝑑)) π‘‘πœ‰ βˆ’
We define the backward shift B acting on 𝐿 2 (0, πœ‹) as
(9)
sin π‘˜ (πœ‰ βˆ’ 𝑑) + sin π‘˜ (πœ‰ + 𝑑)
sin 𝑑.
2
βˆ’
Clearly, the 𝑛th Fourier coefficient of 𝑓(𝑑) is expressed as
B𝑓 (𝑑) =
cos π‘˜ (πœ‰ βˆ’ 𝑑) βˆ’ cos π‘˜ (πœ‰ + 𝑑)
cos 𝑑
2
=
πœ‹
2 πœ‹
∫ 𝑓 (πœ‰) sin π‘›πœ‰ π‘‘πœ‰.
πœ‹ 0
(8)
We first rewrite the β€œkernel” of (8) as
𝑛=1
π‘Žπ‘› =
πœ‹
2 𝑛
βˆ‘ (∫ 𝑓 (πœ‰) sin π‘˜πœ‰ π‘‘πœ‰) sin (π‘˜ βˆ’ 1) 𝑑
πœ‹ π‘˜=1 0
B𝑃𝑛 𝑓 (𝑑) =
(7)
The strategy of the proof is the following: let us denote
by A𝑓(𝑑) the right-hand side of (7) and by 𝑃𝑛 the projection
from 𝐿 2 (0, πœ‹) onto the linear span of {sin 𝑑, sin 2𝑑, . . . , sin 𝑛𝑑}.
The sequence B𝑃𝑛 converges strongly to 𝐡. In particular, for
every πœ‘ ∈ D(0, πœ‹) (this is the space of test functions, see
sin ((πœ‰ βˆ’ 𝑑) /2 + (πœ‰ + 𝑑) /2)
2 sin ((πœ‰ βˆ’ 𝑑) /2) sin ((πœ‰ + 𝑑) /2)
(12)
2 sin πœ‰
,
cos 𝑑 βˆ’ cos πœ‰
the limit calculated in (11) is the same as A𝑓(𝑑).
Our β€œchaotic” operator (twice the backward shift) is now
defined as
C𝑓 (𝑑) = 2B𝑓 (𝑑)
= 2𝑓 (𝑑) cos 𝑑 βˆ’
πœ‹
(13)
sin 𝑑 sin πœ‰
2
PV ∫
𝑓 (πœ‰) π‘‘πœ‰.
πœ‹
0 cos 𝑑 βˆ’ cos πœ‰
Complexity
3
We are now in the position to construct 𝑇-periodic points of
C.
Introducing 𝑦 = {𝑦1 , . . . , 𝑦𝑇 }, a 𝑇-periodic point of 2𝐡
(acting on 𝑙2 ) can be written as [3]
πœ† = 1.25
3/2
πœ†=1
1
πœ†=0
πœ† = 0.5
𝑦1
𝑦 𝑦1
𝑦𝑇
, . . . , 𝑇𝑇 , 2𝑇
, . . . , 2𝑇
, . . .) ,
2𝑇
2 2
2
π‘Ž = (𝑦1 , . . . , 𝑦𝑇 ,
(20)
whose 𝑛th component is given by
0
0
πœ‹
πœ‹/2
t
π‘Žπ‘› =
Figure 1: Eigenfunctions of C for πœ† = 0, 0.5, 1, and 1.25.
2[(π‘›βˆ’1)/𝑇]𝑇
.
(21)
Using the linearity of C we can easily find a period-2 point of
C, that is, a function 𝑔(𝑑) such that C2 𝑔(𝑑) = 𝑔(𝑑):
3. Analysis of C
The eigenfunctions of C can be found from the eigenvalue
relation
Cπ‘“βˆ— (𝑑) = πœ†π‘“βˆ— (𝑑) .
∞
∞
sin (2𝑛 βˆ’ 1) 𝑑
sin (2𝑛) 𝑑
+ 𝑦2 βˆ‘ 2π‘›βˆ’2
2π‘›βˆ’2
2
𝑛=1
𝑛=1 2
𝑔 (𝑑) = 𝑦1 βˆ‘
(14)
∞
∞
βˆ‘ 2π‘Žπ‘›+1 sin 𝑛𝑑 = βˆ‘ πœ†π‘Žπ‘› sin 𝑛𝑑.
𝑛=1
(15)
(22)
20 sin 𝑑
16 sin 2𝑑
= 𝑦1
+ 𝑦2
.
17 βˆ’ 8 cos 2𝑑
17 βˆ’ 8 cos 2𝑑
Instead of using (13), we revert to (5) to write
In general, we find a period-𝑇 point of C as
𝑛=1
𝑓 (𝑑) = 𝑦1 (sin 𝑑 +
From this we have
πœ†
π‘Žπ‘›+1 = ( ) π‘Žπ‘› ,
2
(16)
and thus
∞
𝑦(π‘›βˆ’1 mod 𝑇)+1
πœ†
π‘“βˆ— (𝑑) = π‘Ž1 βˆ‘ ( )
𝑛=1 2
π‘›βˆ’1
sin 𝑛𝑑 = π‘Ž1
4 sin 𝑑
.
4 + βˆ’ 4πœ† cos 𝑑
πœ†2
The functions corresponding to eigenvalue πœ† = 1 are
4 sin (𝑑)
;
π‘“βˆ— (𝑑) = π‘Ž1
5 βˆ’ 4 cos (𝑑)
(18)
π‘˜
π‘˜th composition of C with itself. The π‘˜-fold composition acts
on 𝑓(𝑑) as
∞
(19)
sin (𝑇 + 2) 𝑑
sin (𝑛𝑇 + 2) 𝑑
+ β‹…β‹…β‹… +
2𝑇
2𝑛𝑇
(23)
+ β‹… β‹… β‹…) + β‹… β‹… β‹… +
+ 𝑦𝑇 (sin 𝑇𝑑 +
that is, the functions π‘Ž1 (4 sin(𝑑)/(5 βˆ’ 4 cos(𝑑))) are left
invariant under the action of C. In other words π‘“βˆ— (𝑑)’s are
fixed points of operator C. A family of eigenfunctions is
displayed in Figure 1 (we set π‘Ž1 = 1).
To better characterize the action of C we want to understand how a given function is β€œshaped” under the repeated
application of C. For 𝑓 ∈ 𝐿 2 (0, πœ‹) the orbit of 𝑓 is defined as
Orb(C, 𝑓) = {𝑓, C𝑓, C2 𝑓, . . .}, where Cπ‘˜ = ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
C ∘ β‹… β‹… β‹… ∘ C is the
Cπ‘˜ 𝑓 (𝑑) = 2π‘˜ βˆ‘ π‘Žπ‘›+π‘˜ sin 𝑛𝑑.
+ β‹… β‹… β‹…)
+ 𝑦2 (sin 2𝑑 +
(17)
sin (𝑇 + 1) 𝑑
sin (𝑛𝑇 + 1) 𝑑
+ β‹…β‹…β‹… +
2𝑇
2𝑛𝑇
sin (2𝑇) 𝑑
sin ((𝑛 + 1) 𝑇) 𝑑
+ β‹…β‹…β‹… +
2𝑇
2𝑛𝑇
+ β‹… β‹… β‹…) .
By defining the β€œbasis functions”
∞
sin ((𝑛 βˆ’ 1) 𝑇 + 1 + 𝑙) 𝑑
2(π‘›βˆ’1)𝑇
𝑛=1
πœ™ (𝑙, 𝑇) = βˆ‘
𝑇
=
(24)
𝑇
2 (2 sin (𝑙 + 1) 𝑑 + sin ((𝑇 βˆ’ 1 βˆ’ 𝑙) 𝑑))
1 + 4𝑇 βˆ’ 2𝑇+1 cos 𝑇𝑑
,
a period-𝑇 point of C can be expressed as the linear
combination
𝑛=1
A given 𝑓 ∈ 𝐿 2 (0, πœ‹) is a 𝑇-periodic point of C if C𝑇 𝑓 = 𝑓
for some 𝑇 β‰₯ 1 (a fixed point is a 1-periodic point; i.e., 𝑇 = 1).
𝑇
𝑓 (𝑑) = βˆ‘π‘¦π‘™ πœ™ (𝑙 βˆ’ 1, 𝑇) .
𝑙=1
(25)
4
Complexity
πœ™(l, 1)
πœ™(l, 3)
πœ™(0, 3)
1
1
πœ™(0, 1)
0
πœ‹
πœ‹/2
t
πœ™(2, 3)
πœ‹
πœ‹/2
t
πœ™(l, 2)
1
πœ™(l, 4)
πœ™(0, 2)
0
πœ™(1, 3)
βˆ’1
πœ‹
πœ‹/2
πœ™(1, 2)
βˆ’1
πœ™(0, 4)
πœ™(2, 4)
1
t
0
πœ™(3, 4)
πœ‹
πœ‹/2
βˆ’1
t
πœ™(1, 4)
Figure 2: Basis functions πœ™(𝑙, 𝑇) for 𝑇 = 1, . . . , 4 and 𝑙 = 0, . . . , 𝑇 βˆ’ 1.
The first few basis functions are (shown in Figure 2)
πœ™ (2, 4) =
16 sin (𝑑) + 256 sin (3𝑑)
,
257 βˆ’ 32 cos (4𝑑)
4 sin (𝑑)
5 βˆ’ 4 cos (𝑑)
πœ™ (3, 4) =
256 sin (4𝑑)
257 βˆ’ 32 cos (4𝑑)
πœ™ (0, 1) =
𝑇 = 4.
𝑇 = 1,
πœ™ (0, 2) =
20 sin (𝑑)
,
17 βˆ’ 8 cos (2𝑑)
πœ™ (1, 2) =
16 sin (2𝑑)
17 βˆ’ 8 cos (2𝑑)
(26)
𝑇 = 2,
πœ™ (0, 3) =
64 sin (𝑑) + 8 sin (2𝑑)
,
65 βˆ’ 16 cos (3𝑑)
πœ™ (1, 3) =
8 sin (𝑑) + 64 sin (2𝑑)
,
65 βˆ’ 16 cos (3𝑑)
∞
𝑦𝑖
sin 𝑛𝑑.
π‘–βˆ’1
2
𝑖=1
Ξ¨ (𝑑) = βˆ‘
64 sin (3𝑑)
πœ™ (2, 3) =
65 βˆ’ 16 cos (3𝑑)
𝑇 = 3,
πœ™ (0, 4) =
256 sin (𝑑) + 16 sin (3𝑑)
,
257 βˆ’ 32 cos (4𝑑)
πœ™ (1, 4) =
272 sin (2𝑑)
,
257 βˆ’ 32 cos (4𝑑)
Now we turn to creating a function that gives rise to a
chaotic orbit under the action of C. First, we note that for 2𝐡
(on 𝑙2 ) the point
𝑦 𝑦 𝑦
𝑦 = ( 1 , 2 , 3 , . . .) ,
(27)
1 2 4
where 𝑦𝑖 is the 𝑖th digit of a normal irrational number (whose
digits are uniformly distributed) and generates a chaotic orbit.
πœ‹ is believed to be normal, so we take 𝑦𝑖 to be the 𝑖th digit of
πœ‹. We now lift this point to 𝐿 2 (0, πœ‹) using (3):
(28)
Figure 3 shows the first 10 elements of the orbit of Ξ¨ under
the action of C, that is, Orb(C, Ξ¨). The first element of the
orbit is Ξ¨ itself.
Figure 4 shows the orbit Orb(C, Ξ¨) evaluated at three
different 𝑑’s (πœ‹/20, πœ‹/2, 19πœ‹/20) for 200 iterations.
Engineering applications of chaotic orbits include design
of fuel efficient space missions [21] and efficient mixing
protocols for microfluids [22].
Complexity
5
5
8
Ξ¨
0
πœ‹
πœ‹/2
t
Orb(π’ž, Ξ¨) |πœ‹/20
Orb(π’ž, Ξ¨)
4
3
2
βˆ’2
Figure 3: The first 10 elements of Orb(C, Ξ¨).
1
0
50
100
150
200
Iteration i
∞
π‘˜+1
2 (βˆ’1)
π‘˜
π‘˜=1
Ramp (𝑑) = 𝑑 = βˆ‘
sin π‘˜π‘‘
(βˆ’πœ‹ < 𝑑 < πœ‹) ,
10
8
Orb(π’ž, Ξ¨) |πœ‹/2
Now we examine the effect of C on some commonly used
periodic functions, namely, the ramp, the square-wave, and
the triangle. The Fourier series of these functions are the
following:
4
2
0
{βˆ’πœ‹ βˆ’πœ‹ < 𝑑 < 0
Sqw (𝑑) = {
πœ‹
0<𝑑<πœ‹
{
βˆ’2
0
50
100
150
200
150
200
Iteration i
∞
2
π‘˜πœ‹
= βˆ‘ sin2 ( ) sin π‘˜π‘‘
π‘˜
2
π‘˜=1
2.0
1.5
(29)
πœ‹
𝑑
0<𝑑<
{
{
2
Triangle (𝑑) = {
πœ‹
{πœ‹
{2 βˆ’π‘‘ 2 < 𝑑 < πœ‹
∞
4
π‘˜πœ‹
sin ( ) sin π‘˜π‘‘
2πœ‹
π‘˜
2
π‘˜=1
=βˆ‘
∞
4 (βˆ’1)π‘˜+1
sin (2π‘˜ + 1) 𝑑.
2
π‘˜=1 (2π‘˜ + 1) πœ‹
=βˆ‘
Figure 5 shows the first 4 elements of the orbits of
these functions. First, we note that the norm of the iterates
grows (moreover, each Fourier coefficient tends to infinity);
that is, these functions have unbounded orbits under the
action of C. Second, the graphs of the even iterates (C2𝑛 ) of
Ramp(𝑑), Sqw(𝑑), and Triangle(𝑑) are similar to the graph of
tan(𝑑/2), βˆ’ tan(𝑑 + πœ‹/2), and ±(βˆ’1)[𝑑/πœ‹βˆ’1/2] tan 𝑑, respectively.
This is not too surprising, since the Fourier expansion of
π‘˜+1
tan(𝑑/2) is 2 βˆ‘βˆž
sin π‘˜π‘‘ which is close in some sense
π‘˜=1 (βˆ’1)
to
∞
π‘˜
2𝑛 2𝑛
C
Ramp
=
2
) sin π‘˜π‘‘ (30)
βˆ‘
(βˆ’1)π‘˜+1 (1 βˆ’
(𝑑)
22𝑛
2𝑛
+π‘˜
π‘˜=1
Orb(π’ž, Ξ¨) |19πœ‹/20
∞
2
sin (2π‘˜ + 1) 𝑑,
=βˆ‘
2π‘˜ + 1
π‘˜=1
6
1.0
0.5
0.0
βˆ’0.5
βˆ’1.0
βˆ’1.5
0
50
100
Iteration i
Figure 4: The orbit Orb(C, Ξ¨) for 200 iterations evaluated at 𝑑 =
πœ‹/20, πœ‹/2, 19πœ‹/20.
for large enough 𝑛. Unbounded orbits of differential equations (the so-called escape orbits) play an important role in
Newtonian gravitation [23].
4. Conclusions
Contrary to common belief, linear systems can display
complicated dynamics. Starting from twice the backward
shift on 𝑙2 we constructed the corresponding shift operator
𝐢 on 𝐿 2 (0, πœ‹) (the space of odd, 2πœ‹-periodic functions) and
provided its representation using a modicum of distribution
theory and Cauchy’s Principal Value Integral. We explicitly
calculated the periodic points of the operator (including its
6
Complexity
πœ‹
πœ‹/2
Triangle(t)
Sqw(t)
Ramp(t)
πœ‹/2
βˆ’πœ‹/2
βˆ’πœ‹
0
βˆ’πœ‹
πœ‹
βˆ’πœ‹
0
t
t
7
βˆ’πœ‹/2
πœ‹
πœ‹
0
t
0
t
πœ‹
πœ‹
0
βˆ’πœ‹
0
t
βˆ’1.2
πœ‹
βˆ’πœ‹
0
πœ‹
t
t
24
0.55
π’ž3 Triangle(t)
π’ž3 Sqw(t)
π’ž3 Ramp(t)
11
βˆ’11
βˆ’24
βˆ’πœ‹
πœ‹
π’ž2 Triangle(t)
π’ž2 Sqw(t)
π’ž2 Ramp(t)
βˆ’6
βˆ’πœ‹
0
t
1.2
6
βˆ’13
βˆ’πœ‹
βˆ’0.3
βˆ’πœ‹
13
πœ‹
π’ž1 Triangle(t)
π’ž1 Sqw(t)
π’ž1 Ramp(t)
βˆ’πœ‹
βˆ’πœ‹
0
t
0.3
πœ‹
βˆ’7
βˆ’πœ‹
0
t
πœ‹
βˆ’πœ‹
0
t
πœ‹
βˆ’0.55
βˆ’πœ‹
0
t
πœ‹
Figure 5: Iterates of the ramp, square-wave, and triangle functions.
nontrivial fixed point) and provided examples of chaotic and
unbounded trajectories of C.
We note here that utilizing representation (7) of operator
C one can actually calculate principal values. To wit, rearranging (7) yields
PV ∫
πœ‹
0
sin 𝑑 sin πœ‰
𝑓 (πœ‰) π‘‘πœ‰
cos 𝑑 βˆ’ cos πœ‰
(31)
πœ‹
C𝑓 (𝑑) .
2
For the simplest case, when 𝑓(𝑑) is the eigenfunction of
operator C, that is, C𝑓(𝑑) = πœ†π‘“(𝑑), we have (cf. (17))
= πœ‹π‘“ (𝑑) cos 𝑑 βˆ’
PV ∫
πœ‹
0
4 sin πœ‰
sin 𝑑 sin πœ‰
π‘‘πœ‰
2
cos 𝑑 βˆ’ cos πœ‰ 4 + πœ† βˆ’ 4πœ† cos πœ‰
2πœ‹ sin 𝑑 (2 cos 𝑑 βˆ’ πœ†)
.
=
4 + πœ†2 βˆ’ 4πœ† cos 𝑑
(32)
The basis functions πœ™(𝑙, 𝑇) can similarly be used to obtain
PV integrals. The Principal Value Integral is a tool commonly
used in physics, but not in engineering-related fields. We hope
that this connection between chaotic operators and Principal
Value Integrals will stimulate further research.
Appendix
In this section we give a short introduction on distributional
derivatives. The following definitions together with Proposition 5 can be found in standard textbooks on partial differential equations; see, for example, [24, 25].
Notation 1 (multi-index). Let Ξ© be an open subset of R𝑛
and let πœ‘ : Ξ© β†’ R be a smooth function. Then, for a
vector 𝛼 = (𝛼1 , 𝛼2 , . . . , 𝛼𝑛 ), πœ•π›Ό πœ‘ denotes the partial derivative
𝛼 𝛼
πœ•1 1 πœ•2 2 β‹… β‹… β‹… πœ•π‘›π›Όπ‘› πœ‘ of order |𝛼| = 𝛼1 + 𝛼2 + β‹… β‹… β‹… + 𝛼𝑛 .
Complexity
7
Definition 2 (test functions). Let D(Ξ©) denote the space of
test functions on the open set Ξ© βŠ‚ R𝑛 , that is, D(Ξ©) =
πΆπ‘βˆž (Ξ©), endowed with the following convergence: πœ‘π‘› β†’ πœ‘ if
there is a compact subset 𝐾 of Ξ© containing the support of πœ‘π‘›
for all 𝑛 and for every multi-index 𝛼 πœ•π›Ό πœ‘π‘› β†’ πœ•π›Ό πœ‘ uniformly.
(A.1) and (A.2). Concerning the right-hand side of (A.4), let
us denote the 2πœ‹-periodic extension of (πœ‹βˆ’π‘₯)/2 by β„Ž(π‘₯). Then
βŸ¨β„ŽσΈ€  (π‘₯) , πœ‘ (π‘₯)⟩ = βˆ’ βŸ¨β„Ž (π‘₯) , πœ‘σΈ€  (π‘₯)⟩
= βˆ’βˆ«
σΈ€ 
Definition 3 (distributions). Let D (Ξ©) denote the space of
continuous linear functionals on D(Ξ©). The convergence on
D(Ξ©) induces a weak or pointwise convergence on DσΈ€  (Ξ©);
namely, 𝑒𝑛 β†’ 𝑒 if βŸ¨π‘’π‘› , πœ‘βŸ© β†’ βŸ¨π‘’, πœ‘βŸ© for all πœ‘ ∈ D(Ξ©).
Note that every function β„Ž locally integrable on Ξ© acts as
a distribution via βŸ¨β„Ž, πœ‘βŸ© = ∫Ω β„Žπœ‘. Then β„Ž is called a regular
distribution.
Definition 4 (derivatives of distributions). Let 𝑒 ∈ DσΈ€  (Ξ©).
Then βŸ¨πœ•π›Ό 𝑒, πœ‘βŸ© = (βˆ’1)|𝛼| βŸ¨π‘’, πœ•π›Ό πœ‘βŸ©.
Note the similarity with the integration by parts formula
for regular distributions.
Proposition 5. Differentiation is a continuous operation with
respect to the pointwise convergence of distributions. As a
consequence, derivatives of infinite series of distributions can
be calculated by term-by-term differentiation.
To aid the proof of Theorem 1 we state and prove the
following.
Proposition 6. Consider the following:
∞
∞
1
βˆ‘ cos π‘˜π‘₯ = πœ‹ βˆ‘ 𝛿 (π‘₯ βˆ’ 2π‘˜πœ‹) βˆ’ ,
2
π‘˜=1
π‘˜=βˆ’βˆž
∞
1
π‘₯
βˆ’ βˆ‘ sin π‘˜π‘₯ = βˆ’ P cot ,
2
2
π‘˜=1
(A.1)
(A.2)
∞
βˆ’βˆž
(2π‘˜+1)πœ‹
π‘₯
π‘₯
⟨Pcot , πœ‘ (π‘₯)⟩ = βˆ‘ PV ∫
cot πœ‘ (π‘₯) 𝑑π‘₯, (A.3)
2
2
(2π‘˜βˆ’1)πœ‹
π‘˜=βˆ’βˆž
=βˆ’ βˆ‘ ∫
2(π‘˜+1)πœ‹
π‘˜=βˆ’βˆž 2π‘˜πœ‹
(A.6)
β„Ž (π‘₯) πœ‘σΈ€  (π‘₯) 𝑑π‘₯.
Note that this is actually a finite sum as the test function πœ‘
is compactly supported. One partial integration in all terms
leads to
∞
βˆ’ βˆ‘ ∫
2(π‘˜+1)πœ‹
π‘˜=βˆ’βˆž 2π‘˜πœ‹
β„Ž (π‘₯) πœ‘σΈ€  (π‘₯) 𝑑π‘₯
∞
2(π‘˜+1)πœ‹
= βˆ’ βˆ‘ {[β„Ž (π‘₯) πœ‘ (π‘₯)]2π‘˜πœ‹
π‘˜=βˆ’βˆž
βˆ’βˆ«
2(π‘˜+1)πœ‹
2π‘˜πœ‹
βˆ’βˆ«
∞
βˆ’βˆž
∞
(A.7)
1
(βˆ’ πœ‘ (π‘₯)) 𝑑π‘₯} = βˆ‘ πœ‹πœ‘ (2π‘˜πœ‹)
2
π‘˜=βˆ’βˆž
1
πœ‘ (π‘₯) 𝑑π‘₯,
2
which is the right-hand side of (A.1) applied to πœ‘(π‘₯). Similarly, let us define β„Ž(π‘₯) as the 2πœ‹-periodic extension of
βˆ’(1/2) ln 2(1 βˆ’ cos π‘₯) (the right-hand side of (A.5)). The ordinary derivative of β„Ž(π‘₯) is cot(π‘₯/2), but, in contrast with the
previous case, this is not locally integrable near the integer
multiples of 2πœ‹. Cutting the singularities first and then
integrating by parts,
∞
2(π‘˜+1)πœ‹
βˆ’ βˆ‘ ∫
β„Ž (π‘₯) πœ‘σΈ€  (π‘₯) 𝑑π‘₯
∞
= βˆ’ lim βˆ‘ ∫
πœ€β†’0+
2(π‘˜+1)πœ‹βˆ’πœ€
π‘˜=βˆ’βˆž 2π‘˜πœ‹+πœ€
∞
= lim βˆ‘ ∫
πœ€β†’0+
where the principal values are given in the sense of (1) with π‘Ž =
(2π‘˜ βˆ’ 1)πœ‹, 𝑏 = (2π‘˜ + 1)πœ‹, and 𝑐 = 2π‘˜πœ‹.
β„Ž (π‘₯) πœ‘σΈ€  (π‘₯) 𝑑π‘₯
∞
π‘˜=βˆ’βˆž 2π‘˜πœ‹
where the distribution Pcot(π‘₯/2) acts on a function πœ‘ as
∞
2(π‘˜+1)πœ‹βˆ’πœ€
π‘˜=βˆ’βˆž 2π‘˜πœ‹+πœ€
β„Ž (π‘₯) πœ‘σΈ€  (π‘₯) 𝑑π‘₯
(A.8)
π‘₯
cot πœ‘ (π‘₯) 𝑑π‘₯.
2
This is the same as (A.3), that is, the distribution in (A.2)
applied to πœ‘(π‘₯).
Proof. We start with the identities [26]
∞
sin π‘˜π‘₯ πœ‹ βˆ’ π‘₯
=
βˆ‘
π‘˜
2
π‘˜=1
∞
Competing Interests
(0 < π‘₯ < 2πœ‹) ,
cos π‘˜π‘₯
1
= βˆ’ ln 2 (1 βˆ’ cos π‘₯)
π‘˜
2
π‘˜=1
βˆ‘
(0 < π‘₯ < 2πœ‹) .
(A.4)
(A.5)
By periodicity, both equalities extend to R. Term-by-term
differentiation of the left hand sides of (A.4) and (A.5) (using
Proposition 5) results immediately in the left hand sides of
The authors declare that they have no competing interests.
Acknowledgments
This work relates to the scientific program of the project
β€œDevelopment of Quality-Oriented and Harmonized R+D+I
Strategy and the Functional Model at BME,” supported by
the New Hungary Development Plan (Project ID: TÁMOP4.2.1/B-09/1/KMR-2010-0002). The work was also supported
8
by the project β€œTalent Care and Cultivation in the Scientific
Workshops of BME” project (Project ID: TÁMOP-4.2.2/B10/1-2010-0009). The authors would like to thank Prof. Tibor
Illés for his encouragement of this collaboration.
References
[1] S. Rolewicz, β€œOn orbits of elements,” Studia Mathematica, vol.
32, no. 1, pp. 17–22, 1969.
[2] J. H. Shapiro, Notes on the Dynamics of Linear Operators, Lecture
Notes, 2001, http://users.math.msu.edu/users/mshapiro/.
[3] N. S. Feldman, β€œLinear chaos,” 2001, http://home.wlu.edu/∼feldmann/Papers/LinearChaos.html.
[4] F. Bayart and É. Matheron, Dynamics of Linear Operators, vol.
179, Cambridge University Press, 2009.
[5] K.-G. Grosse-Erdmann and A. P. Manguillot, Linear Chaos,
Springer Science & Business Media, 2011.
[6] D. A. Herrero, β€œHypercyclic operators and chaos,” Journal of
Operator Theory, vol. 28, no. 1, pp. 93–103, 1992.
[7] K. C. Chan, β€œThe density of hypercyclic operators on a Hilbert
space,” Journal of Operator Theory, vol. 47, no. 1, pp. 131–143,
2002.
[8] H. N. Salas, β€œHypercyclic weighted shifts,” Transactions of the
American Mathematical Society, vol. 347, no. 3, pp. 993–1004,
1995.
[9] P. Bourdon and J. H. Shapiro, Cyclic Phenomena for Composition
Operators, vol. 596, American Mathematical Society, 1997.
[10] R. M. Gethner and J. H. Shapiro, β€œUniversal vectors for operators on spaces of holomorphic functions,” Proceedings of the
American Mathematical Society, vol. 100, no. 2, pp. 281–288,
1987.
[11] X.-C. Fu and J. Duan, β€œInfinite-dimensional linear dynamical
systems with chaoticity,” Journal of Nonlinear Science, vol. 9, no.
2, pp. 197–211, 1999.
[12] F. Martı́nez-Giménez and A. Peris, β€œChaos for backward shift
operators,” International Journal of Bifurcation and Chaos, vol.
12, no. 8, pp. 1703–1715, 2002.
[13] V. Protopopescu, β€œLinear vs nonlinear and infinite vs finite: an
interpretation of chaos,” Tech. Rep. Oak Ridge, Tenn, USA, Oak
Ridge National Lab, 1990.
[14] V. Protopopescu and Y. Y. Azmy, β€œTopological chaos for a class
of linear models,” Mathematical Models and Methods in Applied
Sciences, vol. 2, no. 1, pp. 79–90, 1992.
[15] B. Hou, G. Tian, and S. Zhu, β€œApproximation of chaotic operators,” Journal of Operator Theory, vol. 67, no. 2, pp. 469–493,
2012.
[16] F. Martı́nez-Giménez, P. Oprocha, and A. Peris, β€œDistributional
chaos for operators with full scrambled sets,” Mathematische
Zeitschrift, vol. 274, no. 1-2, pp. 603–612, 2013.
[17] J. Bernardes, A. Bonilla, V. Müller, and A. Peris, β€œLi-yorke chaos
in linear dynamics,” Ergodic Theory and Dynamical Systems, vol.
35, no. 6, pp. 1723–1745, 2015.
[18] I. N. Bronshtein and K. A. Semendyayev, Handbook of Mathematics, Springer-Verlag, Berlin, Germany, 2013.
[19] K. T. Davies, M. L. Glasser, V. Protopopescu, and F. Tabakin,
β€œThe mathematics of principal value integrals and applications
to nuclear physics, transport theory, and condensed matter
physics,” Mathematical Models and Methods in Applied Sciences,
vol. 6, no. 6, pp. 833–885, 1996.
Complexity
[20] S. M. Cohen, K. T. R. Davies, R. W. Davies, and M. H. Lee,
β€œPrincipal-value integralsβ€”revisited,” Canadian Journal of
Physics, vol. 83, no. 5, pp. 565–575, 2005.
[21] E. Belbruno, Fly Me to the Moon: An Insider’s Guide to the New
Science of Space Travel, Princeton University Press, Princeton,
NJ, USA, 2007.
[22] C.-Y. Lee, C.-L. Chang, Y.-N. Wang, and L.-M. Fu, β€œMicrofluidic
mixing: a review,” International Journal of Molecular Sciences,
vol. 12, no. 5, pp. 3263–3287, 2011.
[23] F. G. Gascon and D. Peralta-Salas, β€œEscape to infinity in a Newtonian potential,” Journal of Physics A: Mathematical and General, vol. 33, no. 30, pp. 5361–5368, 2000.
[24] V. S. Vladimirov, Methods of the Theory of Generalized Functions, vol. 6 of Analytical Methods and Special Functions, Taylor
& Francis, London, UK, 2002.
[25] R. P. Kanwal, Generalized Functions: Theory and Applications,
Springer, Boston, Mass, USA, 3rd edition, 2004.
[26] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products, Academic Press, San Diego, Calif, USA, 2014.
Advances in
Operations Research
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics
Volume 2014
The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at
https://www.hindawi.com
International Journal of
Advances in
Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com
Mathematical Physics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International
Journal of
Mathematics and
Mathematical
Sciences
Mathematical Problems
in Engineering
Journal of
Mathematics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Discrete Dynamics in
Nature and Society
Journal of
Function Spaces
Hindawi Publishing Corporation
http://www.hindawi.com
Abstract and
Applied Analysis
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014