Data-Poor Methods for Fishery Managers

Managing Data-Poor Fisheries: Case Studies, Models & Solutions 1:159–184, 2010
Copyright: California Sea Grant College Program 2010
ISBN number 978-1-888691-23-8
[Article]
From Rags to Fishes: Data-Poor Methods for Fishery Managers
KRISTEN T. HONEY*
Stanford University,
Emmett Interdisciplinary Program in Environment and Resources (E-IPER),
School of Earth Sciences and Hopkins Marine Station,
2FHDQYLHZ%OYG3DFLÀF*URYH&$
JERRY H. MOXLEY
Environmental Defense Fund, Oceans Program,
0LVVLRQ6WWK)ORRU6DQ)UDQFLVFR&$
7HOMPR[OH\#HGIRUJ
ROD M. FUJITA
Environmental Defense Fund, Oceans Program,
0LVVLRQ6WWK)ORRU6DQ)UDQFLVFR&$
7HOUIXMLWD#HGIRUJ
Abstract.—Fishery managers often must make decisions regardless of data availability or completeness of
VFLHQWL¿FXQGHUVWDQGLQJ([LVWLQJDQGQHZOHJDOPDQGDWHVVXFKDVWKHUHTXLUHPHQWWRHVWDEOLVK$QQXDO&DWFK
/LPLWVIRUHDFK8QLWHG6WDWHV¿VKHU\E\DVZHOODVWKHRQJRLQJQHHGWRLPSURYHXQGHUVWDQGLQJRI¿VK
VWRFNG\QDPLFVDUHGULYLQJHIIRUWVWRGHYHORSQHZPRUHHI¿FLHQWZD\VWRDVVHVV¿VKVWRFNVZKHQUHVRXUFHV
DUHLQVXI¿FLHQWIRUIXOOVWRFNDVVHVVPHQWV0RUHRYHUWKHUHLVDQLQFUHDVLQJUHFRJQLWLRQRIWKHQHHGWRDVVHVV
VWRFNVDWVPDOOHUVSDWLDOVFDOHV,Q'HFHPEHU¿VKHU\VFLHQWLVWV¿VKHUPHQDQGPDQDJHUVFRQYHQHGDWD
ZRUNVKRSLQ%HUNHOH\&DOLIRUQLD86$WRGLVFXVVVXFKPHWKRGV2QHJRDORIWKHZRUNVKRSZDVWRLGHQWLI\
PHWKRGV IRU HVWLPDWLQJ SRWHQWLDO UHIHUHQFH SRLQWV IRU PDQDJLQJ GDWDSRRU ¿VKHULHV VXFK DV VFLHQFHEDVHG
RYHU¿VKLQJWKUHVKROGVDOORZDEOHELRORJLFDOFDWFKOHYHOVDQGYXOQHUDELOLW\LQGLFHV+HUHZHUHYLHZPHWKRGV
SUHVHQWHGDWWKHZRUNVKRSDVZHOODVVRPHSURPLVLQJPHWKRGVJOHDQHGIURPWKHOLWHUDWXUHIRUHVWDEOLVKLQJ
UHIHUHQFHSRLQWVIRUGDWDSRRUVLWXDWLRQV:HSUHVHQWDQHZIUDPHZRUNWRKHOSPDQDJHUVDQGVWDNHKROGHUV
consider and choose appropriate analytical methods and alternative management approaches, based on availDEOHGDWDW\SHTXDQWLW\DQGTXDOLW\DQGIHDVLELOLW\FRQVWUDLQWVVFDOHYDOXHDQGLPSOHPHQWDWLRQFRVWV:H
KLJKOLJKWOLPLWDWLRQVDQGFRQVLGHUDWLRQVIRUHDFKPHWKRGDQGLOOXVWUDWHWKHXVHRIRXUIUDPHZRUNE\SUHVHQWLQJFDVHVWXG\H[DPSOHV7RRRIWHQODFNRIGDWDDQGRUSURSHUGDWDDQDO\VLVUHVXOWVLQODFNRIPDQDJHPHQW
7KLVVWDWXVTXRKRZHYHUSRVHVULVNVWRWKHHFRQRPLFDQGELRORJLFDOVXVWDLQDELOLW\RI¿VKHULHV$SSOLFDWLRQ
RIGDWDSRRUPHWKRGVZKLOHVXEMHFWWRPDQ\FDYHDWVFDQUHGXFHWKHVHULVNVE\SURYLGLQJVFLHQWL¿FJXLGDQFH
IRUPDQDJHPHQW
&RPSOH[PRGHOVWKDWUHTXLUHODUJHDPRXQWVRIGDWD
DUH FRPPRQO\ XVHG WR LQIRUP ¿VKHU\ PDQDJHPHQW
GHFLVLRQV VXFK DV VHWWLQJ DOORZDEOH KDUYHVW OHYHOV RU
GHWHUPLQLQJRYHU¿VKLQJWKUHVKROGVIRUVSHFLHVRUVSHFLHV JURXSV 2IWHQ KRZHYHU ¿VKHU\ PDQDJHUV PXVW
PDNHVXFKGHFLVLRQVZLWKRXWFRPSOH[PRGHOVGXHWRD
ODFNRIGDWDTXDQWLW\GDWDTXDOLW\XQGHUVWDQGLQJWHFKQLFDO FDSDFLW\ RU KXPDQ FDSLWDO ,Q &DOLIRUQLD DORQH
DSSUR[LPDWHO\RI¿VKHGVWRFNVRIVSHFLHVODFNVWRFNDVVHVVPHQWVDQGWKXVPD\EHGH¿QHG
DVGDWDSRRU¿VKHULHV%RWVIRUGDQG.LOGXII
0DQ\ LI QRW PRVW ¿VKHULHV LQ WKH 8QLWHG 6WDWHV
DQG DURXQG WKH ZRUOG DUH GDWDSRRU GXH WR ODFN RI
research funding and lack of support for monitoring
DQG DQDO\VLV 0DQ\ RI WKHVH ¿VKHULHV DUH LPSRUWDQW
IRU HFRQRPLF DQG IRRG VHFXULW\ DQGRU EHFDXVH WKH\
DIIHFW YXOQHUDEOH HFRV\VWHPV RU YXOQHUDEOH VWRFNV ,W
LVLPSRUWDQWWRDVVHVVDQGPDQDJHWKHP²HYHQZKHQ
IHZGDWDDUHDYDLODEOH
&RUUHVSRQGLQJDXWKRUNKRQH\#VWDQIRUGHGX
Fortunately, there are methods for assessing stock
status and identifying management reference points for
¿VKHULHVWKDWDUHGDWDSRRU5HFHQWO\GHYHORSHGPHWKRGVFDQEHXVHGWRSULRULWL]H¿VKHULHVIRUUHVHDUFKDQG
PDQDJHPHQW DV ZHOO DV HVWLPDWH RYHU¿VKLQJ WKUHVKolds, biomass levels, stock status, or catch or effort
OLPLWV ZLWK OLPLWHG LQIRUPDWLRQ ([LVWLQJ DQG QHZ
OHJDO PDQGDWHV VXFK DV WKH UHTXLUHPHQW WR HVWDEOLVK
Annual Catch Limits by 2011 for all targeted stocks in
WKH8QLWHG6WDWHVGULYHHIIRUWVWRGHYHORSQHZPRUH
HI¿FLHQWZD\VWRDVVHVVDQGPDQDJH¿VKVWRFNVZKHQ
IXOOVWRFNDVVHVVPHQWVDUHLQIHDVLEOH7KHUHLVRQJRLQJ
QHHGWRLPSURYHXQGHUVWDQGLQJRI¿VKVWRFNG\QDPLFV
JLYHQH[LVWLQJUHVRXUFHVDQGLQIRUPDWLRQFRQVWUDLQWV
:KHQGDWDDUHLQVXI¿FLHQWIRUDFRQYHQWLRQDOVWRFNassessment, alternative methods can inform managePHQWWDVNVZLWKVFLHQFHEDVHGXQGHUVWDQGLQJ)XUWKHU
development of alternative assessment methods that
FDQ H[WUDFW NQRZOHGJH IURP UHODWLYHO\ VFDUFH GDWD LV
159
'$7$32250(7+2'6)25),6+(5<0$1$*(56
RQHQHFHVVDU\VWHSWRZDUGDGGUHVVLQJWKHRYHUDOOFKDOOHQJH RI PDQDJLQJ ¿VKHULHV )LVKHU\ PDQDJHUV PXVW
DOVR ZHLJK FRPSHWLQJ REMHFWLYHV LQFOXGLQJ WKH FRVWV
RI PDQDJHPHQW UHODWLYH WR WKH YDOXH RI ¿VKHULHV LQ
order to determine appropriate levels of investments in
UHVHDUFKDQGDQDO\VLV
:KHQ¿QDQFLDOUHVRXUFHVDUHVFDUFHDVWKH\RIWHQ
DUH IRU WKH PDQDJHPHQW RI GDWDSRRU VWRFNV HYHU\
hour and dollar invested in stock management demands
PD[LPXPUHWXUQRQLQYHVWPHQW7KHUHIRUHPDQDJHUV
RIGDWDSRRU¿VKHULHVRIWHQIDFHDGGLWLRQDOSUHVVXUHWR
SHUIRUPWKHLUUHVSRQVLELOLWLHVLQDFRVWHI¿FLHQWPDQQHU
7KH\PXVWH[WUDFWDVPXFKVFLHQWL¿FXQGHUVWDQGLQJDV
possible, given scarce data and resources to characterL]HSRSXODWLRQVL]HVWUXFWXUHDQGUHJLRQDOG\QDPLFV
7KHQ PDQDJHUV PXVW DSSO\ YDOXHV DQG FRQWURO UXOHV
WRPDQDJH¿VKLQJHIIRUWDQGFDWFK7RDFKLHYHVXFFHVV
ZLWKLQWKHVHGDWDDQGUHVRXUFHFRQVWUDLQWVWKHDSSURSULDWHXVHRIGDWDSRRUDOWHUQDWLYHVUHTXLUHVWKHGHFLVLRQ PDNHU WR NQRZ DERXW DYDLODEOH RSWLRQV DV ZHOO
DVXQGHUVWDQGLQJZKLFKLIDQ\DOWHUQDWLYHVDUHPRVW
DSSURSULDWHIRUDJLYHQ¿VKHU\DQGPDQDJHPHQWFRQWH[W
,QWKLVSDSHUZHSUHVHQWDIUDPHZRUNWRKHOSPDQagers and stakeholders identify alternative methods for
assessing stock status and evaluate options for manDJLQJGDWDSRRU¿VKHULHV:HUHYLHZDYDULHW\RIGDWD
analysis methods and reference points for use in dataSRRU¿VKHULHVZKLOHSURYLGLQJFRQWH[WDQGFDVHVWXG\
H[DPSOHVRILQQRYDWLYHDQGDOWHUQDWLYHDSSURDFKHV:H
organize this range of data-poor methods in an intuiWLYHZD\ZLWKLQRQHIUDPHZRUNLQRUGHUWRPDNHDOO
WRROVDQGH[LVWLQJDOWHUQDWLYHVPRUHDFFHVVLEOHWR¿VKHU\PDQDJHUVDQGVWDNHKROGHUV7KHQZHGLVFXVVWKH
VSHFL¿F QHHGV FDYHDWV DQG OLPLWDWLRQV RI HDFK GDWD
SRRUPHWKRGDQGDVVRFLDWHGPDQDJHPHQWDSSURDFKHV
0DQ\¿VKHULHVUHPDLQXQDVVHVVHGDQGXQPDQDJHG
not because they are unimportant economically and
HFRORJLFDOO\ EXW EHFDXVH LQVXI¿FLHQW UHVRXUFHV DQG
GDWDH[LVWWRGULYHDFRPSOH[VWRFNDVVHVVPHQW2IWHQ
WKHUH LV D ODFN RI TXDOL¿HG VWRFN DVVHVVPHQW VFLHQWLVWV IRU WKH ZRUN %HUNVRQ HW DO 7KHUHIRUH
our overall intent is to make data-poor methods more
DFFHVVLEOHDQGSURYLGHDIUDPHZRUNWKDWPDQDJHUVDQG
stakeholders can use to evaluate the data-richness of
WKHLU ¿VKHULHV WKH UDQJH RI DQDO\WLFDO PHWKRGV DYDLOable for assessing stock status, and some of the pros
DQGFRQVRIHDFKPHWKRG:HGRQRWKRZHYHUSURYLGH
H[KDXVWLYHUHYLHZVRIGDWDSRRUPHWKRGVVRLQWHUHVWHG
SDUWLHV ZLOO QHHG WR FRQGXFW WKHLU RZQ FDUHIXO HYDOXation of the relevant primary literature on a case-byFDVH EDVLV :H KRSH WR VWLPXODWH LQFUHDVHG GHYHORSment and use of data-poor methods, and ultimately the
DVVHVVPHQWDQGPDQDJHPHQWRIPRUH¿VKHULHVLQRUGHU
WRUHGXFHULVNVWRVXVWDLQDELOLW\
160
Approach and Key Terms
:HUHYLHZHGDQGVXPPDUL]HGZRUNSUHVHQWHGDWWKH
³0DQDJLQJ 'DWD3RRU )LVKHULHV &DVH 6WXGLHV 0RGHOV 6ROXWLRQV´ ZRUNVKRS LQ %HUNHOH\ &DOLIRUQLD
86$'HFHPEHU±FRVSRQVRUHGE\WKH&DOLIRUQLD 'HSDUWPHQW RI )LVK DQG *DPH DQG &DOLIRUQLD
6HD *UDQW &ROOHJH 3URJUDP 7KHQ ZH DXJPHQWHG
ZRUNVKRS PDWHULDOV ZLWK SHHUUHYLHZHG OLWHUDWXUH
DQGRUJDQL]HGGLYHUVHDOWHUQDWLYHPHWKRGVLQWRDQHZ
IUDPHZRUN LQ RUGHU WR PDNH WKH YDULHW\ RI GDWDSRRU
methods more accessible to those managing data-poor
¿VKHULHV
In reference to data richness, this paper adopts the
GH¿QLWLRQRI³GDWDSRRU´¿VKHULHVVKRZQLQ7H[W%R[
DVSUHVHQWHGE\%HQWOH\DQG6WRNHVWKLVYROXPH7KLVGH¿QLWLRQHPSKDVL]HVWKDWGDWDSRRU¿VKHULHV FDQ VXIIHU IURP ODFN RI GDWD DV ZHOO DV IURP D
ODFN RI UHOLDEOH GDWD ZLWK DGHTXDWH DQG DSSURSULDWH
DQDO\VHV7KXVGDWDSRRU¿VKHULHVFDQLQFOXGH¿VKHULHVZLWKFRSLRXVTXDQWLWLHVRIGDWDDOEHLWXQUHOLDEOHRU
XQGHUDQDO\]HGGXHWRODFNRIUHVRXUFHV7UDQVLWLRQLQJ
IURP ³GDWDSRRU´ VLWXDWLRQV WRZDUGV ³GDWDULFK´ PD\
UHVXOWIURPDQ\RUDOORIWKHIROORZLQJLQFUHDVLQJWKH
DPRXQWRIGDWDFROOHFWHGLPSURYLQJGDWDTXDOLW\DQG
DQDO\VLVRULQFUHDVLQJWHFKQLFDOFDSDFLW\
7KH WHUP ³GDWD SRRU´ LV VRPHWLPHV FRQIRXQGHG
ZLWK³VPDOOVFDOH´¿VKHULHV:KLOHLWLVWUXHWKDWPDQ\
VPDOOVFDOH¿VKHULHVDUHGDWDSRRUWKHVHWHUPVDUHQRW
V\QRQ\PRXV$V7H[W%R[HPSKDVL]HVZHLQWHUSUHW
³VPDOOVFDOH´WRUHIHUH[FOXVLYHO\WRWKHVL]HRID¿VKHU\HJWRWDOODQGLQJVRUFRPPHUFLDOYDOXH)LVKHU\
VL]HLVLQGHSHQGHQWRIWKH³GDWDULFKQHVV´RID¿VKHU\
ZKLFK UHIHUV WR WKH TXDQWLW\ DQG TXDOLW\ RI DYDLODEOH
GDWDDQGLQIRUPDWLRQVRXUFHV0DQ\VPDOOVFDOH¿VKeries are data-poor because they generate relatively
ORZUHYHQXHVDQGKHQFHUHFHLYHORZSULRULW\IRUGDWD
FROOHFWLRQ DQG DVVHVVPHQW 0RUHRYHU WKH ¿QHVFDOH
FRPSOH[LW\RI¿VKSRSXODWLRQVPD\UHQGHUODUJHVFDOH
GDWDFROOHFWLRQV\VWHPVLQDGHTXDWHIRUVPDOOHUVFDOHG
¿VKHULHV7KHUHIRUHHYHQWKRXJKODUJHDPRXQWVRIGDWD
DUHFROOHFWHGWKH¿VKHU\UHPDLQVGDWDSRRU
Fisheries vary tremendously in the kinds, amounts,
DQG TXDOLW\ RI GDWD DYDLODEOH IRU PDQDJHPHQW &RQVHTXHQWO\ ¿VKHU\ PDQDJHUV RIWHQ FODVVLI\ GDWDSRRU
situations into tiers, based on the severity of data limiWDWLRQV DQG XQFHUWDLQW\ OHYHO 6PLWK HW DO WKLV
YROXPH 7LHUV DOORZ IRU WKH DGMXVWPHQW RI KDUYHVW
rules in response to data limitations in order to buffer
DJDLQVWVFLHQWL¿FXQFHUWDLQW\'LIIHUHQWWLHUVKDYHGLIIHUHQW DGMXVWPHQW IDFWRUV WKDW FRLQFLGH ZLWK GLIIHUHQW
OHYHOV RI GDWD ULFKQHVV UDQJLQJ IURP GDWD SRRU HJ
RQO\KLVWRULFDOFDWFKWRGDWDULFKHJFRPSOH[VWDJH
structured models to estimate science-based reference
points like Bmsy or FmsyIRUPD[LPXPVXVWDLQDEOH\LHOG
>06<@*RYHUQPHQt policy and management guide-
+21(<(7$/
OLQHV GHWHUPLQH WKH DSSOLFDWLRQ RI WKHVH DGMXVWPHQW
factors to harvest control rules based on public preferHQFHVDQGULVNWROHUDQFHV*RRGPDQHWDO6PLWK
HWDO6PLWKHWDOWKLVYROXPH
:LWKLQ WKH 8QLWHG 6WDWHV WHFKQLFDO JXLGHOLQHV
DUH XVHG WR UHFRPPHQG DGMXVWPHQWV WR PDQDJHPHQW
JRDOVOLNH06<GHSHQGLQJRQGDWDTXDOLW\DQGTXDQWLW\5HVWUHSRHWDO7RGDWHWKH1RUWK3DFL¿F
)LVKHU\ 0DQDJHPHQW &RXQFLO 13)0& KDV ULJRUously implemented and applied a tiered-management
DSSURDFK7KH13)0&DSSURDFKHYDOXDWHVGDWDULFKQHVV DGMXVWV KDUYHVW FRQWURO UXOHV FRPPHQVXUDWH
ZLWK XQFHUWDLQW\ DQG PDLQWDLQV D EXIIHU EHWZHHQ WKH
DOORZDEOHELRORJLFDOFDWFK$%&DQGWKHRYHU¿VKLQJ
OLPLW 2)/ RU WKH XSSHU OLPLW RI VXVWDLQDEOH KDUYHVW
7KRPSVRQ )RU H[DPSOH LQ WKH$ODVND FUDE
¿VKHU\WKH13)0&RUJDQL]HVSUHFDXWLRQDU\PDQDJHPHQWLQWRD¿YHWLHUV\VWHP12$$)LVKHULHV
2WKHU H[DPSOHV H[LVW LQ (XURSH $VLD $IULFD DQG
$XVWUDOLD2¶%R\OH*RQ]DOH]/D[H,&(6
3RWWVHWDO6PLWKHWDOWKLVYROXPH
,QWKLVYROXPH6PLWKHWDOGHVFULEHWKHIRXU
WLHUDSSURDFKXVHGWRPDQDJH$XVWUDOLD¶V6RXWKHUQDQG
(DVWHUQ6FDOH¿VKDQG6KDUN)LVKHULHV6(66)
:LWKLQ D WLHUHG PDQDJHPHQW FRQWH[W ZH GH¿QH D
“data-poor method” as a method for informing a conWUROUXOHRUPDQDJHPHQWDFWLRQTXDOLWDWLYHRUTXDQWLWDWLYH WKDW GRHV QRW LQYROYH D IXOO VWRFN DVVHVVPHQW
:KHQDVWRFNDVVHVVPHQWH[LVWVIRUD¿VKHU\WKHQZH
FRQVLGHUWKLV¿VKHU\WREHGDWDULFKRUGDWDPRGHUDWHIRU
PDQDJHPHQW)RURXUSXUSRVHVLQWKLVSDSHUZHGH¿QH
a “stock assessment” as a multistage process that uses
RIWHQ VRSKLVWLFDWHG %D\HVLDQ PRGHOLQJ DSSURDFKHV
Various types of data are combined to predict rates of
change in stock biomass and productivity based on
LQIRUPDWLRQDERXW\LHOGIURP¿VKHULHVDQGWKHUDWHVDW
ZKLFK ¿VK HQWHU WKH KDUYHVWDEOH SRSXODWLRQ UHFUXLWPHQW JURZ LQ VL]H DQG H[LW WKH SRSXODWLRQ QDWXUDO
DQG¿VKLQJPRUWDOLW\15&7H[W%R[VXPPDUL]HVWKHPXOWLSOHVWHSVLQWKHVWRFNDVVHVVPHQWSURFHVV
$GGLWLRQDOO\ PDQ\ ERRNV H[LVW RQ VWRFN DVVHVVPHQW
WHFKQLTXHV WKDW V\QWKHVL]H EURDGO\ XVHG WHFKQLTXHV
+LOERUQDQG:DOWHUV1DWLRQDO5HVHDUFK&RXQFLO :DOWHUV DQG 0DUWHOO +RJJDUWK HW DO
:H LQWHQG IRU WKLV ZRUN WR EH WKH EHJLQQLQJ
of a synthesis of “data-poor methods” and alternatives
WRPXOWLVWDJHGVWRFNDVVHVVPHQWUHJDUGOHVVWKHH[DFW
QXPEHURIWLHUVRUPDQDJHPHQWFRQWH[W
A Framework for Existing Data-poor Methods
2XU SURSRVHG IUDPHZRUN RUJDQL]HV GDWDSRRU
PHWKRGVDQGPDWFKHVWKHPWRWKHDYDLODEOHGDWD:H
EXLOG RQ SULRU ZRUN ZKLFK VXPPDUL]HV DQG FDWHJRrizes general characteristics of a stock assessment and
DSSURDFKHV IRU YDULRXV VWRFNDVVHVVPHQW WHFKQLTXHV
+LOERUQ DQG :DOWHUV 3XQW DQG +LOERUQ +LOERUQ :DOWHUV DQG 0DUWHOO +RJJDUWK
HW DO ,UUHVSHFWLYH RI GDWDULFKQHVV ¿VKHULHV
PDQDJHPHQW LQYROYHV WZR EDVLF HOHPHQWV 3XQW DQG
+LOERUQ
D )LVKHULHV VFLHQFH ² LQYROYLQJ GDWD FROOHFWLRQ
DQG DQDO\VLV WR GHYHORS DQ XQGHUVWDQGLQJ RI ¿VK
population dynamics, possible states of nature, envi URQPHQWDO FKDQJH DQG VFLHQWL¿F XQFHUWDLQW\
DQDO\VLV
E )LVKHULHV SROLF\ DQG PDQDJHPHQW GHFLVLRQ
analysis — involving the evaluation of alternative
management strategies in order to gain insight into
H[SHFWHGRXWFRPHVDQGWUDGHRIIVDVVXPLQJGH¿QHG
REMHFWLYHVUXOHVDQGQRUPDWLYHYDOXHVRIVRFLHW\
:KHQWKHVHWZRHOHPHQWVDUHFRXSOHGEHWWHUVFLHQFH
OHDGVWREHWWHUPDQDJHPHQWDFWLRQVDQGRXWFRPHV
TEXT BOX 1.—Key terms
alternative method: (see data-poor method).
conventional method: A management approach, often standard in industrialized commercial fisheries today that synthesizes available data and evaluates
scientific knowledge with a stock assessment (or other single-species population model) to understand individual stock dynamics and estimate sciencebased reference points for a fishery. In response to science-based expectations, trends, and uncertainty, managers adjust fishing pressure for singlestock management (e.g., with quotas, effort reduction, partial seasonal closures, gear restrictions, and/or other harvest rules and regulations).
data poor: A condition to describe a fishery that lacks sufficient information to conduct a conventional stock assessment; this includes fisheries with few
available data, as well as fisheries with copious amounts of data but limited understanding of stock status due to poor data quality or lack of data
analysis.
data-poor method (also called “alternative method”): A method for fisheries data analysis and/or for informing a control rule or management action, which
can be a qualitative or quantitative method, but is not a full, stage-structured stock assessment that requires data-rich or data-moderate conditions.
data richness: A relative index, combining data type, quantity, and quality, in order to qualitatively measure the amount of information that exists for a
stock or fishery.
meta-analysis: A suite of quantitative techniques to statistically combine information across related, but independent, studies that can be field,
experimental, or other information sources.
small scale: A small fishery (either in landings or value) that typically employs traditional gear and targets nearshore stocks. Most typically, small-scale
fisheries harvest inshore stocks, often through traditional, artisanal, and/or subsistence methods without commercial sale or large-scale resale of
harvest (Berkes et al. 2001).
stock assessment: A “stock assessment” is a multistage process that uses (often sophisticated Bayesian) modeling approaches to combine various types of
data and predict rates of change in stock biomass and productivity based on information about yield from fisheries, and the rates at which fish enter the
harvestable population (recruitment), growth in size, and exit the population (natural and fishing mortality). As defined by (NRC 1998) the multiple
steps for a stock assessment are: (1) definition of the geographic and biological extent of the stock; (2) choice of data collection procedures and
collection of data; (3) choice of an assessment model and its parameters and conduct of assessments; (4) specification of performance indicators and
evaluation of alternative actions; and (5) presentation of results.
161
'$7$32250(7+2'6)25),6+(5<0$1$*(56
$V7DEOHSUHVHQWVLQDQHDV\WRUHIHUHQFHIRUPDW
ZHVXJJHVWDIRXUVWHSIUDPHZRUNIRUHYDOXDWLQJDQG
PDQDJLQJGDWDSRRU¿VKHULHV
Step 1 — Gauge Data-richness.
Step 2 — Data-richness Informs Analytical Options.
Step 3 — Apply Fishery-evaluation Methods:
(ordered from high to low information requirements)
L6HTXHQWLDOWUHQGDQDO\VLVLQGH[LQGLFDWRUV
LL9XOQHUDELOLW\DQDO\VLV
LLL([WUDSRODWLRQ
Step 4 — Apply Decision-making Methods:
(ordered from high to low expected practical use for
data-poor management)
L'HFLVLRQWUHHV
LL0DQDJHPHQW6WUDWHJ\(YDOXDWLRQ
*LYHQ FOHDU REMHFWLYHV DQG DQ XQGHUVWDQGLQJ RI
H[LVWLQJGDWDDQGPHWKRGV¿VKHU\PDQDJHUVFDQJDUQHU
WKHPRVWSRVVLEOHVFLHQWL¿FXQGHUVWDQGLQJIURPDYDLODEOH GDWD 7KLV EHFRPHV HVSHFLDOO\ LPSRUWDQW ZKHQ
UHVRXUFHVDUHVFDUFHIRUVFLHQFHDQGPDQDJHPHQW
Step 1 — Gauge Data-richness
Sources of available information determine the
XQLYHUVHRIRSWLRQVDYDLODEOHWRD¿VKHU\PDQDJHU$
number of other constraints, such as those itemized in
7DEOH UHTXLUH FRQVLGHUDWLRQ 7KHVH FRQVWUDLQWV VHW
WKH PDQDJHPHQW FRQWH[W ZLWKLQ ZKLFK RXU SURSRVHG
IUDPHZRUNRSHUDWHV
As a general rule of thumb, managers facing dataSRRU GHFLVLRQV VKRXOG ¿UVW LGHQWLI\ DQG TXDOLWDWLYHO\
HYDOXDWH DOO LQIRUPDWLRQ VRXUFHV DYDLODEOH WR WKHP
7KLV HYDOXDWLRQ RI GDWD VKRXOG EH FRQGXFWHG SULRU WR
FKRRVLQJ D PHWKRG RU PHWKRGV IRU DQDO\]LQJ LQIRUPDWLRQ+LOERUQDQG0DQJHO'DWDFDQWKHQEH
RUJDQL]HGLQDZD\WKDWIDFLOLWDWHVWKHFKRLFHRIDSSURSULDWHDQDO\WLFDOPHWKRGV
:HUHFRPPHQGWKHXVHRIDTXDOLWDWLYHVFRUHFDUGWR
assess data-richness by itemizing and organizing all
available information sources into one intuitive and
FRQVLVWHQW OD\RXW IRU WKH PDQDJHU VHH VDPSOH VFRUHFDUG)LJXUH7KLVDSSURDFKLVVRPHZKDWDQDORJRXV
WR WKH TXDQWLWDWLYH VFRUHFDUGV XVHG E\ +LOERUQ DQG
:DOWHUVWRDVVHVVPDQDJHPHQWSHUIRUPDQFH
7KHH[DPSOHVFRUHFDUGLQ)LJXUHSUHVHQWVRQO\D
part of the spectrum of potential information sources
WKDW PD\ H[LVW IRU D ¿VKHU\ FODVVL¿HG DV GDWD SRRU
)LVKHU\PDQDJHUVVKRXOGGHYHORSWKHLURZQVFRUHFDUGV
WRPHHWWKHLUQHHGV'DWDTXDQWLW\DQGTXDOLW\VKRXOG
both be incorporated into the scorecard since they both
LPSDFWWKHXVHIXOQHVVRIGDWDSRRUPHWKRGV4XDQWLW\
FDQEHFKDUDFWHUL]HGWKURXJKVLPSOHFKHFNPDUNVZLWK
TABLE²&DWHJRULHVRIGDWDSRRUPHWKRGV
TABLE 1.—Categories of data-poor methods
We broadly group data-poor methods (i.e., alternative methods) into two general sets or categories to help make the full range of
evaluation options visible and of use to managers who must manage stocks without the benefit of fishery stock assessments:
Less data and resource intensive.
Fishery-Evaluation Methods
Often requires only one or two data types.
Data-driven techniques to identify changes, trends, or priorities.
Types of fishery-evaluation methods:
(i) Sequential trend analysis (index indicators).
(ii) Vulnerability analysis.
(iii) Extrapolation.
More data and resource intensive.
Decision-Making Methods
Often requires several data types, plus assumptions about how to balance these different data inputs.
Creates a framework for decision making.
Types of decision-making methods:
(i) Decision trees.
(ii) Management strategy evaluation (MSE).
TABLE²'DWDSRRUPDQDJHPHQWFRQVLGHUDWLRQV
A manager must consider feasibility constraints and evaluative criteria to appropriately identify and implement assessment methods,
especially when managing data-poor fisheries.
Feasibility constraints
Scale of the fishery
Stakeholder incentives
Value-cost of new method
Index of fishery size, based on geographic range and/or economic importance.
Index to characterize the degree of incentives alignment (between industry profits and
biological conservation), as well as stakeholder interest and co-management
capacity.
Index of cost feasibility (time, money, scalable/replicable), based on the fishery’s
present condition, existing resources/infrastructure, and specific context.
Evaluative criteria
Nature of data available
Ranges from zero to perfect information.
162
Data-rich or data-medium status
Fishery-dependent
(by sector & gear type)
Recreational
Commercial
{
Fishery-independent
Management
Monitoring
& Governance
Life History
Socio-Economic
n)
seve
163
environmental
index or
timeseries
Management Strategy Evaluation
(simulation, more resource intensive)
Extrapolation
supplemental
abundance
& length/
age data
Step 4
FIGURE²)RXUVWHSIUDPHZRUNWRRUJDQL]HDQGOLQNLQIRUPDWLRQZLWKDSSURSULDWHGDWDSRRUPHWKRGV
7KLVJHQHUDOIUDPHZRUNGHSLFWVWKHSURFHVVRIWUDQVIRUPLQJOLPLWHGGDWDLQWRLQIRUPHGGHFLVLRQVLQVWHSV6WHS2UJDQL]HDQGUDQNUHODWLYHGDWDULFKQHVVZLWKDXVHUIULHQGO\VFRUHFDUG6WHS8VHGDWDULFKQHVVWRLQIRUPRSWLRQVE\LGHQWLI\LQJW\SHVRUOD\HUVRILQIRUPDWLRQ
IRUHYDOXDWLRQPHWKRGVDVVKRZQLQWKHGDWDSRRU³RQLRQ´VHH)LJXUH6WHS6HOHFWDQGDSSO\WKHPRVWDSSURSULDWH)LVKHU\(YDOXDWLRQ
0HWKRGVVWRH[WUDFWPD[LPXPVFLHQWL¿FXQGHUVWDQGLQJIURPDYDLODEOHLQIRUPDWLRQ6WHS6HOHFWDQGDSSO\WKHPRVWDSSURSULDWH'HFLVLRQ0DNLQJ0HWKRGZKLFKIRUGDWDSRRU¿VKHULHVZLOORIWHQLQYROYHDVLPSOHGHFLVLRQWUHH
Decision Trees
(analytical, less resource intensive)
Lifehistory
parameters
Step 3
Decision-Making Methods
Vulnerability Analysis
Fishery-Evaluation Methods
supplemental
effort, catch
composition,
length/age
data
Step 2
Trends Analysis
Ecosystem
(list type of analysis or assessment model)
Existing stock assessment
Step 1
effort length/
catch
age
index
index or
index or
or
timetimetime
series
series series
{
Monitoring
Scorecard to evaluate relative data-richness in a data-poor fishery
Data poor
Other prior analyses or assessments
{
nfo
ity i
plic
y-ex
l
l
a
i
t
ition
Spa
pos
Com
tion
i
Age
s
po
Com
Size
rt
y
Effo
talti
ity
Mor
abil
ing
h
h
c
s
t
i
F
a
C
/
y
it
ctiv
Sele
ings
d
n
La
{
{
{
(s
ious
{
rev
ee p
{
nfo
ity i
plic nce
x
e
y
a
tiall Import
Spa
ic
nom e
o
c
E
lu
st
tere
h Va
Catc older In
h
e
Stak oals
rG
nfo
Clea
ity i
plic
x
e
y
ics
tiall
erist
Spa
ract
Cha
l
a
ion
xt
Reg
onte
al C
oric
fo
t
s
i
H
y in
licit
-exp
y
l
l
a
ti
s
Spa
rvey
ys
al Su t Surve
n
Larv
e
nd
e
p
info
Inde
city
xpli
e
y
l
y
tial
talit
Spa
Mor
ural
Nat
y
ndit
Fecu
h
t
nfo
w
ity i
Gro
plic
y-ex
l
s
l
a
n
i
t
itio
Spa
ond
n
an C tributio
t
Oce
s
i
D
pac
t
a
m
t
I
i
l
Hab menta
n
iro
nfo
Env
ity i
plic
y-ex
l
l
a
i
t
Spa er
erv
Obs nic
tro
Elec
S
M
V
{
State of Knowledge
+21(<(7$/
'$7$32250(7+2'6)25),6+(5<0$1$*(56
increasing check marks representing increasing richQHVV=HURFKHFNVLQGLFDWHORZULFKQHVVZKHUHDV
RUPRUHPLJKWLQGLFDWHKLJKULFKQHVV'DWDTXDOLW\FDQ
EH DVVHVVHG ZLWK D FRDUVHO\JUDGXDWHG UDWLQJ V\VWHP
HJ ORZPHGKLJK LQGH[ RI UHODWLYH GDWD TXDOLW\ RU
different marks, such as solid- or X-marks, to indicate
GLIIHUHQWOHYHOVRIGDWDVXI¿FLHQF\%\HYDOXDWLQJWKH
TXDOLW\RIGDWDDYDLODEOHDPDQDJHUFDQIXUWKHUJDXJH
VFLHQWL¿FFRQ¿GHQFHLQWUHQGVLQIRUPDWLRQDQGGHFLVLRQEDVHGRQWKHGDWDGULYLQJWKHSURFHVV5HJDUGOHVV
RIVSHFL¿FOD\RXWWKHDLPRIWKHVFRUHFDUGLVWRSURYLGH DQ HDV\ ZD\ IRU PDQDJHUV WR LGHQWLI\ RUJDQL]H
DQGDSSO\H[LVWLQJNQRZOHGJHDQGDYDLODEOHLQIRUPDWLRQIRUGDWDSRRUVWRFNV
,I VSDWLDOO\ H[SOLFLW GDWD H[LVW *HRJUDSKLFDO ,QIRUPDWLRQ6\VWHPV*,6DQGRWKHUVSDWLDOWRROVFDQDGG
another dimension of data-richness by addressing
VRFLDODQGVSDWLDOFRPSOH[LW\*,6OD\HULQJFDQHQULFK
XQGHUVWDQGLQJE\LQFRUSRUDWLQJQHZRUXQWDSSHG¿VKHULHVLQIRUPDWLRQVXFKDVUHJLRQDONQRZOHGJHRIFDWFK
SDWWHUQVÀHHWEHKDYLRUKDELWDWGLVWULEXWLRQDQGRWKHU
VSDWLDOYDULDEOHVOLNHJHDUVHDVRQDORUVRFLDOFRQÀLFWV
*,6FDQDOVREHXVHGWRH[SORUHVSDWLDOO\H[SOLFLWUHODWLRQVKLSVEHWZHHQOD\HUVDQGGDWDVHWVWKDWPLJKWDIIHFW
WKHLPSOHPHQWDWLRQRIDPDQDJHPHQWGHFLVLRQ&RQsideration of these elements may be included in a data
ULFKQHVVVFRUHFDUG
Step 2 — Data-richness Informs
Analytical Options
After managers identify all their data and informaWLRQVRXUFHVIRUDJLYHQ¿VKHU\ZHUHFRPPHQGLGHQtifying all evaluation methods deemed feasible given
WKH VSHFL¿F QHHGV VWUHQJWKV DQG OLPLWDWLRQV RI HDFK
GDWDSRRUPHWKRG0DQDJHUVPXVWUHFRJQL]HKRZGLIferent types and degrees of data-richness lend themVHOYHVWRGLIIHUHQWHYDOXDWLYHIUDPHZRUNVDQGPHWKRGV
IRUGDWDSRRU¿VKHULHV
Given the range of data-analysis methods potentially
DYDLODEOHZHJURXSHGGDWDSRRUPHWKRGVLQWR¿YHJHQHUDO FDWHJRULHV EDVHG RQ VKDUHG DQDO\WLFDO WHFKQLTXHV
DQGGDWDUHTXLUHPHQWV$VVKRZQLQ7DEOHWKH¿YH
FDWHJRULHVRIGDWDSRRUPHWKRGVELQLQWRWZRGLVWLQFW
ODUJHUJURXSV)LVKHU\(YDOXDWLRQ0HWKRGVDQG'HFLVLRQ0DNLQJ0HWKRGV7KHVHWZRJURXSVRIPHWKRGV
FROOHFWLYHO\VSDQDZLGHUDQJHRIGDWDULFKQHVVOHYHOV
ZKLOH SDUDOOHOLQJ WKH WZRVWDJH PDQDJHPHQW SURFHVV
RULJLQDOO\SURSRVHGE\3XQWDQG+LOERUQ
,Q)LJXUH6WHSZHFRQQHFWDYDLODEOHGDWDDQG
data-richness levels from the scorecard to corresponding information types used as inputs for analysis of
GDWDSRRU VWRFNV7KH VFLHQWL¿F XQGHUVWDQGLQJ JHQHUDWHG IURP )LVKHU\(YDOXDWLRQ 0HWKRGV 6WHS WKHQ
IHHGVLQWR'HFLVLRQPDNLQJ0HWKRGVWRJXLGHPDQDJHPHQWFKRLFHDQGDFWLRQ6WHS
7KLV 6WHS OLQNV HDFK RI WKH YDULRXV LQIRUPDWLRQ
W\SHVZLWKDSSURDFKHVLQWKH)LVKHU\(YDOXDWLRQ0HWKRGVFXUUHQWO\DYDLODEOHWRPDQDJHUV8VLQJDQRQLRQ
DQDORJ\ )LJXUH LOOXVWUDWHV KRZ DYDLODEOH LQIRUPDtion maps to recommended methods of analysis for
GDWDSRRU¿VKHULHV7KLVRQLRQKDVYDULRXVOD\HUVZLWK
each layer corresponding to a different type of inforPDWLRQ IURP WKH GDWDULFKQHVV VFRUHFDUG VHH 6WHS )LJXUH/D\HUVRIWKHRQLRQFDQEHSHHOHGEDFNDQG
removed, corresponding to the absence of individual
W\SHV RI LQIRUPDWLRQ IRU WKH ¿VKHU\ RI LQWHUHVW 7KH
RQLRQ YDULHV LQ TXDOLW\ DQG VL]H IRU HDFK LQGLYLGXDO
¿VKHU\ FRPPHQVXUDWH ZLWK FRPELQDWLRQV RI GLIIHUHQWGDWDW\SHVTXDQWLWLHVDQGTXDOLWLHV,WLVURRWHGLQ
WKH VRFLDO DQG SROLWLFDO FRQWH[W RI WKH ¿VKHU\ ZKLFK
SURYLGHV WKH QRUPV HJ VRFLDO DQG HFRQRPLF JRDOV
UHJXODWRU\PDQGDWHVDQGULVNWROHUDQFHVZKLFKJXLGH
WKH DQDO\VHV LQWHUSUHWDWLRQ DQG H[HFXWLRQ RI ¿VKHU\
PDQDJHPHQW,QWKLVDQDORJ\DIXOOVWRFNDVVHVVPHQW
UHTXLUHVDZKROHODUJHRQLRQZLWKDOORIWKHPDQ\GLIIHUHQWOD\HUVRI¿VKHULHVWLPHVHULHVGDWDDQGOLIHKLVWRU\LQIRUPDWLRQ&RQYHUVHO\DGDWDSRRU¿VKHU\FDQ
EHOLNHDVPDOOSHDUORQLRQZLWKIHZHUOD\HUVRIGDWD
IRUFRQVLGHUDWLRQ
$VLGHIURPWKHRQLRQLQ)LJXUHZHOLVWFRPPRQ
SDLULQJVRIGDWDOD\HUVWRJXLGHPDQDJHUVWRZDUGVWKH
most appropriate data-poor methods, based on data
W\SHVDQGGDWDULFKQHVV:HVKRZKRZGLIIHUHQWOD\HUV
DQGSHUPXWDWLRQVOHQGWKHPVHOYHVWRDQDO\VLVZLWKGLIIHUHQW )LVKHU\(YDOXDWLRQ 0HWKRGV IXUWKHU GLVFXVVHG
LQ6WHS0HWKRGVWKDWXVHVHYHUDOWLPHVHULHVOD\HUV
WKH RXWHU OD\HUV RI WKH GDWD RQLRQ W\SLFDOO\ SURYLGH
PRUH TXDQWLWDWLYH VFLHQWL¿F NQRZOHGJH FRPSDUHG WR
methods that use only life-history or anecdotal inforPDWLRQWKHLQQHUOD\HUV)RUPDQDJHUVPRUHOD\HUV
PHDQ JUHDWHU VFLHQWL¿F NQRZOHGJH ZKLFK W\SLFDOO\
WUDQVODWHV LQWR LQFUHDVLQJ VFLHQWL¿F FHUWDLQW\ DQG
GHFUHDVLQJSUHFDXWLRQDU\QHHGV
:KLOHZHLOOXVWUDWHGDWDW\SHVDQGPHWKRGVDVVHSDUDWHOD\HUVLQIDFWWKHUHLVFRQVLGHUDEOHRYHUODS'DWD
SRRUPHWKRGVDUHQRWDOZD\VGLVWLQFWUDUHO\PXWXDOO\
H[FOXVLYHDQGRIWHQFRPSOHPHQWDU\RUQHVWHGZLWKLQ
RWKHU PHWKRGV 6XFK RYHUODS DQG FRPSOH[LW\ FRQIRXQGV VWULFW UDQNLQJ EDVHG RQ GDWDULFKQHVV FULWHULD
+HQFHRXUSURSRVHGIUDPHZRUNVKRXOGEHFRQVLGHUHG
to be a generalized organization scheme only, for conYHQLHQFHDQGVLPSOLFLW\
7KLV JHQHUDO IUDPHZRUN VKRXOG VHUYH DV D JXLGLQJ
reference to facilitate case-by-case evaluation of dataSRRU¿VKHULHV:HDVNUHDGHUVWRLQWHUSUHWRXUSURSRVHG
IUDPHZRUN PHWKRG FDWHJRULHV DQG QHVWHG OD\HUV RI
LQIRUPDWLRQ)LJXUHVDQGDVEURDGJHQHUDOL]DWLRQV
ZLWK PDOOHDELOLW\ &RQQHFWLRQV DQG UHFRPPHQGDWLRQV
EHWZHHQGDWDULFKQHVVDQGGDWDSRRUPHWKRGVDUHQRW
LQWHQGHGWREHLPPXWDEOHSUHVFULSWLYHOLQNDJHV7KH\
164
165
Anecdotal observations
or “sister species”
fishery
history
legal
mandates
+Anecdotal observations or
“sister species” data
+Life-history data
Vulnerability Analysis
(e.g., Productivity-Susceptibility
Analysis, PSA; see Field et al. 2010,
this volume)
Extrapolation methods
(e.g., Robin-Hood approach, see
Smith et al. 2009, this volume)
+CPUE time series or abundance index
+Catch time series
+Life-history data
+In-season CPUE or effort time series
+In-season catch
+Length-age data of in-season catch
+Life-history data
+Length-age time-series
+Catch time series
+Life-history data
+Catch/Abundance time series
+Environmental time-series
(best with length/age data)
All layers = the whole onion
Population or length-based index
(e.g., An-Index-Method, AIM;
see Rago 2008).
In-season population or lengthbased index
(e.g., In-season Depletion Estimator;
see Maunder 2010, this volume).
Per-recruit
(e.g., Fractional change in
lifetime egg production, FLEP;
see O’Farrell and Botsford 2005).
Environmental proxies
(e.g., Multivariate ENSO Index,
MEI, as a biophysical indicator;
see Aburto et al. 2008).
Stock Assessment
FIGURE²7KHGDWDSRRU³RQLRQ´WRFRQQHFWLQIRUPDWLRQW\SHVZLWKDSSURSULDWH)LVKHU\(YDOXDWLRQ0HWKRGV
,QWKLVPHWDSKRUWKHRQLRQLVD¿VKHU\RUVWRFNRIPDQDJHPHQWLQWHUHVW,WVURRWVSURYLGHWKHVRFLDOFRQWH[WIRUVFLHQWL¿FGDWDDQDO\VLV
DQGXOWLPDWHO\WKHGHFLVLRQVWKDWPDQDJHUVPDNH7KHFRUHRIWKHRQLRQLVD³QRGDWD´PLQLPXP,WKDVVRPHLQIRUPDWLRQYDOXHZKLFK
RIWHQFRPHVIURPDQHFGRWDOREVHUYDWLRQVDQGRULQIRUPDWLRQERUURZHGIURP³VLVWHUVSHFLHV´RUV\VWHPVZLWKVLPLODUFKDUDFWHULVWLFV
(DFKOD\HURIWKHRQLRQLVDQHZWLPHVHULHVRUVRXUFHRILQIRUPDWLRQDYDLODEOHWRWKHVFLHQWLVWRUPDQDJHUHYDOXDWLQJWKH¿VKHU\7KHUH
LVQROLPLWRUFDSWRWKHQXPEHURIOD\HUVZLWKLQRQHRQLRQ6RPHWLPHVPXOWLSOHOD\HUVRIWKHVDPHLQIRUPDWLRQW\SHH[LVW)RUH[DPSOH
LQGHSHQGHQWVWXGLHVFDQJHQHUDWHGLIIHUHQWGDWDVHWVRQWKHVDPHLQIRUPDWLRQW\SH0DQDJHUVFDQHOHFWWRLQGLYLGXDOO\FRQVLGHUVXFK
PXOWLSOH OD\HUV$OWHUQDWLYHO\ WKH\ FDQ FROOHFWLYHO\ FRQVLGHU WKLV LQIRUPDWLRQ XVLQJ VWDWLVWLFDO WHFKQLTXHV HJ DYHUDJH HVWLPDWHV
ZHLJKWHGDYHUDJHHVWLPDWHVRUPHWDDQDO\VLVWRFRPELQHVHYHUDOLQGHSHQGHQWVRXUFHVLQWRRQHWKLFNOD\HURILQWHJUDWHGYDOXHV*LYHQ
DQ XQGHUVWDQGLQJ RI H[LVWLQJ GDWD OD\HUV D PDQDJHU FDQ WKHQ VHOHFW PRVW DSSURSULDWH )LVKHU\(YDOXDWLRQ 0HWKRGV IRU LQIRUPDWLRQ
DQDO\VLVDQGLQFUHDVHGVFLHQWL¿FNQRZOHGJH
(Onion drawing adapted from http://tilz.tearfund.org)
precautionary
princple
al index or tim
ment
e se
iron
rie
Env
s
nde
x
i
o
r
t
ime
th/age
Leng
ser
ies
UE index or t
i
m
rt/CP
es
Effo
er
ie
s
ndance index
or
/abu
t
tch
i
me
Ca
se
r ie
s
Life-history data
cultural
values &
priorities
T R E N D S A N A LY S E S
Recommended Fishery-Evaluation Methods,
given data richness combinations:
(presented in order of high to low information requirements)
+21(<(7$/
'$7$32250(7+2'6)25),6+(5<0$1$*(56
DUHLQWHQGHGWRJXLGHPDQDJHUVWRZDUGVPHWKRGVWKDW
ZLOOKHOSWKHPRYHUFRPHWKHLUGDWDSRRUFKDOOHQJHV
GHVFULELQJ D PHWKRG¶V LPSOHPHQWDWLRQ VR LQWHUHVWHG
SDUWLHVFDQUHYLHZWKHPHWKRGLQPRUHGHSWK
Step 3 — Apply Fishery-evaluation Methods
After choosing the most appropriate data-poor
DVVHVVPHQW PHWKRGV JLYHQ GDWD W\SHV DQG ULFKQHVV
)LVKHU\(YDOXDWLRQ 0HWKRGV DUH DSSOLHG WR H[WUDFW
DV PXFK VFLHQWL¿F XQGHUVWDQGLQJ DV SRVVLEOH JLYHQ
DYDLODEOHLQIRUPDWLRQDQGUHVRXUFHV,QWKLV6WHSZH
UHYLHZ)LVKHU\(YDOXDWLRQ0HWKRGVZKLFKZHGLYLGHG
into three general categories:
Fishery-Evaluation Methods — Type 1
Sequential Trend Analysis (Index Indicators)
6HTXHQWLDODQDO\VLVFRPSULVHVDEURDGVXLWHRIWHFKQLTXHV XVHG WR DQDO\]H WLPH VHULHV LQ RUGHU WR GHWHFW
DWUHQGLQDYDULDEOHRULQYDULRXVLQGLFHVDQGLQIHU
FKDQJHV LQ WKH VWRFN RU SRSXODWLRQ %\ LWV QDWXUH
VHTXHQWLDO DQDO\VHV FDQ HQFRPSDVV D ZLGH UDQJH RI
GDWD W\SHV DQG UHTXLUHPHQWV 6RPH H[DPSOHV FRPPRQO\ XVHG LQ GDWDSRRU ¿VKHULHV DUH WLPH VHULHV RI
FDWFK VWDWLVWLFV VXUYH\ZHLJKWOHQJWKEDVHG UHIHUHQFH
SRLQWV WURSKLF LQGLFHV RU VSDZQLQJ SRWHQWLDO UDWLR
635DQDORJXHV
$WHFKQLTXHNQRZQDVFXPXODWLYHVXP&8680LV
VRPHWLPHVXVHGWRGHWHFWWUHQGVDQGGLVFHUQVLJQL¿FDQW
FKDQJHVLHWUXHSRVLWLYHRUQHJDWLYHFKDQJHVIURP
VLPSOH YDULDWLRQV DZD\ IURP WKH PHDQ 0DQO\ DQG
0DF.HQ]LH 0DQO\ 6FDQGRO .HOO\
DQG&RGOLQJ6FDQGROGHPRQVWUDWHVKRZ
WKH&8680PHWKRGFDQGHWHUPLQHLIFDWFKLVLQFUHDVLQJRUGHFUHDVLQJIURPODQGHGFDWFKGDWDRQO\
7KHPDLQDGYDQWDJHRIVXFKUHODWLYHO\VLPSOHPHWKRGVLVWKHLUXVHRIDYDLODEOHRUHDV\WRFROOHFWGDWDHJ
OHQJWKVRIODQGHG¿VKDVDQLQGH[IRU¿VKVWRFNVL]H
7KHFKDQJHVPHDVXUHGKRZHYHURQO\UHÀHFWUHODWLYH
FKDQJHDQGQRWFKDQJHVLQXQNQRZQDEVROXWHYDOXHV
RI WKH XQGHUO\LQJ SRSXODWLRQ 6WDWLVWLFDO FRUUHODWLRQV
cannot be used to identify the mechanisms driving
WKHREVHUYHGFKDQJHV7KHUHIRUHHVSHFLDOO\IRUGDWD
SRRUVWRFNV¿VKHU\PDQDJHUVPXVWPDNHDVVXPSWLRQV
DERXW ZKDW FKDQJHV LQ WKH PHDVXUHG YDULDEOHV PHDQ
IRU¿VKSRSXODWLRQV
L6HTXHQWLDOWUHQGDQDO\VLVLQGH[LQGLFDWRUV
LL9XOQHUDELOLW\DQDO\VLV
LLL([WUDSRODWLRQ
7KHVHDUHRUGHUHGE\GHFUHDVLQJGDWDULFKQHVVUHTXLUHPHQWV KLJK WR ORZ KHQFH LQFUHDVLQJ QHHG IRU PDQDJHPHQWSUHFDXWLRQ7KHDSSOLFDWLRQRI6WHSPHWKRGV
LVXVHIXOIRUSULRULWL]LQJ¿VKHULHVIRUPDQDJHPHQWDQG
UHVHDUFKE\SURYLGLQJD³¿UVWORRN´DWVWRFNVWDWXVRU
YXOQHUDELOLW\WR¿VKLQJPRUWDOLW\
0HWDDQDO\VLVDVWDWLVWLFDOWHFKQLTXHXVHGWRLQWHJUDWH
and summarize results from multiple and independent
VWXGLHVVHH7H[W%R[KDVSRWHQWLDOWRHQKDQFHWKH
DERYH)LVKHU\(YDOXDWLRQ0HWKRGV0HWDDQDO\VLVV\QWKHVL]HV DYDLODEOH GDWD VHWV WR JHQHUDWH QHZ DQG LQWHJUDWHGUHVXOWV:KHQDSSOLHGWR¿VKHULHVLWLVXVHGPRVW
RIWHQ WR HVWLPDWH SDUDPHWHUV DQGRU SULRU SUREDELOLW\
GLVWULEXWLRQV RI SDUDPHWHUV LQ D PRGHOV 15& 7KHWHFKQLTXHLVFRPPRQLQVWRFNDVVHVVPHQWV0\HUV
HW DO /LHUPDQQ DQG +LOERUQ 'RUQ +HOVHUDQG/DL+HOVHUHWDO
7KHIHDVLELOLW\RIPHWDDQDO\VLVIRUGDWDSRRUVWRFNV
may be less obvious because of the need for multiple,
LQGHSHQGHQWVRXUFHVRILQIRUPDWLRQ1RQHWKHOHVVZH
see an important possibility for meta-analysis to estimate life-history parameters or coordinate the incorpoUDWLRQRIGDWDIURPRQJRLQJPRQLWRULQJSURJUDPV)RU
H[DPSOH LQ WKH IXWXUH ZH H[SHFW WKDW PHWDDQDO\VLV
RIQHDUVKRUHVWXGLHVHJPDULQHUHVHUYHPRQLWRULQJ
can help inform and guide state and federal managePHQW E\ GHYHORSLQJ ¿QHVFDOH XQGHUVWDQGLQJ IURP
VPDOOVFDOHVXUYH\V*RRGVRXUFHVRQWKHWHFKQLTXHRI
meta-analysis itself, in addition to the ones above, are
*XUHYLWFK DQG +HGJHV +HGJHV HW DO 2VHQEHUJHWDODQG(QJOXQGHWDO
%HORZ ZH GLVFXVV HDFK RI WKH WKUHH )LVKHU\(YDOXDWLRQ 0HWKRGV ZLWKLQ RXU JLYHQ IUDPHZRUN ZLWK D
VXPPDU\SDUDJUDSKRIWKHPHWKRGDQGH[DPSOHDSSOLFDWLRQV WKDW GHPRQVWUDWH WKH XVH RI WKH PHWKRG :H
WKHQ UHYLHZ DQG FKDUDFWHUL]H PLQLPXP GDWD QHHGV
optimal data needs, and important cautions and caveDWVIRUWKHPHWKRG,IDYDLODEOHZHLQFOXGHUHIHUHQFHV
WR RULJLQDO SXEOLFDWLRQV DQG SHHUUHYLHZHG OLWHUDWXUH
Sequential Trends Analysis (1a): Environmental
Proxies
Example technique (see Scorecard 1): biophysiFDO LQGLFDWRUV RI ¿VK DEXQGDQFH²Fish production
and population abundance can be tightly linked to
HQYLURQPHQWDOSURFHVVHV:KHQVXFKFRXSOLQJH[LVWV
HQYLURQPHQWDO LQGLFDWRUV PD\ EH XVHG ZLWK SURSHU
scaling and lag factors, in order to evaluate the populaWLRQFDWFKDQGRUH[SHFWHGYDULDWLRQVDQGXQFHUWDLQW\
OHYHOV,GHDOHQYLURQPHQWDOSUR[LHVDUHHDV\WRPHDVXUHLQGLFDWRUVHJVDOLQLW\RFHDQWHPSHUDWXUHUDLQIDOORUÀXYLDOUXQRIIZKLFKFRQVLVWHQWO\DQGSUHGLFWably lead to the same population-level response in a
VWRFNUHJDUGOHVVRIRWKHUIDFWRUV7KLVKRZHYHUUDUHO\
KDSSHQVLQFRPSOH[PDULQHHFRV\VWHPV%HDPLVKDQG
%RXLOORQ )UDQFLV DQG +DUH 3RORYLQD HW
DO%DNXQ&RQVHTXHQWO\PDQ\HQYLURQPHQWDO SUR[LHV IRU ¿VKHULHV DUH DVVRFLDWHG ZLWK KLJK
OHYHOVRIVFLHQWL¿FXQFHUWDLQW\DERXWZKHWKHURUQRWDQ
H[SHFWHG SRSXODWLRQOHYHO UHVSRQVH ZLOO RU ZLOO QRW
166
+21(<(7$/
SCORECARD
Environmental Proxy — Case-Study Example
Multivariate El Niño Southern Oscillation (ENSO) Index (MEI) and leopard grouper (Mexico)
In the Gulf of California, the El Niño Southern Oscillation
(ENSO) strongly affects the physical environment. Fluctuations in
this climatic driver can have large effects on the Gulf’s habitats
and fish populations. Because of the strong influence of ENSO on
the rocky reef habitat where larval and juvenile leopard grouper
(Mycteroperca rosacea) live, environmental linkages exist
between the Multivariate ENSO index (MEI), kelp-bed habitat
cover, leopard grouper larval recruitment, and leopard grouper
adult abundance (Aburto-Oropeza et al. 2007).
Scientists are now quantifying these relationships and determining
their predictability, using visual survey data of kelp abundance,
larval recruitment, and juvenile and adult abundances (Ballantyne
et al., in review; Aburto-Oropeza et al. 2007). By accounting for
the MEI index at the time of larval recruitment, model
performance improves by more accurately predicting the
abundance of juvenile or adult fish (Ballantyne et al., in review;
Aburto-Oropeza et al. 2007). Environmental relationships, such as
the one between fish abundance and the MEI index, can lead to
general predictions of fishery yield on the basis of juvenile
abundance, natural mortality, fishing mortality and catchability.
This MEI example has been confirmed by model testing and
verification for over a decade, but scientists continue to collect
data and test models. On-going testing and updating is important
because environmental relationships that influence fish
productivity can change over time (e.g., ocean regime shifts).
Minimum Data Needs:
Environmental time series.
Abundance index time series (from CPUE or fishery-independent
surveys, preferably with age-length information to estimate juvenile and
adult abundances).
Optimal Data Needs:
Underlying population model with known life-history data.
The longer the time series, the better, especially if data-collection
protocols remain consistent through time.
Tight coupling (i.e., low noise) between environmental time-series data
and catch/abundance time-series data.
Mechanistic understanding of the process(es), which couple
environmental parameters and fish production.
Cautions and Caveats:
Vulnerable to misspecification of variable recruitment typical at low
population sizes as environmentally driven.
Past conditions assumed similar to current and future conditions (i.e.,
unchanged system dynamics).
Multi-state systems or changes in system dynamics (e.g., regime shifts)
can mask or misrepresent trends detected by this method. Said another
way, the underlying relationship between environmental indices and
indices can change as a result of regime shifts or oscillation changes in
systems with multiple states.
Relationships should be tested and updated regularly (e.g., annually) as
new data emerge.
Managers still must decide how detected trends affect harvest control
rules. References for environmental proxies:
(Ballantyne et al., in preparation; Vance et al. 1998; Aburto-Oropeza et al. 2007)
occur, given a detected change in the environment
0\HUV $QRWKHU FDYHDW DULVHV IURP FRPSOH[
VWRFNUHFUXLWPHQW UHODWLRQVKLSV ZKLFK FDQ REVFXUH
HQYLURQPHQWDOGULYHUVRISRSXODWLRQG\QDPLFV0DFH
DQG6LVVHQZLQH7KHUHIRUHHQYLURQPHQWDOSUR[LHVFDQEHFKDOOHQJLQJLIQRWLPSRVVLEOHWRLPSOHPHQW
IRUPDQDJHPHQWXVHHVSHFLDOO\ZKHQLWFRPHVWRFRPSOH[VWRFNG\QDPLFVHJWKRVHZLWKKLJKO\YDULDEOH
UHFUXLWPHQWRUDWORZSRSXODWLRQVL]HV
7KLVPHWKRGVKRXOGQRWEHDORQJWHUPUHSODFHPHQW
IRUGLUHFWPRQLWRULQJRI¿VKLQJHIIRUWDQGLWVHIIHFWV
,QVRPHFDVHVZKHUHDEXQGDQFHDQGOLIHKLVWRU\WUDQVLWLRQVHJRQWRJHQHWLFPLJUDWLRQVUHODWHWRHQYLURQPHQWDOFXHVHJVDOLQLW\WHPSHUDWXUHÀXYLDOUXQRII
HQYLURQPHQWDOSUR[LHVFDQSURYLGHLPSRUWDQWLQIRUPDWLRQIRUPDQDJHPHQWDFWLRQ7KLVLVWKHFDVHIRUVRPH
VKULPS ¿VKHULHV ZKHUH HQYLURQPHQWDO IDFWRUV LQÀXHQFHVHDVRQRSHQLQJFORVLQJDQGFORVHGDUHDV9DQFH
HWDO
6RPH HQYLURQPHQWDO SUR[LHV H[DPLQH IRRG ZHE
G\QDPLFV E\ HYDOXDWLQJ D ¿VKHU\¶V RYHUDOO 0HDQ
7URSKLF ,QGH[ 07, GH¿QHG DV WKH DYHUDJH WURSKLF
OHYHO RI D UHJLRQ¶V HQWLUH ODQGHG FDWFK 3DXO\ HW DO
3DXO\DQG3DORPDUHV$VZLWKRWKHULQGH[
methods based on statistical correlations, environmenWDOSUR[LHVSURYLGHOLWWOHLIDQ\PHFKDQLVWLFLQVLJKWDV
WRZK\RUKRZFKDQJHRFFXUVDWWKHSRSXODWLRQOHYHORI
LQWHUHVWWR¿VKHU\PDQDJHUV
Sequential Trends Analysis (1b): Per-recruit Methods
Example technique (see Scorecard 2): fractional
change in lifetime egg production²)UHTXHQWO\
long-term time series lack catch-at-age data or even
DJJUHJDWHGFDWFKGDWD<HWVSHFLHVVSHFL¿FHVWLPDWHV
of demographic properties may be available, such as
JURZWKPRUWDOLW\DQGPDWXULW\&RXSOHGZLWK\LHOG
and biomass-per-recruit models, these life-history
WUDLWVDOORZWKHHVWLPDWLRQRIRSWLPDO¿VKLQJPRUWDOLW\
167
'$7$32250(7+2'6)25),6+(5<0$1$*(56
SCORECARD
Per-Recruit Method — Case-Study Example
Stocks with “medium” quality data, including many temperate rocky reef fishes
(e.g., Pacific rockfish, USA) and tropical reef fishes (e.g., Emperor red snapper, Seychelles, Africa)
Many reef fishes fit a description of “medium” data
richness with quality time-series data, so per-recruit
methods are viable management options (Grandcourt et al.
2008). O’Farrell and Botsford (2005, 2006) applied these
methods to rocky reef fish in nearshore California waters.
Per-recruit methods can also apply to tropical reef fish and
other stocks.
Reef fisheries are important resources and protein sources
for many developing countries, regardless of whether or not
a commercial industry exists. In many such fisheries, for
example the Seychelles fishery for Emperor red snapper
(Lutjanus sebae) in East Africa, scientific support for
managers is lacking or nonexistent. Often, however, fishery
managers can access basic life-history information. They
also have time-series data from reef surveys or local catch.
Relative measures (no absolute numbers) can be sufficient
to detect a time-series trend and gauge population stock,
structure, or change over space and/or time (Grandcourt et
al. 2008).
Minimum Data Needs:
Life-history data:
o Mortality estimate.
o Age-length relationship (e.g., von-Bertalanffy growth estimate).
o Length-egg production relationship.
Size-frequency distribution of virgin conditions (estimated from MPAs or
other unfished areas, the earliest period of fishing exploitation known, or
models).
Size-frequency distribution of a recent population state.
Optimal Data Needs:
Detailed knowledge of life-history parameters (ideally, informed with
fishery-independent sources) to increase accuracy and confidence in model
estimates and stock productivity.
Known size-frequency distribution of unfished state.
Cautions and Caveats:
Outputs sensitive to life-history assumptions (e.g., mortality particularly
difficult to estimate).
Uses the earliest catch distribution as an estimate of the unfished state.
Past conditions should be similar to current and future.
Managers still must decide how detected trends affect harvest control rules.
References for FLEP:
(O’Farrell and Botsford 2005, 2006; Grandcourt et al. 2008).
FDQGHQDEOH¿VKHU\PDQDJHUVWRUHH[DPLQHKDUYHVW
WDUJHWVZLWK<LHOG3HU5HFUXLW<356SDZQLQJ6WRFN
%LRPDVV 3HU 5HFUXLW 66%35 DQG LQVHDVRQ GHSOHWLRQPHWULFV(VWLPDWHVRISHUFHQWDJHRIOLIHWLPHHJJ
SURGXFWLRQ /(3 RU HJJ SURGXFWLRQ SHU UHFUXLW FDQ
be used as a limit reference point in order to maintain
DVWRFN¶VSHUVLVWHQFHE\PDLQWDLQLQJWKHVWRFN¶VUHSURGXFWLYH FDSDFLW\ )UDFWLRQDO FKDQJH LQ OLIHWLPH HJJ
SURGXFWLRQ)/(3SURYLGHVDOHVVGDWDLQWHQVLYHDOWHUQDWLYHWRVSDZQLQJSRWHQWLDOUDWLR635DQG66%35
HVWLPDWHV2¶)DUUHOODQG%RWVIRUGFRQYLQFLQJO\ VKRZ KRZ QHDUVKRUH VSHFLHV ZLWK OHQJWK
IUHTXHQF\ GDWD LQFOXGLQJ 3DFL¿F URFN¿VK Sebastes
VSSDORQJWKH86:HVW&RDVWDUHJRRGFDQGLGDWHV
IRU)/(3DQGSHUUHFUXLWPHWKRGV6LPLODUWLPHVHULHV
information is also available for many tropical reef
VSHFLHVWKDWDUHFODVVL¿HGDVGDWDSRRU
)/(3 FDQ EH FDOFXODWHG XVLQJ WZR VL]HIUHTXHQF\
GLVWULEXWLRQV²RQHIURPDQXQ¿VKHGRUHDUO\H[SORLWHG
VWDWH DQG WKH FXUUHQW RQH ² ZLWK DQ DJHOHQJWK UHODWLRQVKLSHJYRQ%HUWDODQII\JURZWKFXUYHDOHQJWK
egg production relationship, and some estimate of
PRUWDOLW\ M ,I ORFDO PDQDJHPHQW HIIRUWV LQFOXGH
no-take marine reserves, these populations may serve
DV DQ DSSURSULDWH SUR[\ IRU DQ XQ¿VKHG VWDWH DIWHU
populations have achieved a steady state inside the no¿VKLQJDUHD:HQGWDQG6WDUUWKLVYROXPH/(3
is calculated as the sum across size classes of each size
FODVV¶VDEXQGDQFHDQGIHFXQGLW\7KHIUDFWLRQDOFKDQJH
FDQEHGHWHUPLQHGDVWKHUDWLRRIWKH/(3RIWKHUHFHQW
FDWFKVL]H GLVWULEXWLRQ WR WKH /(3 RI DQ XQ¿VKHG RU
HDUO\¿VKHU\VWDWHVHHHTXDWLRQ2¶)DUUHOODQG%RWVIRUG
8VLQJWKLVPHWKRG¿VKHU\PDQDJHUVVWLOOPXVWPDNH
DVVXPSWLRQVDERXWZKDWVXFKDWUHQGPHDQVIRUDJLYHQ
VWRFN3HUUHFUXLWPHWKRGVUHO\RQGDWDFRUUHODWLRQVVR
they offer little or no understanding into mechanistic
SURFHVVHV WKDW XQGHUOLH WUHQGV DQG GHWHFWHG FKDQJH
7KHOHQJWKDQGTXDOLW\FRQVLVWHQF\RIWLPHVHULHVGDWD
VWURQJO\ DIIHFWV WKH YDOXH RI WKLV GDWDSRRU PHWKRG
Per-recruit methods are most useful if the historical
WLPHVHULHVLVUHDVRQDEO\H[SHFWHGWRUHSUHVHQWFXUUHQW
DQG IXWXUH FRQGLWLRQV ,I ¿VKHULHV KDYH EHHQ VWURQJO\
DIIHFWHGE\FKDQJHVLQÀHHWG\QDPLFVRFHDQRJUDSKLF
UHJLPHVDQGRUFOLPDWHFKDQJHWKHQPDQDJHUVVKRXOG
SURFHHGZLWKFDXWLRQZKHQXVLQJWKLVWRRO,WLVLPSRUtant to avoid blindly applying such methods across
time-series data that sample across heterogeneous peri168
+21(<(7$/
RGV ZLWK GLIIHUHQW HQYLURQPHQWDO FRQGLWLRQV ,Q WKHVH
FDVHV¿VKHU\PDQDJHUVZLOOQHHGWRXVHPRUHVRSKLVWLFDWHGVWDWLVWLFDOWHFKQLTXHVWR¿OWHUGDWDDSSURSULDWHO\
SDUVHWLPHVHULHVDQGRUFRUUHFWIRUELDVHV
Sequential Trends Analysis (1c): Population and
Length-Based Indices
Example technique (see Scorecard 3): In-season
depletion estimator²7KHGHSOHWLRQHVWLPDWRUFDQEH
used to calculate near-real time stock abundance by
DQDO\]LQJLQVHDVRQGHFOLQHVLQ&38(WKXVDOORZLQJ
PDQDJHPHQWWRDGMXVWKDUYHVWUXOHVHJ7$&ZLWKLQ
WKHVHDVRQ,WFDQDOVREHXVHGDVDQDOWHUQDWLYHKDUYHVW
UXOH ZKHQ SUHGLFWLQJ SUHVHDVRQ DEXQGDQFH SURYHV
LQIHDVLEOHVRDVHDVRQDO7$&FDQQRWEHVHW8VLQJLQ
VHDVRQVWDWLVWLFVRQWKH¿VKHU\¶VFDWFKHJE\ZHHN
DQGHVWLPDWHVRIWKHVSHFLHVJURZWKUHFUXLWPHQWDQG
survival parameters, the depletion estimator compares
&38(DQGDEXQGDQFHHVWLPDWHVWRSURYLGHDQHDUUHDO
WLPHDEXQGDQFHOHYHOVHH(TXDWLRQVDQG0DXQGHU
WKLV YROXPH &RPSDUHGWRFRQYHQWLRQDOVWRFN
assessment abundance estimates, the depletion estimaWRULVDFFXUDWHOHVVWKDQHUURU0DXQGHUWKLV
YROXPH HYHQ WKRXJK LW RQO\ XVHV GDWD IURP D \HDU¶V
¿UVW TXDUWHU 7R FRUUHFWO\ HVWLPDWH ELRPDVV KRZHYHU
WKH PHWKRG UHTXLUHV XSWRGDWH FDWFK NQRZOHGJH DV
ZHOODVFRQ¿GHQWHVWLPDWHVRIOLIHKLVWRU\FKDUDFWHULVWLFV
HJJURZWKUHFUXLWPHQWVXUYLYDO
Example technique (see Scorecard 4): An-indexmethod (AIM)²$Q,QGH[0HWKRG $,0 LV XVHG WR
H[SORUHUHODWLRQVKLSVEHWZHHQFDWFKVWDWLVWLFVDQGVWRFN
abundance indices in order to estimate the scaling facWRUNQRZQDVWKHFDWFKDELOLW\FRHI¿FLHQW$,0LVDUHODWLYHO\QHZPHWKRGGHYHORSHGE\5DJRDQGWKH
12$$)LVKHULHV1RUWKHDVW)LVKHULHV6FLHQFH&HQWHULQ
:RRGV+ROH0DVVDFKXVHWWV,WDVVXPHVDOLQHDUPRGHO
RI SRSXODWLRQ JURZWK WR FKDUDFWHUL]H VWRFN UHVSRQVH
WR GLIIHUHQW OHYHOV RI ¿VKLQJ PRUWDOLW\ :LWK DQ HVWLPDWHGFDWFKDELOLW\FRHI¿FLHQWDQGWKHLQGH[RIUHODWLYH
H[SORLWDWLRQ LH FDWFKVXUYH\ ELRPDVV D PDQDJHU
can use catch data to infer stock status and estimate a
UHODWLYHPRUWDOLW\UDWHDWZKLFKWKHSRSXODWLRQLVOLNHO\
WREHVWDEOH7KLVPHWKRGDQG$,0SHUIRUPDQFHZKHQ
FRPSDUHGWRWKHRXWSXWVDQGH[SHFWDWLRQVRIGDWDULFK
stock assessments, correctly tracks population trends
but is still susceptible to misspecifying stock status
5DJR0LOOHUHWDO
Population and length-based methods are analogous
LQPDQ\ZD\VWRSHUUHFUXLWPHWKRGVGLVFXVVHGLQWKH
SUHYLRXV VHFWLRQ ZLWKRXW DGGLWLRQDO DVVXPSWLRQV RU
H[SOLFLWHVWLPDWHVRIIHFXQGLW\DQGUHSURGXFWLRQ7KLV
UHVHUYHV $,0 DQG VLPLODU OHQJWKEDVHG PHWKRGV IRU
VWRFNV ZLWK PHGLXPTXDOLW\ WLPHVHULHV LQIRUPDWLRQ
DQGGDWDULFKQHVV7KHVHPHWKRGVUHO\RQWZRDVVXPS-
WLRQV L WKDW WKH KLVWRULFDO WLPH VHULHV ZLOO UHSUHVHQW
SUHVHQWDQGIXWXUHFRQGLWLRQVDQGLLWKDWWKHPRGHO
appropriately captures underlying population dynamLFVZLWKOLQHDUDVVXPSWLRQV$VLVWUXHZLWKRWKHULQGH[
PHWKRGVWKHOHQJWKDQGTXDOLW\FRQVLVWHQF\RIWLPH
series data strongly affect the value of this data-poor
PHWKRG
Example technique: Depletion-corrected average
catch (DCAC).²7KH GHSOHWLRQFRUUHFWHG DYHUDJH
FDWFK'&$&E\0DF&DOODYDLODEOHIURPWKH
12$$)LVKHULHV7RROER[KWWSQIWQHIVFQRDDJRYLV
an easy-to-use method that uses only catch time-series
GDWDVXSSOHPHQWHGE\HGXFDWHGJXHVVHVRIDIHZVXSSOHPHQWDU\SDUDPHWHUV7KHUHIRUHLWLVOLNHO\RISUDFWLFDO XVH IRU PDQ\ GDWDSRRU ¿VKHULHV RQ ORQJOLYHG
VSHFLHV HJ QDWXUDO PRUWDOLW\ M 7KH DELOity of this method to identify sustainable yields from
VLPSOH GDWD LQSXW PDNHV '&$& KLJKO\ DWWUDFWLYH IRU
XVHHVSHFLDOO\DVD¿UVWVWHSHVWLPDWHIRUDQDOORZDEOH
FDWFKOHYHODQGRULQFRPSOHPHQWZLWKRWKHUGDWDSRRU
PHWKRGVGLVFXVVHGLQWKLVVHFWLRQRULQFRPELQDWLRQ
ZLWKWKH'HFLVLRQ0DNLQJ0HWKRGVRI6WHS
It has long been recognized that a simple average
catch taken during some time period is probably susWDLQDEOHLIWKHXQGHUO\LQJDEXQGDQFHKDVQRWFKDQJHG
'&$&XVHVWKHSRWHQWLDO\LHOG¿VKHU\PRGHOWRH[WHQG
WKLVVLPSOHFRQFHSWWRVLWXDWLRQVZKHUHWKHXQGHUO\LQJ
DEXQGDQFH LV VXVSHFWHG WR KDYH FKDQJHG )URP KLVWRULFDO FDWFK UHFRUGV RU HVWLPDWHV RYHU D SURORQJHG
SHULRGSUHIHUDEO\\HDUVRUPRUH'&$&HVWLPDWHV
WZR FDWHJRULHV RI ¿VKHULHV \LHOG D ³VXVWDLQDEOH
\LHOGFRPSRQHQW´DQGDQ³XQVXVWDLQDEOHZLQGIDOO
FRPSRQHQW´DVVRFLDWHGZLWKWKHRQHWLPHUHGXFWLRQLQ
biomass as the stock transitions from higher abundance
DWWKHEHJLQQLQJRIWKHWLPHSHULRGWRORZHUDEXQGDQFH
DWWKHHQG,QDGGLWLRQWKLVPHWKRGFDQDOVRFRUUHFWIRU
WKHOHVVFRPPRQFDVHRIDQLQFUHDVLQJELRPDVVWUHQG
,QSXWV IRU '&$& DUH KLVWRULFDO FDWFK WLPH VHULHV
and imprecise probability distributions of M, the ratio
RI )06< WR M W\SLFDOO\ LQ WKH UDQJH RI WR and the suspected relative change in abundance from
WKH EHJLQQLQJ WR WKH HQG RI WKH FDWFK VHULHV deltaB,
ZKLFKFDQEH]HUR7KHRXWSXWIURP'&$&LVDSUREDELOLW\ GLVWULEXWLRQ RI VXVWDLQDEOH \LHOG DIWHU ZLQGIDOO
KDUYHVW ZKLFK LV H[SHFWHG WR SUHYHQW RYHU ¿VKLQJ
0DF&DOO 7KH 12$$ )LVKHULHV7RROER[ KDV D
XVHUIULHQGO\'&$&VRIWZDUHSURJUDPFRPSOHWHZLWK
0RQWH &DUOR HVWLPDWHV RI SUHFLVLRQ DQG DYDLODEOH IRU
SXEOLFGRZQORDGDWKWWSQIWQHIVFQRDDJRY
Fishery-evaluation Methods — Type 2
Vulnerability Analysis
A variety of methods make use of general lifehistory characteristics and general species understandLQJ WR HYDOXDWH SRVVLEOH VWRFN UHVSRQVHV WR ¿VKLQJ
169
'$7$32250(7+2'6)25),6+(5<0$1$*(56
SCORECARD
Population and Length-Based Indices — Case-Study Example (within-season)
In-Season Depletion Estimator: Stocks Driven by Variable Recruitment
(e.g., salmonids, squids, and yellowfin tuna)
Many species have highly uncertain abundance
estimates due to natural variability in annual
recruitment, so new recruits sometimes comprise a
substantial portion of total stock abundance.
Frequently, this occurs for short-lived, fastgrowing species and for species with highly
variable and stochastic recruitment dynamics. Such
stocks include salmonids, squids and fast-growing
tuna.
Minimum Data Needs:
Life-history data.
In-season catch time series (e.g., hourly, daily, or weekly data, depending on
management goals and resources).
In-season CPUE or effort time series, at frequent intervals, using consistent
data-collection protocols.
Detailed life-history knowledge to correspond with the resolution of data
collected.
Several decades ago, Walters and Buckingham
(1975) proposed quantitative methods for inCautions and Caveats:
season adjustments for the management of British
CPUE does not always track actual population because of effort creep,
Columbia salmon (Oncorhynchus spp.). Since
targeting behavior of fishermen, and/or stock dynamics.
then, these ideas have been refined and
Use with caution for schooling species or aggregate spawners.
implemented for in-season management.
Within-season comparisons assume consistency across a fishing season:
Successful examples include fisheries for Alaska
o Method may not be appropriate (requires correction) for fisheries
salmon (Walters 1996; Hilborn 2006) and Falkland
with effort or regulatory changes within one fishing season.
Islands’ squid (Loligo gahi; McAllister et al. 2004;
o Method may not be appropriate (requires correction) if anomalous
Roa-Ureta and Arkhipkin 2006). Within this
conditions differentially impact different times within one season
volume, Maunder (2010) presents a depletion
(e.g., algal blooms or hypoxic zones).
estimator, using growth, recruitment, and survival
Managers still must decide how detected trends affect harvest control rules.
estimates of eastern Pacific yellowfin tuna
(Thunnus albacares) with in-season data to guide
within-season management.
References for depletion estimator for in-season management:
(Hilborn and Walters 1992; Maunder 2010, this volume).
SUHVVXUH.QRZOHGJHRIEDVLFYLWDOVWDWLVWLFVHJVXUYLYDOJURZWKLQWULQVLFUDWHRILQFUHDVHDJHRIPDWXULW\IHFXQGLW\FDQLQIRUPVLPSOHSRSXODWLRQG\QDPLF
PRGHOVDQG¿VKHU\PDQDJHPHQWPRGHOVLQDKHXULVWLF
²DOEHLWLPSHUIHFW²ZD\:LQHPLOOHUDQG5RVH
$ORQ]RDQG0DQJHO:LQHPLOOHU0XVLFN
ELGHQWL¿HVLQWULQVLFUDWHRILQFUHDVHDQGDJHDW
PDWXULW\ DV WZR NH\ WUDLWV ZKLFK VWURQJO\ LQÀXHQFH
GHJUHHRIYXOQHUDELOLW\6XFKOLIHKLVWRU\SDUDPHWHUV
can be used to assess species vulnerability and prioriWL]HVWRFNVIRUUHVHDUFKDQGPDQDJHPHQW:LQHPLOOHU
DQG5RVH
Example technique (see Scorecard 5): Productivity
and susceptibility analysis of vulnerability.²7KH3URductivity and Susceptibility Analysis of vulnerability
36$PHWKRGLVXVHGWRDVVHVVDVWRFN¶VYXOQHUDELOLW\
WR RYHU¿VKLQJ EDVHG RQ UHODWLYH VFRUHV GHULYHG IURP
life-history characteristics — “productivity” — and
VSHFLHV¶UHVSRQVHVWR¿VKLQJSUHVVXUH²³VXVFHSWLELO-
LW\´ 3URGXFWLYLW\ ZKLFK UHSUHVHQWV WKH SRWHQWLDO IRU
UDSLGVWRFNJURZWKLVUDQNHGVHPLTXDQWLWDWLYHO\IURP
ORZ WR KLJK RQ WKH EDVLV RI WKH VWRFN¶V LQWULQVLF UDWH
RILQFUHDVHrYRQ%HUWDODQII\JURZWKFRHI¿FLHQWk
QDWXUDOPRUWDOLW\UDWHMPHDQDJHDWPDWXULW\DQG
RWKHU PHWULFV 3DWULFN HW DO )LHOG HW DO WKLVYROXPH7KHORZWRKLJKVFRUHVRIVXVFHSWLELOLW\ UHIHU WR RYHUDOO LPSDFWV RI ¿VKLQJ RQ WKH VWRFN¶V
DEXQGDQFHDQGKDELWDW6XVFHSWLELOLW\VFRUHVDUHEDVHG
RQWKHH[SHFWHG¿VKLQJPRUWDOLW\UDWHGLVFDUGPRUWDOLW\DQGEHKDYLRUDOUHVSRQVHVHJVFKRROLQJWKDWFDQ
PDNHDVWRFNPRUHRUOHVVYXOQHUDEOHWR¿VKLQJHIIRUW
7DEOHRI)LHOGHWDOWKLVYROXPHSURYLGHVD
V\VWHPDWLFIUDPHZRUNIRUDSSO\LQJWKH36$PHWKRGWR
DPXOWLVSHFLHV¿VKHU\RUVWRFNVSHFL¿F¿VKHU\ZLWKD
KLJKGLYHUVLW\RIE\FDWFK7KLVPHWKRGFDQEHXVHGWR
make a preliminary characterization of overall risk of
RYHU¿VKLQJ,WRIIHUVDZD\WRHYDOXDWHPXOWLSOHE\FDWFK
stocks and identify species of priority or for protec170
+21(<(7$/
SCORECARD
Population and Length-Based Indices — Case-Study Example
AIM: Atlantic Northeast groundfish (USA)
AIM estimates biological reference points, using a linear
model of population growth to fit a time-series
relationship between catch data (fishery-dependent data)
and a relative abundance index (from CPUE or fisheryindependent data). If the underlying population model is
valid, AIM enables managers to identify levels of relative
fishing mortality that will achieve a stable or targeted
stock size. This data-poor method continues to undergo
additional peer review (Palmer 2008; Miller et al. 2009).
To date, it has been applied to U.S. Atlantic stocks, such
as haddock (Melanogrammus aeglefinus). The New
England groundfish case study demonstrates the
application of AIM to stock complexes where certain
species may be overlooked and unassessed, despite the
large amounts of data and stock assessments focused on a
few well-studied species in the same complex.
Minimum Data Needs:
Life-history data.
Catch time series.
Abundance index time series (from CPUE or fishery
independent surveys).
Optimal Data Needs:
Detailed population data and length-age information, in order
to calibrate the AIM index with independent quantitative
assessments.
Cautions and Caveats:
Underlying linear model assumptions are not appropriate for
all stocks.
Susceptible to problems with misspecification (i.e., use of
catch series from long overfished periods, recruitment pulses,
or noisy data), resulting in bias.
Past conditions should be similar to current and future
conditions.
Managers still must decide how detected trends affect harvest
control rules.
References for AIM:
(Palmer 2008; Rago 2008; Miller et al. 2009).
AIM model downloadable from NOAA Fisheries Toolbox Version 3.0, 2008.
AIM Internet address: http://nft.nefsc.noaa.gov/AIM.html.
WLRQ6LPSHQGRUIHUHWDO3DWULFNHWDO
GHPRQVWUDWHWKHDSSOLFDWLRQRIWKH36$PHWKRGIRUVL[
IHGHUDOO\PDQDJHG¿VKHULHVLQWKH8QLWHG6WDWHV
7KH $PHULFDQ )LVKHULHV 6RFLHW\¶V $)6 H[WLQFWLRQULVNFULWHULDLHHQGDQJHUHGWKUHDWHQHGYXOQHUDEOHDUHEDVHGRQVLPLODUSULQFLSOHVDVWKHSURGXFWLYLW\DQDO\VLVLQWKH36$0XVLFND0XVLFNHWDO
,WXVHVPDQ\RIWKHVDPHSURGXFWLYLW\SDUDPHWHUVVXFKDVLQWULQVLFUDWHRILQFUHDVHrYRQ%HUWDODQII\FRHI¿FLHQWkIHFXQGLW\FecDJHDWPDWXULW\
Tmat DQG PD[LPXP DJH Tmax WR GHWHUPLQH D VSHFLHVSURGXFWLYLW\OHYHOHJKLJKPHGORZYHU\ORZ
VHH7DEOH0XVLFND7KXVZKHQDVSHFLHVLV
WKRXJKWWREHDWULVNE\H[SHUWRSLQLRQRUGXHWRGUDVWLF
GHFOLQHWKHSURGXFWLYLW\UDQNLQJRIWKHVSHFLHVLV¿UVW
DVVHVVHG 0XVLFN D 7KLV SURGXFWLYLW\ UDQNLQJ
SURYLGHVDTXDOLWDWLYHGHFOLQHWKUHVKROGWKDWGHVFULEHV
WKH GHJUHH RI GHFOLQH WKH VWRFN FDQ OLNHO\ ZLWKVWDQG
0XVLFND,IWKHREVHUYHGGHFOLQHUDWHH[FHHGV
WKHVXJJHVWHGWKUHVKROGEDVHGRQWKHVWRFN¶VSURGXFWLYLW\FKDUDFWHULVWLFVWKHVWRFN¶VYXOQHUDELOLW\VWDWXVPD\
EHXSJUDGHGWRWKUHDWHQHGRUHQGDQJHUHG,WLVLPSRUWDQWWRQRWHKRZHYHUWKDWUHVXOWVIURPWKLVGDWDSRRU
PHWKRGSURYLGHRQO\DUHODWLYHPHDVXUH7KLVPHWKRG
GRHVQRWJHQHUDWHDEVROXWHQXPEHUVRULQGH[HVWLPDWHV
RIVWRFNVL]HEXWHVWLPDWHVSRSXODWLRQH[WLQFWLRQULVN
UHODWLYHWRRWKHUVSHFLHV
$V ZLWK DOO PRGHOV WKH RXWSXWV DQG PDQDJHPHQW
recommendations from a life-history vulnerability
analysis can only be as good as the life-history science
DQGGDWDLQSXWVLQWRWKHDQDO\VLV+LOERUQDQG0DQJHO
7KHUHIRUHPDQDJHUVVKRXOGEHFRQ¿GHQWRIWKH
life-history parameters used, and check assumptions
WKDW OLIHKLVWRU\ GDWD IURP ODERUDWRULHV DQGRU RWKHU
JHRJUDSKLFUHJLRQVZLOOKROGWUXHDFURVVVSDFHDQGRU
WLPHIRUWKHUHJLRQDQGVWRFNRILQWHUHVWWRWKH¿VKHU\
PDQDJHU&RSH7KLVLVQRWQHFHVVDULO\WKHFDVH
and the failure of this assumption can, of course, lead
WR PLVVSHFL¿FDWLRQ RI VWRFN VWDWXV SURGXFWLYLW\ DQG
YXOQHUDELOLW\HJ:HVW&RDVWURFN¿VKVSHFLHV&ODUN
171
'$7$32250(7+2'6)25),6+(5<0$1$*(56
SCORECARD Productivity & Susceptibility Analysis — Case-Study Example
Bycatch and Other Species of Low Value or Low Priority to Management
(e.g., Atlantic pelagic sharks and rays, USA)
Bycatch species are all too often unassessed. Given some
basic life history and fishing mortality estimates,
however, methods like Productivity and Susceptibility
Analysis (PSA) can estimate individual species
vulnerability to fishing pressure, relative to other species.
By simultaneously accounting for estimated stock
productivity and stock susceptibility to fishing effort, PSA
produces estimates of overexploitation risk. Target and
nontarget species can all be evaluated. Therefore, PSA
can be a good choice for managers with bycatch concerns
(e.g., in fisheries that are managed to protect weak stocks
or stock complexes mixed with productive stocks).
Minimum Data Needs:
Life-history data to estimate stock productivity.
o Typically, done with estimates of von Bertalanffy growth
coefficient, natural mortality rate, and mean age at 50%
maturity.
Fishing mortality data to estimate stock susceptibility.
o Typically, done with estimates of the catchability coefficient
and bycatch rates, which may be affected by fleet dynamics
and/or fish behavior like schooling.
Optimal Data Needs:
Detailed and accurate knowledge of life-history parameters to increase
accuracy and confidence in model estimates of stock productivity.
Detailed and accurate knowledge of fishing mortality.
Multiple independent data sources and/or expert knowledge to
corroborate estimates for calculated parameters (see above).
A recent evaluation of Atlantic pelagic sharks and rays
shows the advantage of life-history vulnerability analyses
when managing bycatch species. Simpfendorfer et al.
(2008) assess the risk of overexploitation for
elasmobranchs caught as bycatch in the Atlantic
Cautions and Caveats:
swordfish fishery (longline). To evaluate population
Only assesses expected, relative vulnerability to fishing pressure (not
vulnerability, they used multivariate statistics to analyze
absolute population numbers).
information using three primary data metrics: (1)
Will not specify harvest guidelines (i.e., Total Allowable Catch [TAC]
Ecological Risk Assessment, (2) the inflection point of
or target catch limits).
the population growth curve (a proxy for Bmsy), and (3)
Managers still must decide how detected trends affect harvest control
the World Conservation Union (IUCN) Red List status
rules.
(Simpfendorfer et al. 2008). Integrated results provide a
relative measure of overexploitation risk for each
nontarget species of management concern.
References for PSA:
(Simpfendorfer et al. 2008; Patrick et al. 2009; Field et al. 2010, this volume)
Fishery-evaluation Methods — Type 3
Extrapolation (“Robin Hood” Management)
:KHQYLUWXDOO\QRGDWDDUHDYDLODEOHIRUDVWRFNRU
VSHFL¿FVSHFLHVLQDVSHFL¿FUHJLRQWKHQPDQDJHUVPD\
QHHGWRUHO\RQH[WUDSRODWLRQPHWKRGVWRLQIRUPGHFLVLRQV)UHTXHQWO\ORZYDOXHVWRFNVDUHVXEMHFWWRVXFK
GDWD FRQVWUDLQWV 7KLV PHWKRG LV WHUPHG WKH ³5RELQ
+RRG´DSSURDFKLQ$XVWUDOLDEHFDXVHLW³VWHDOV´LQIRUPDWLRQDQGVFLHQWL¿FXQGHUVWDQGLQJLQGDWDULFK¿VKHULHVWR³JLYH´LQIHUHQFHVWRWKHGDWDSRRU¿VKHULHVVHH
6FRUHFDUG6PLWKHWDOWKLVYROXPH
(YHQZLWK]HURDYDLODEOHVFLHQWL¿FGDWDIRUDJLYHQ
¿VKHU\PDQDJHUVVWLOOKDYHDFFHVVWRLQIRUPDWLRQIURP
WKH ORFDO NQRZOHGJH RI WKH ¿VKHUV DQG UHVRXUFH
XVHUV DQGRU VFLHQWL¿F UHVHDUFK DQG HFRV\VWHP
understanding from “sister” systems thought to be
VLPLODU([WUDSRODWLRQIURPVLPLODUV\VWHPVRUUHODWHG
“sister” species may offer an informed starting point
IURP ZKLFK PDQDJHUV FDQ EXLOG SUHFDXWLRQDU\ PDQDJHPHQW,QWKHVHVLWXDWLRQVOLIHKLVWRU\FKDUDFWHULVWLFV SRWHQWLDOO\ VXVWDLQDEOH KDUYHVW OHYHOV VSDZQLQJ
behavior, and other information can be gleaned from
QHDUE\VWRFNVV\VWHPVRUUHODWHGVSHFLHV
$OO H[WUDSRODWLRQ PHWKRGV UHTXLUH WKH YHU\ FDUHIXO
WHVWLQJRIDVVXPSWLRQV$VSUHYLRXVO\QRWHGLWLVQRW
necessarily the case that life-history data from laboUDWRULHVDQGRURWKHUJHRJUDSKLFUHJLRQVZLOOKROGWUXH
DFURVVVSDFHDQGRUWLPHVHH36$GLVFXVVLRQDERYH
7KHDVVXPSWLRQWKDWGDWDSRRUVWRFNVEHKDYHOLNHGDWD
ULFKVWRFNVKDVEHHQSURYHQZURQJLQWKHSDVWUHVXOWLQJ
LQXQLQWHQWLRQDORYHU¿VKLQJHJ:HVW&RDVWURFN¿VK
VSHFLHV&ODUN'XHWRXQFHUWDLQW\
IURP WKH H[WUDSRODWLRQ RI VFLHQWL¿F LQIRUPDWLRQ ZLWK
³5RELQ+RRG´PHWKRGV¿VKHU\PDQDJHUVVKRXOGFRQVLGHUEXLOGLQJLQDSUHFDXWLRQDU\EXIIHU
172
+21(<(7$/
SCORECARD 6.
Extrapolation Method — Case-Study Example
Species of Low Value or Low Priority to Management (e.g., trochus fishery, Vanuatu, Pacific Islands)
An example of the extrapolation method comes from the Pacific
Islands country of Vanuatu, where a sea snail — the trochus
(Trochus niloticus) — is fished. Despite its “data-less” status, for
years Vanuatu officials have successfully managed the trochus
fishery for years (Johannes 1998). To do this, fishery officials use
generalized growth rates determined by the government. The fishery
managers emphasize one central principle: trochus stocks should be
harvested about once every three years (Johannes 1998). After
successes in villages that initially implemented this three-year rule,
neighboring villages extrapolated this control rule for managing
their own local stocks (Johannes 1998). Ultimately, many
communities implemented similar control rules based on
generalized growth knowledge for stocks beyond the Trochidae
family, including octopus, lobster and other species (Johannes
1998).
Minimum Data Needs:
Anecdotal observations or related “sister” species
and systems with similar characteristics that are
known.
Optimal Data Needs:
The more information from sources above, the better.
Life-history data to supplement observations and test
underlying assumptions in the extrapolations.
Cautions and Caveats:
Large scientific and management uncertainty.
Risk of misspecifying stock status, vulnerability,
sustainable harvest levels; this risk can be potentially
serious and lead to overfishing, especially (e.g., if the
data-poor stock of interest is less productive than its
data-rich “sister” species; Clark 1991, 1993, 1999).
Not a replacement for quantitative management.
Managers still must decide how detected trends
affect harvest control rules.
While the lack of explicit conservation goals in such traditional
management systems has been criticized, more recent empirical
evaluations suggest that the application of traditional knowledge,
marine tenure, and other traditional management techniques can
result in sustainable conservation outcomes (Cinner et al. 2005a,
2005b).
References for extrapolation and “Robin Hood” methods:
(Johannes 1998; Prince 2010, this volume; Smith et al. 2009, this volume).
Step 4—Apply Decision-making Methods
,Q WKH SUHYLRXV VWHSV RI RXU IUDPHZRUN PDQDJHUV
VHOHFWDQGDSSO\DVPDQ\)LVKHU\(YDOXDWLRQ7RROVDV
deemed appropriate, based on the data richness, availDEOH UHVRXUFHV DQG ¿VKHU\ FRQWH[W +HUH LQ 6WHS ZHUHYLHZWZRJHQHUDOFDWHJRULHVRI'HFLVLRQ0DNLQJ
0HWKRGVDYDLODEOHWRHYDOXDWHDOWHUQDWLYHPDQDJHPHQW
RSWLRQVWUDGHRIIVDQGH[SHFWHGRXWFRPHVZLWKRXWD
full stock assessment:
L'HFLVLRQWUHHV
LL0DQDJHPHQW6WUDWHJ\(YDOXDWLRQV06(V
7KHVHDUHGHFLVLRQPDNLQJWRROVWKDWFRPELQHVFLHQWL¿F
NQRZOHGJH ZLWK PDQDJHPHQW NQRZOHGJH DQG YDOXH
MXGJPHQWV LQ RUGHU WR LGHQWLI\ SUHIHUDEOH DFWLRQV RU
UHFRPPHQGDWLRQVIRUD¿VKHU\%RWKGHFLVLRQWUHHVDQG
06(VXVHPXOWLVWDJHIUDPHZRUNVWRDUULYHDWFRQFOXsions about stock status, harvest recommendations,
DQGRUDOWHUQDWLYHFRQWUROUXOHV2IWHQVHYHUDOGLIIHU-
HQWRXWSXWVIURPVHYHUDOGLIIHUHQW)LVKHU\(YDOXDWLRQ
0HWKRGV6WHSVHUYHDVLQSXWVLQWR'HFLVLRQ0DNLQJ0HWKRGV6WHSVHH)LJXUH,QFRPSDULVRQWR
PHWKRGV SUHYLRXVO\ UHYLHZHG WKHVH 6WHS PHWKRGV
W\SLFDOO\UHTXLUHJUHDWHULQIRUPDWLRQLQSXWVDQGWHFKQLFDOUHVRXUFHVLQFOXGLQJJUHDWHUKXPDQFDSLWDO
7KHVH PHWKRGV DUH KLJKO\ ÀH[LEOH 7KH\ DUH IXOO\
capable of incorporating diverse sources and types of
LQIRUPDWLRQWRJHQHUDWHQHZXQGHUVWDQGLQJDQGPDQDJHPHQWJXLGDQFHIURPOLPLWHGLQIRUPDWLRQ
%HORZ ZH LQWURGXFH HDFK RI WKHVH WZR 'HFLVLRQ
0DNLQJ 0HWKRGV ZLWK D VXPPDU\ SDUDJUDSK DQG DQ
H[DPSOH DSSOLFDWLRQ :H UHIHUHQFH FDVHVWXG\ H[DPSOHV WR VKRZ KRZ HDFK PHWKRG FDQ EH DSSOLHG ZKLOH
EULHÀ\UHYLHZLQJPLQLPXPGDWDUHTXLUHPHQWVRSWLPDO
data needs, and important cautions and caveats for the
PHWKRG ZLWKLQ RXU H[DPSOH FRQWH[W :H LQFOXGH UHIHUHQFHV WR RULJLQDO SXEOLFDWLRQV DQG SHHUUHYLHZHG
OLWHUDWXUH GHVFULELQJ D PHWKRG¶V LPSOHPHQWDWLRQ VR
LQWHUHVWHGSDUWLHVFDQUHYLHZWKLVPHWKRGLQPRUHGHSWK
173
'$7$32250(7+2'6)25),6+(5<0$1$*(56
Decision-making Methods — Type 1
Decision Trees (Analytical Approach)
'HFLVLRQ WUHHV SURYLGH D V\VWHPDWLF KLHUDUFKLFDO
IUDPHZRUN IRU GHFLVLRQPDNLQJ WKDW VFDOHV WR DQ\
VSDWLDO WHPSRUDO RU PDQDJHPHQW FRQWH[W LQ RUGHU WR
DGGUHVV D VSHFL¿F TXHVWLRQ $ GHFLVLRQ WUHH PD\ EH
FXVWRPL]HGWRPHHWYLUWXDOO\DQ\QHHG
In this volume, other authors propose several innoYDWLYHGHFLVLRQWUHHV7KHLUXVHVLQFOXGHLGHQWL¿FDWLRQ
of reference points based on stock characteristics and
YXOQHUDELOLW\&RSHDQG3XQWWKLVYROXPHIRVWHULQJ ¿QHVFDOH WUDQVSDUHQW DQG ORFDO PDQDJHPHQW
3ULQFHWKLVYROXPHDQGHVWLPDWLQJDQGUH¿QLQJDQDSSURSULDWH7RWDO$OORZDEOH&DWFK7$&OHYHO
:LOVRQHWDOWKLVYROXPH7KHVHH[DPSOHVDUH
GLVFXVVHGIXUWKHUEHORZ
Given only available catch records and trends, manDJHUVRIGDWDSRRU¿VKHULHVFDQXVHWKLVLQIRUPDWLRQWR
LQIHUVWRFNFKDQJH7KLVJHQHUDOO\ZRUNVZHOOIRUKLJK
value species because their catch records tend to have
GHWDLOHGLQIRUPDWLRQRIJRRGTXDOLW\)LVKHU\VFLHQWLVWV
KDYH SUHYLRXVO\ VXJJHVWHG LQGH[EDVHG PDQDJHPHQW
approaches for high-value stocks, including AtlanWLF FRG Gadus morhua )URHVH ZKLWH JURXSHU Epinephelus aeneus )URHVH DQG EODFNWLS
DEDORQH Haliotis rubra 3ULQFH WKLV YROXPH
:KHQWKHUHVROXWLRQRIGDWDFROOHFWLRQFRUUHVSRQGVWR
an appropriate scale for management decisions, then
WUHQGFKDQJHVLQ¿VKHULHVGDWDFDQIHHGLQWRGHFLVLRQ
WUHHDSSURDFKHVWRLQIRUPPDQDJHPHQWFKRLFH
:KHQ GHYHORSLQJ RU XVLQJ GHFLVLRQ WUHHV ¿VKHU\
PDQDJHUVPXVWNQRZWKHLUGDWDVRXUFHVDQGKRZLQIRUPDWLRQLVORJJHGDQGUHFRUGHG,PSRUWDQWO\FDWFKGDWD
are often aggregated over space and time at a scale that
may not necessarily match biological processes and
PHFKDQLVPV RI FKDQJH ,Q WKHVH FDVHV WKH GHFLVLRQ
tree approach may fail to detect trends and can mask
XQGHUO\LQJXQFHUWDLQWLHV
Example technique: Length-based reference points
set by decision tree.—A length-based decision tree
DOORZV IRU WKH LQWHUSUHWDWLRQ RI HDV\ WR FROOHFW FDWFK
length data to provide indicators of stock status and
WKH ¿VKHU\¶V VXVWDLQDELOLW\ )URHVH RXWOLQHG
D VLPSOH ZD\ WR FKDUDFWHUL]H ¿VKHULHV DW ORZ ULVN RI
JURZWK RU UHFUXLWPHQW RYHU¿VKLQJ EDVHG RQ FDWFK±
OHQJWK GDWD FDWFKOHQJWK FRPSRVLWLRQV FRQVLVWLQJ
VROHO\RIPDWXUHLQGLYLGXDOVPmature or PmatFDWFKOHQJWK FRPSRVLWLRQV FRQVLVWLQJ ODUJHO\ RI ¿VK RI WKH
VL]H DW ZKLFK WKH KLJKHVW \LHOG IURP D FRKRUW RFFXUV
Poptimal or PoptDQGFDWFKOHQJWKFRPSRVLWLRQVWR
FRQVHUYHPHJDVSDZQHUVWKDWDUHODUJHKLJKO\IHFXQG
LQGLYLGXDOV Pmegaspawners or Pmega &RSH DQG 3XQW
WKLVYROXPHVHH&DVH6WXG\([DPSOHS
H[WHQGWKHPHWKRGE\H[DPLQLQJLWVVHQVLWLYLW\WROLIH
KLVWRU\ WUDLWV UHFUXLWPHQW SDWWHUQV DQG ¿VKHU\ VHOHF-
WLYLW\LHZKDWIUDFWLRQRIHDFKOHQJWKFODVVLVWDNHQ
E\WKH¿VKHU\7KH\HVWDEOLVKDFULWLFDOOLQNEHWZHHQ
WKH LGHQWL¿FDWLRQ RI WUHQGV DQG WKH GHVLJQ RI KDUYHVW
FRQWUROUXOHVZLWKDGHFLVLRQWUHH
8VLQJ D VLPXODWLRQ PRGHO EDVHG RQ :HVW &RDVW
JURXQG¿VK SRSXODWLRQ G\QDPLFV DQG GDWD &RSH DQG
3XQW IRXQG WKDW RYHU¿VKLQJ FRXOG RFFXU XVLQJ )URHVH¶V JXLGHOLQHV XQGHU VRPH VFHQDULRV GHSHQGLQJ RQ
DVVXPSWLRQVRIOLIHKLVWRU\WUDLWVDQG¿VKHU\VHOHFWLYLW\$FFRUGLQJWRVLPXODWLRQUXQVHYHQZKHQPmat and
PoptDUHYHU\ORZ¿VKLQJFDQEHVXVWDLQDEOH6LPXODWLRQVDOVRVXJJHVWWKDWPDMRUVWRFNGHFOLQHFRXOGUHVXOW
HYHQZKHQPopt LVWKHLGHDOVLWXDWLRQIRUD¿VKHU\
7KH &RSH DQG 3XQW GHFLVLRQ WUHH LQWHUSUHWV FDWFK
OHQJWK GDWD DQG VWRFN VWDWXV XVLQJ D QHZ SDUDPHWHU
PobjWKHVXPRIPmat, Popt, and Pmega, see Figure 10 in
&RSHDQG3XQWWKLVYROXPH7KLVGHFLVLRQWUHH
can be applied even if direct information on mortality,
¿VKHU\VHOHFWLYLW\DQGUHFUXLWPHQWLVODFNLQJ:KLOH
WKLVSURYLGHVDÀH[LEOHPDQDJHPHQWWRROWKHDXWKRUV
are careful to point out a number of caveats concerning the use of Pmat and PoptZLWKWKLVPHWKRG&RSHDQG
3XQWWKLVYROXPH
Example technique: marine reserve-based decision tree.²7KLVGHFLVLRQWUHHE\:LOVRQHWDO
WKLVYROXPHVHH&DVH6WXG\([DPSOHSPDNHV
use of data from no-take marine reserves to improve
DVVHVVPHQWVRIVWRFNVWDWXV,WSURYLGHVDQDOWHUQDWLYH
PHWKRGWRVHWDQGUH¿QHD7$&E\FRPSDULQJ&38(
and the size structures of a species inside and outside
UHVHUYHV7KLVPHWKRGDVVXPHVUHVHUYHFRQGLWLRQVDUHD
SUR[\IRUQDWXUDODEXQGDQFHRUDVFRQVHUYDWLRQWDUJHWV
IRU PDQDJHPHQW 6LQFH LW XVHV LQVLGHRXWVLGH UHVHUYH
FRPSDULVRQV WKLV PHWKRG UHTXLUHV VXUYH\ VLWHV ZLWK
comparable habitat both inside and outside reserve
ERXQGDULHV $V LV WUXH IRU DQ\ PHWKRG WKDW DVVXPHV
UHVHUYHV DUH D EDVHOLQH RU SUR[\ IRU XQ¿VKHG FRQGLWLRQVWKHDPRXQWRIPRYHPHQWDQGPL[LQJRIVSHFLHV
across reserve boundaries is an important source of
XQFHUWDLQW\
7KLV GHFLVLRQ WUHH LV GHVLJQHG IRU WKH DQDO\VLV RI
data collected on relatively small scales, in order to
GHYHORS7$&OHYHOVDWWKRVHORFDOVFDOHV7KHLQLWLDO
7$&HVWLPDWHLVFDOFXODWHGIURPWKHVORSHRIWKHOLQH
FRQQHFWLQJFXUUHQW&38(WRDWDUJHW&38(OHYHO)XUWKHU EUDQFKHV LQ WKH GHFLVLRQ WUHH DOORZ WKH XVHU WR
XSGDWH DQG DGMXVW WKH 7$& E\ GHWHUPLQLQJ ZKHWKHU
&38(RUVL]HGLVWULEXWLRQVRIWKH¿VKHGSRSXODWLRQDUH
DERYH RU EHORZ DQ H[SHFWHG OHYHO HJ DV REVHUYHG
ZLWKLQWKHUHVHUYHIRUDQXQ¿VKHGHTXLOLEULXPSRSXODWLRQ%HFDXVHWKLVPHWKRGLVLQWHQGHGWREHXSGDWHG
UHJXODUO\ E\ LQFRUSRUDWLQJ QHZ DQG HDV\WRDFTXLUH
GDWD HJ &38( WUHQGV DQG VL]H WKH UHVHUYHEDVHG
decision tree is naturally dynamic and adaptable to
FKDQJLQJHQYLURQPHQWDORUELRORJLFDOFRQGLWLRQV
174
+21(<(7$/
Length-Based Decision Tree — Case-Study Example
Australia’s Eastern Tuna and Billfish Fishery
Australia’s Eastern Tuna and Billfish Fishery (ETBF) is a highvalue but low-information fishery for bigeye and yellowfin
stocks near Tasmania (Prince 2010, this volume). Regional data
exist, particularly fishery-dependent time series, but information
is insufficient for a stock assessment. ETBF data-poor challenges
arise from unresolved population structure and resulting
implications for quantitative stock assessment techniques, since
the population connectivity is unknown between tuna stocks in
the Tasman Sea and the Western Central Pacific Ocean (Prince
2010, this volume).
A decision-tree approach to management is appropriate for this
kind of fishery, especially if used in conjunction with other datapoor methods. For example, CUSUM and other FisheryEvaluation methods (see Step 3) can be used to verify the
statistical significance of detected change in time-series data.
To develop a formal harvest policy for ETBF under Australia’s
Harvest Strategy Guidelines (DAFF 2007), fishery managers
adopted an innovative empirical strategy for regional stock
management in the Tasman Sea (Prince 2010, this volume). They
use regional fisheries data as “local” indicators for stock status.
Time-series data from regional fleet effort, landings, and length
distributions of catch are quantitative inputs into a decision tree,
designed to inform ETBF management in a manner responsive to
local change in stock status and fishing trends. Inputs are sizebased indicators of stock status with a determined level of
*
Spawning Potential Ratio (SPR) for local stocks. Then, relative
to local SPR, managers can evaluate and adjust the proportion of
the catch comprised of “mature” (small), “optimum” (medium),
and “megaspawner” (large) fish. Using detected trends over
time, this decision tree organizes information and frames
expected outcomes to recommend action for local management.
Minimum Data Needs:
Life-history data.
Catch time series.
Length-age data for catch size distribution to estimate:
o
Size-frequency distribution of virgin conditions (i.e.,
unfished state).
o
Size-frequency distribution for the fished population.
Optimal Data Needs:
Detailed knowledge of life-history parameters (ideally, informed with
fishery-independent sources) to increase accuracy and confidence in
model estimates and stock productivity.
Scientific knowledge of critical size classes with detailed length-age data
(e.g., length at maturity, megaspawning size).
Known size-frequency distribution of unfished state.
Cautions and Caveats:
Depletion of megaspawners from fishing can falsely suggest the fishery
is catching “optimum” (medium) individuals.
May not be appropriate for stocks with low steepness** because of little
difference between “mature” (small) and “optimum” (medium)
individuals.
Simple assessment methods like this (based on maintaining conservative
levels of spawning biomass, SPR*) are helpful, but do not directly
translate to harvest control rules.
The accuracy and statistical power of decision-tree outputs depends
strongly on the quality of data inputs and underlying model assumptions.
*
SPR is the number of eggs that could be produced by an average recruit in a fished stock, divided by the number of eggs that could be
produced by an average recruit in an unfished stock.
**
Steepness is conventionally defined as the proportion of unfished recruitment produced by 20% of unfished spawning biomass.
References for length-based reference points set by decision tree:
(Froese 2004; Cope and Punt 2009, this volume).
&RPSDULVRQV RI ¿VK GHQVLW\ LQVLGH DQG RXWVLGH
reserves might also be used to inform season length
and other effort controls through a reserve-based “denVLW\UDWLR´PHWKRG%DEFRFNDQG0DF&DOOLQUHYLHZ
&XUUHQWO\ LQ &DOLIRUQLD UHVHDUFKHUV ¿VKHUPHQ DQG
stakeholders are engaged in collaborative efforts to
WHVWLPSOHPHQWDQGH[SDQGWKLVPHWKRG:LOVRQHWDO
WKLVYROXPH2WKHUFROODERUDWLYHHIIRUWVVXFKDV
WKH &DOLIRUQLD &ROODERUDWLYH )LVKHULHV 5HVHDUFK 3URJUDPDOVRJDWKHU¿VKHU\LQGHSHQGHQWGDWDWRPRQLWRU
populations and assess marine reserve performance
across a broad range of species across 250 coastal
PLOHV VHH :HQGW DQG 6WDUU WKLV YROXPH $V
&DOLIRUQLDFRQWLQXHVWRGHYHORSLWVVWDWHZLGHQHWZRUN
of marine reserves and other types of marine managed
DUHDVXQGHUWKH0DULQH/LIH3URWHFWLRQ$FWH[SDQVLRQ
RSSRUWXQLWLHVVHHPOLNHO\IRUGDWDFROOHFWLRQDQGDQDO\VLVHIIRUWVOLNHWKRVHRIWKH&DOLIRUQLD&ROODERUDWLYH
)LVKHULHV5HVHDUFK3URJUDP6XFKHIIRUWVDSSHDUZHOO
SRLVHGIRUIXWXUHLQWHJUDWLRQZLWKLQQRYDWLYHGDWDSRRU
methods, particularly methods that rely on marinereserve monitoring data to infer conditions about an
XQ¿VKHG SRSXODWLRQ VWDWH HJ WKH ³GHQVLW\UDWLR´
PHWKRGRUWKHGHFLVLRQWUHHE\:LOVRQHWDOWKLV
YROXPH
Decision-making Methods — Type 2
Management Strategy Evaluation
(Simulation Approach)
0DQDJHPHQW 6WUDWHJ\ (YDOXDWLRQ 06( LV D JHQHUDOPRGHOLQJIUDPHZRUNGHVLJQHGIRUWKHSUREDELOLVtic evaluation of the performance of alternative management strategies for pursuing different management
REMHFWLYHV7KLV DSSURDFK SURPRWHV D KLJK GHJUHH RI
ÀH[LELOLW\,WVLPXODWHVWKH¿VKHU\¶VUHVSRQVHWRGLIIHUent management strateJLHVHJGLIIHUHQW7$&OHYHOV
VHDVRQDOFORVXUHVRURWKHUHIIRUWUHGXFWLRQV$VVXPLQJVXI¿FLHQWDQGTXDOLW\GDWDH[LVW06(SURYHVXVHful for assessing the effectiveness of diverse policy
RSWLRQV*LYHQDVLQJOHVHWRIREMHFWLYHIXQFWLRQVDQG
modeling assumptions, the method informs the choice
RIWKHRSWLPDOPDQDJHPHQWGHFLVLRQ
06(RIIHUVDVWUDWHJLFDSSURDFKWRRUJDQL]HLQIRUPDWLRQZLWKLQRQHPRGHORIWHQPDGHZLWKOLQNHGVXE
models to collectively and systematically evaluate the
V\VWHPDVRQHZKROH8VLQJDQ\YDULHW\RISUHGH¿QHG
PHWULFV DQG JRDOV PDQDJHUV FDQ H[SORUH YDULRXV
PDQDJHPHQW RSWLRQV DQG H[SHFWHG RXWFRPHV ZLWK
06( ² ZKHWKHU ELRORJLFDO HFRQRPLF DQGRU VRFLDO
RXWFRPHV RI LQWHUHVW ,W XVHV DQG LQWHJUDWHV QXPHU175
'$7$32250(7+2'6)25),6+(5<0$1$*(56
MPA-Based Decision Tree — Case-Study Example
Nearshore stick fishery in Southern California (USA)
The California stick fishery is a part of California’s
nearshore finfish fishery (further discussed below, see box
with the MSE case-study example). The stick fishery in
Southern California targets cabezon (Scorpaenichthys
marmoratus) and grass rockfish (Sebastes rastrelliger),
using selective “stick” gear that minimizes bycatch of
nontarget species. In the Santa Barbara Channel Islands
region, local fishermen and researchers are collaborating to
collect spatially explicit data, inside and outside of marine
reserves (Wilson et al. 2010, this volume). Currently, they
are evaluating the management potential for establishing an
experimental program for the Santa Barbara Channel
Islands, based on a framework using an innovative marine
reserve-based decision tree (Wilson et al. 2010, this
volume).
This decision tree uses a data-driven model that is spatially
scale-less and based on length-age catch data, inside and
outside of the reserves (Wilson et al. 2010, this volume).
The reserve-based decision tree is integrated within a MSE
simulation, so it responds dynamically to simulated
changes in environmental conditions. For the basic decision
tree, data inputs are life-history parameters: species growth
rates, size/age at maturity, fecundity at age, and selectivity
to fishing. Conditions inside the reserves serve as a proxy
for virgin conditions and are used to estimate unfished
biomass. This decision tree uses similar size-based criteria
and spawning biomass targets, as described above (see
previous scorecard with the decision-tree case-study
example, highlighting Prince 2010, this volume). Time
series of individual length data are compared with current
catch and effort data. Using these relationships, the
decision-tree makes recommended harvest adjustments,
either up or down, to maintain the spawning biomass and
stock at specified levels (Wilson et al. 2010, this volume).
(for this MPA-based decision tree)
Minimum Data Needs:
Life-history data.
CPUE time series.
Length-age data, inside/outside MPAs, to estimate:
o Size-frequency distribution of virgin conditions (i.e., unfished
state). If estimated from MPAs, this often requires 5 to 10 years
(minimum) of data without fishing, although it varies widely by
species and species-specific life histories. In the absence of notake MPAs, models can estimate virgin conditions.
o Size-frequency distribution for the fished population.
Environmental time series.
Optimal Data Needs:
The longer the time series for inside/outside reserves, the better, because
it improves virgin estimates.
Detailed knowledge of life-history parameters (ideally, informed with
fishery-independent sources) to increase accuracy and confidence in
model estimates.
Scientific knowledge of critical size classes with detailed length-age data
(e.g., length at maturity, mega-spawning size).
Known size-frequency distribution of unfished state.
Cautions and Caveats:
Assumes reserve conditions as an appropriate proxy for the unfished
state.
Requires enforcement of reserves.
Interpretation of CPUE can be difficult, if standardized methods are not
used inside/outside reserves.
Depletion of megaspawners from fishing can falsely suggest the fishery
is catching “optimum” (medium) individuals.
May not be appropriate for stocks with low steepness** because of the
lack of contrast between “mature” (small) and “optimum” (medium)
individuals.
Simple assessment frameworks, like this (based on maintaining
conservative levels of spawning biomass, SPR*) are helpful, but do not
directly inform harvest control rules.
The accuracy and statistical power of decision-tree outputs depends
strongly on the quality of data inputs and underlying model assumptions.
Outputs from combined methods, such as a decision tree and MSE (as
used here), are powerful but fairly data intensive. This decision-treeMSE approach is suited for “data-medium” and “data-rich” fisheries. It
is not recommended for “data-poor” stocks on the low end of the datarichness spectrum.
*
SPR is the number of eggs that could be produced by an average recruit in a fished stock, divided by the number of eggs that could be
produced by an average recruit in an unfished stock.
**
Steepness is conventionally defined as the proportion of unfished recruitment produced by 20% of unfished spawning biomass.
References for MPA-based decision tree:
(Prince 2010, this volume; Wilson et al. 2010, this volume).
ous data inputs, ranging from biological to socioecoQRPLFFULWHULDDORQJWKHHQWLUHGDWDULFKQHVVVSHFWUXP
'HSHQGLQJ RQ PRGHO GHVLJQ LW FDQ VLPXODWH YDULRXV
V\VWHPDWWULEXWHVLQFOXGLQJVWRFNVWDWXVÀHHWG\QDPLFV DQGRU VRFLRHFRQRPLF XWLOLW\ )RU H[DPSOH LQ D
minimal case, the model may only simulate stock staWXVRUVRFLRHFRQRPLFXWLOLW\06(PRGHOHUVKRZHYHU
can also incorporate other data types like environmental factors and indices to increase model realism and
IXUWKHUWHVWSROLF\DOWHUQDWLYHVZLWKDGGHGFRQWH[W7KLV
amalgamation of diverse datasets under a single modHOLQJ IUDPHZRUN SURYLGHV YDOXDEOH XQGHUVWDQGLQJ RI
YDULRXVWUDGHRIIVDQGLQGLUHFWHIIHFWVWKDWH[LVWZLWKLQ
PDQDJHPHQWREMHFWLYHV$UDQGDDQG0RWRV
%HFDXVH RI WKH EUHDGWK RI WKH 06( PHWKRG LWV
YDOXH FDQ RQO\ EH UHDOL]HG LI PDQDJHPHQW REMHFWLYHV
DUH FOHDU DQG SHUIRUPDQFH PHWULFV DUH ZHOO GH¿QHG
3XQW HW DO 7KLV LV FULWLFDO WR WKH V\VWHPDWLF HYDOXDWLRQ DQG UHODWLYH ZHLJKWLQJ RI DOWHUQDWLYH
VFHQDULRV DQG K\SRWKHVHV 3XQW HW DO 7KH
DVVHVVPHQW RI WKH ¿VKHU\¶V SHUIRUPDQFH LQ DFKLHYing predetermined target goals is measured through
PHWULFVPRVWDSSURSULDWHIRUWKHHVWDEOLVKHGJRDOIRU
H[DPSOHVWRFNVWDWXVIRUELRORJLFDOFULWHULDRULQGXVWU\
YDOXHIRUVRFLRHFRQRPLFFULWHULD&OHDUO\GH¿QHGJRDOV
DQGWKHLUPHWULFVDOORZIRUWKHXVHRI06(WRWHVWWKH
robustness of the management system to uncertainty
$UDQGDDQG0RWRV
7KHDSSOLFDWLRQRI06(VSDQVWKHVSHFWUXPRIGDWD
SRRUWRGDWDULFK¿VKHULHVEXWLWLVHIIRUWDQGUHVRXUFH
LQWHQVLYH 7KH FRPSOH[LW\ RI 06( FDQ EH OLPLWLQJ
VLQFH VLPXODWLRQIRFXV UHTXLUHV VSHFLDOL]HG H[SHUWLVH
176
+21(<(7$/
LQPRGHOLQJ$UDQGDDQG0RWRV06(V\QWKHVLVLVSDUWLFXODUO\FKDOOHQJLQJ\HWIUXLWIXOIRUFRPSOH[
¿VKHULHVOLNHPXOWLVSHFLHV¿VKHULHVRUWKRVHZLWKKHWHURJHQHRXVVRFLRHFRQRPLFREMHFWLYHVVHHFDVHVWXG\
H[DPSOHER[1RQHWKHOHVV%XWWHUZRUWKHWDO
WKLVYROXPHVXFFHVVIXOO\DSSOLHGWKHPHWKRGLQDGDWD
SRRU VLWXDWLRQ ZLWK RQO\ D WLPH VHULHV RI PHDQFDWFK
OHQJWK2XWSXWVLPSURYHZLWKJUHDWHUGDWDTXDQWLW\DQG
TXDOLW\LHGDWDULFKQHVV\HW06(VWLOOKDVSRWHQWLDO
XVHDVDPHWKRGIRUGDWDSRRU¿VKHULHV%XWWHUZRUWKHW
DOWKLVYROXPH
Example technique: MSE Monte Carlo simulation²
4XDQWLWDWLYH ¿VKHU\ VFLHQWLVWV KDYH ORQJ XVHG 06(
DSSURDFKHVRIWHQLQFRUSRUDWLQJ0RQWH&DUORVLPXODWLRQ6RXWKZDUG+LOERUQ3XQWHWDO
0RQWH &DUOR PHWKRGV DUH FRPSXWDWLRQDO DOJRULWKPV
using repeated random sampling to simulate probaELOLVWLF RXWFRPHV ZKLFK FDQ EH XVHG WR HYDOXDWH WKH
VWRFN¶VDVZHOODVWKHV\VWHP¶VUHVSRQVHVWRPDQDJHPHQW DFWLRQV ,Q SUDFWLFH PDQDJHUV KDYH XVHG 06(
IRU RYHU D GHFDGH LQ $XVWUDOLD¶V ¿VKHULHV JXLGLQJ
TXRWDPDQDJHPHQWGHFLVLRQVLQDPXOWLVSHFLHV¿VKHU\
ZLWKDPXOWLVHFWRUWUDZOÀHHW3XQWHWDO0RUH
UHFHQWO\%XWWHUZRUWKHWDOWKLVYROXPHDSSO\
06(WRGHYHORSPDQDJHPHQWGHFLVLRQUXOHVZLWKOLPLWHGHPSLULFDOLQIRUPDWLRQIRUWKH3DWDJRQLDQWRRWK¿VK
¿VKHU\LQWKHVXE$QWDUFWLF06(DOVRVHHPVDSSURSULDWHIRU&DOLIRUQLD¶VQHDUVKRUH¿Q¿VK¿VKHU\VHH&DVH
6WXG\([DPSOHS
06( LV RI SDUWLFXODU XVH IRU V\VWHPV WKDW DUH GDWD
medium or data rich and of high value or political
LQWHUHVW\HWWKH¿VKHU\G\QDPLFVDUHWRRFRPSOH[DQG
FKDOOHQJLQJIRUPDQDJHUVWRHYDOXDWHZLWKEDFNRIWKH
HQYHORSH WHFKQLTXHV )RU H[DPSOH FRQVLGHU D PXOWL
VSHFLHV¿VKHU\6RPHVWRFNVUHJDUGOHVVRIVFDOHIDOO
ORZHUWKDQRWKHUVRQWKHGDWDULFKQHVVVSHFWUXPEHFDXVH
QRWDOOVSHFLHVDUHDQHTXDOIRFXVRI¿VKHU\GHSHQGHQW
DQG LQGHSHQGHQW VWXGLHV &')* (YHQ IRU WKH
PRVWGDWDSRRUVWRFNVKRZHYHUVRPH¿VKHU\GHSHQGHQW DQG LQGHSHQGHQW ELRORJLFDO GDWD OLNHO\ H[LVW ,Q
addition, socioeconomic data from industry, research,
DQGPRQLWRULQJHIIRUWVOLNHO\H[LVWVIRUDVVRFLDWHGSRUWV
&')*(YDOXDWHGLQGHSHQGHQWO\
this available information may not appropriately or
VXI¿FLHQWO\ DGGUHVV PDQDJHPHQW JRDOV 2IWHQ IRU
XQDVVHVVHG VSHFLHV H[LVWLQJ GDWD DUH OLPLWHG E\ WKH
VPDOOVFDOHVKRUWWHUPVFRSHRIVFLHQWL¿FHIIRUWV'DWD
PD\ QRW HDVLO\ VFDOH XS RU WUDQVODWH LQWR FRDVWZLGH
XQGHUVWDQGLQJ RI D VWRFN ZKLFK LV PRVW UHOHYDQW IRU
IHGHUDORUVWDWHPDQDJHPHQW%\LQWHJUDWLQJDOOWKHVH
various types of data considerations — across species
DQGDFURVVVFDOHV²ZLWKLQRQHFRKHUHQWIUDPHZRUN
06( PHWKRGV KDYH WKH SRWHQWLDO WR DVVLPLODWH DQG
evaluate multiple considerations to inform and guide
PDQDJHPHQWGHFLVLRQV2QHFULWLFDOFKDOOHQJHIRUVXFK
06(DSSOLFDWLRQKRZHYHULQYROYHVXQUHVROYHGVWRFN
VWUXFWXUH DW WKH ORFDO RU UHJLRQDO VFDOH ZKLFK SRWHQWLDOO\LPSDFWVGDWDTXDOLW\DQGWHFKQLTXHVIRUTXDQWLWDWLYHVWRFNDVVHVVPHQWDWWKHODUJHUFRDVWZLGHVFDOH
:HQGWDQG6WDUUWKLVYROXPH
Discussion
0DQ\¿VKHULHVFDQEHWKRXJKWRIDVGDWDSRRUDQG
many remain under-managed or not managed at all
GXHWRODFNRIGDWDDVVHVVPHQWDQGDQDO\VLV&RQYHQWLRQDOVWRFNDVVHVVPHQWVUHTXLUHODUJHDPRXQWVRIGDWD
DQGDUHFRQGXFWHGDWODUJHVFDOHV1HZPHWKRGVDUH
UHTXLUHGWRPRUHVLPSO\DQGTXLFNO\DVVHVVVWRFNVWDtus and develop management reference points, given
GDWDDQGUHVRXUFHOLPLWDWLRQV7KLVLVHVSHFLDOO\DSSDUHQW DW VPDOOHU VFDOHV LQ GDWDSRRU ¿VKHULHV )XMLWD HW
DO
In the United States and globally, impending deadOLQHVH[LVWWRHQGRYHU¿VKLQJ)RUH[DPSOHXQGHUWKH
UHDXWKRUL]HG 86 0DJQXVRQ6WHYHQV $FW RI 1DWLRQDO 6WDQGDUG 16 JXLGHOLQHV DQG UHJXODWRU\
UHYLVLRQVHVWDEOLVK$QQXDO&DWFK/LPLWVDQGEULQJQHZ
priority and attention to data-poor methods and manDJHPHQW)HGHUDO)LVKHU\0DQDJHPHQW3ODQV)03V
cover nearly all managed species in the United States,
DWOHDVWDVSDUWRID)03VSHFLHVFRPSOH[6WLOOKRZHYHU PDQ\ ODQGHG VSHFLHV UHPDLQ XQDVVHVVHG 7KH
pertinence of improved data-poor assessment and
PDQDJHPHQWWR¿VKHULHVLVFOHDU
$VPDQDJHUVPRYHIRUZDUGWRDFKLHYH16PDQGDWHVDQGHQGRYHU¿VKLQJWKH\FDQFRPELQHWKHPHWKRGVSUHVHQWHGLQWKLVUHYLHZZLWKDYDLODEOHLQIRUPDWLRQ
and resources to improve assessment and outcomes for
GDWDSRRU VWRFNV 'DWDSRRU PHWKRGV DUH OLNHO\ WR EH
PRVWLQIRUPDWLYHZKHQXVHGLQFRPSOHPHQWZLWKHDFK
RWKHUDVZHOODVZLWKRQJRLQJGDWDDQDO\VLVDQGUH
HYDOXDWLRQ7KHUREXVWQHVVRIUHVXOWVIURPLQGLYLGXDO
PHWKRGV LQFUHDVHV ZKHQ LQIRUPDWLRQ LV HYDOXDWHG E\
GLIIHUHQW PHDQV DQG VXEVHTXHQW UHVXOWV FRUURERUDWH
HDFKDQRWKHU7KLVLVHVSHFLDOO\WUXHLIHDFKRIWKHGDWD
SRRUPHWKRGVGUDZVRQGLIIHUHQWLQIRUPDWLRQVRXUFHV
LQGHSHQGHQWRUTXDVLLQGHSHQGHQWGDWDVRXUFHV
/RRNLQJWRWKHIXWXUHZHDQWLFLSDWHWKHLQFUHDVHGXVH
RI ÀH[LEOH GHFLVLRQ WUHHV WR PDNH LQIRUPHG GHFLVLRQV
ZLWK OLPLWHG LQIRUPDWLRQ 3ULQFH WKLV YROXPH
:LOVRQ HW DO WKLV YROXPH 'HFLVLRQ WUHHV DUH
VLPSOHDGDSWDEOHDQGWUDQVSDUHQW7KH\VWHSWKHXVHU
WKURXJKDVHTXHQFHRIORJLFDOVWHSVEDVHGRQH[SOLFLW
DVVXPSWLRQV WR JHQHUDWH NQRZOHGJH DQGRU PDQDJHPHQWUHFRPPHQGDWLRQV7KH\FDQEHXVHGWRRUJDQL]H
DQGHYDOXDWH¿VKHULHVLQIRUPDWLRQWKDWRWKHUZLVHPLJKW
QRWEHXVHGE\PDQDJHUV$UJXDEO\PRVWLPSRUWDQWO\
GHFLVLRQ WUHHV DUH WUDFWDEOH7KH\ XVH GDWD UHVRXUFHV
DQG WHFKQLFDO FDSDFLW\ IUHTXHQWO\ DYDLODEOH WR ¿VKHU\
PDQDJHUV²HYHQWKRVHRIGDWDSRRU¿VKHULHV
06( LV D SRZHUIXO PHWKRG IRU WHVWLQJ GLIIHUHQW
H[SHFWHGRXWFRPHVDQGPDQDJHPHQWVWUDWHJLHV,WDOVR
177
'$7$32250(7+2'6)25),6+(5<0$1$*(56
Management Strategy Evaluation (MSE) — Case-Study Example
California’s nearshore finfish fishery (USA)
California’s nearshore finfish fishery is a multi-species
(for this example MSE application)
fishery with 19 nearshore species, collectively managed by
Minimum Data Needs:
a complex process with overlapping jurisdictions between
Life-history data.
federal and state regulatory agencies (Weber and Heneman
Catch time series.
2000). The Marine Life Management Act (MLMA) of
Length-age data for catch size distribution to estimate:
1999 is a precautionary law to manage state fisheries and
o Size-frequency distribution of virgin conditions (i.e., unfished state).
achieve multiple objectives, including: conservation,
o Size-frequency distribution for the fished population.
habitat protection, the prevention of overfishing and the
Defined goals and objective functions (with known constraints and metrics to
rebuilding of depressed stocks. Current regulatory efforts
evaluate success, whether defined by biological, social and/or economic goals).
use total allowable catch (TAC), limited entry, trip limits,
Clear rules about how these various goals and objective functions interact. This
gear restrictions, fish-size limits, seasonal closures and area
requires some understanding of regulatory options, societal preferences and/or
closures (e.g., no-take marine reserves). Most stocks,
regulatory priorities to define acceptable trade-offs and recognize unacceptable
however, are data-poor; only five species in this fishery are
outcomes.
formally assessed with a stock assessment (CDFG 2002;
Field et al. 2010, this volume). Regulatory consequences of
Optimal Data Needs:
data-poor status are large cuts in allowable catch (Kaufman
Detailed knowledge of life-history parameters (ideally, informed with fisheryet al. 2004). This approach to precautionary management
independent sources) to increase accuracy and confidence in model estimates
makes California’s nearshore finfish fishery of great
and stock productivity.
political interest.
Detailed socioeconomic knowledge, potentially with high-resolution, spatial
data.
For unassessed species, several data-poor methods are
The more data and longer the time series, the better, especially if dataavailable for use by California fishery managers (see Field
collection protocols remain consistent through time.
et al. 2010, this volume). With minimal information, data The higher the quality of input data, the better.
poor methods rely on general life-history understanding to
inform vulnerability assessments and extrapolation
Cautions and Caveats:
methods (see Life-History Vulnerability Analyses in the
The statistical power of MSE outputs depends strongly on the quality of data
Fishery-evaluation Methods section, above). On the other
inputs and underlying model assumptions.
side of the “data-richness” spectrum, a limited number of
Choice about objective function(s) and evaluation criteria drive outcomes.
nearshore species have full stock assessments. Given the
MSE outputs rely on multiple sub-model assumptions and assumptions about
uneven distribution of data and information constraints, a
sub-model integration, which potentially compounds modeling errors and
MSE provides a method to organize and synthesize the
uncertainty.
multi-species and patchy data-rich information.
Assumptions about how to link MSE sub-models with one another are
critically important, but potentially hidden from view. Be wary of “black box”
Recently, such a MSE effort was initiated for nearshore
outputs.
fisheries management in Port Orford, Oregon (see Bloeser
MSE is powerful but data intensive. It requires careful design and appropriate
et al. 2010, this volume). In the future, outputs will likely
development to individually match the MSE with stock characteristics, fishery
help to define priorities and guide management decisions.
context and management goals.
MSE is suited for “data-medium” and “data-rich” fisheries, yet often limited by
the method’s need for large time investment and highly skilled technical work.
It is not recommended for “data-poor” stocks on the low end of the datarichness spectrum.
References for MSE:
(Sainsbury et al. 2000; Gunderson et al. 2008; Bentley and Stokes 2009, this volume; Butterworth et al. 2010, this volume; Dewees 2010, this
volume; Dichmont and Brown 2010, this volume; Smith et al. 2009, this volume).
KROGV SURPLVH IRU WKH TXDQWLWDWLYH WHVWLQJ DQG HYDOXDWLRQ RI H[SHFWHG SHUIRUPDQFH E\ YDULRXV GDWDSRRU
PHWKRGVTXDOLWDWLYHO\UHYLHZHGKHUH06(DSSOLFDWLRQWRGDWDSRRU¿VKHULHVLVPRVWDSSURSULDWHIRUWKH
high end of the data-richness spectrum, particularly
ZKHUH PXOWLSOH VRXUFHV RI KLJK TXDOLW\ LQIRUPDWLRQ
H[LVW EXW ODFN LQWHJUDWLRQ DQG KROLVWLF HYDOXDWLRQ ,W
UHTXLUHVVLJQL¿FDQWGDWDWLPHDQGVSHFLDOL]HGPRGHOLQJH[SHUWLVHRIWHQXQDYDLODEOHIRUGDWDSRRU¿VKHULHV
7KHUHIRUH IRU PDQ\ GDWDSRRU PDQDJHUV ZLWK VFDUFH
UHVRXUFHV VLPXODWLRQPRGHOLQJ WHFKQLTXHV OLNH 06(
ZLOOEHLQWUDFWDEOH
:KHQFRQVLGHULQJDQ\RIWKHVHPHWKRGVSDUWLFXODUO\
06(IRUGDWDSRRU¿VKHULHVLWLVFULWLFDOWKDWPDQDJHUVUHPHPEHUWKDWWKHXVHRIVSDUVHDQGRULQDFFXUDWH
LQIRUPDWLRQDVLQSXWVIRUGDWDGHPDQGLQJPHWKRGVZLOO
PLVOHDG )RU GDWDSRRU ¿VKHULHV LI HPSOR\LQJ 06(
ZH VXJJHVW XVLQJ LW LQ WDQGHP ZLWK RWKHU PHWKRGV
and heuristic approaches like decision trees, to help
FKHFN DQG JURXQGWUXWK 06( RXWSXWV 7KLV FDQ KHOS
LGHQWLI\ DQG DYRLG ZLOGO\ HUURQHRXV H[SHFWDWLRQV IRU
GDWDSRRUVWRFNVLIDQGZKHQPDQDJHUVH[SORUHGDWD
SRRU¿VKHULHVZLWK06(VLPXODWLRQ7KHVLPXOWDQHRXV
XVHRIPXOWLSOHDOWHUQDWLYHGDWDSRRUPHWKRGVDOORZV
PDQDJHUV WR FRQWH[WXDOL]H PRGHO RXWSXWV DQG JDLQ
understanding about the robustness of these different
DSSURDFKHV7KLVFDQEHGRQHZLWKIRUPDODQDO\VLVRI
DOWHUQDWLYH PRGHOV DQG VHQVLWLYLW\ DQDO\VLV +LOERUQ
DQG0DQJHO:DOWHUVDQG0DUWHOO
It is important to note that risks and limitations are
JLYHQVZLWKWKHVHPHWKRGVGXHWRWKHLQKHUHQWVFLHQWL¿FXQFHUWDLQW\DQGGDWDFRQVWUDLQWVLQPDQDJLQJ¿VK
VWRFNV7KXVLWLVLPSRUWDQWIRU¿VKHU\PDQDJHUVWR
WKLQN DERXW KRZ WR EHVW SDLU WKH DYDLODEOH GDWD ZLWK
appropriate methods that can make the most use of the
GDWDJLYHQPDQDJHPHQWJRDOV7KLVFRXSOLQJRIGDWD
ZLWK RSWLPDO PHWKRGV UHTXLUHV VFLHQFHEDVHG UHFRPPHQGDWLRQV RQ DSSURSULDWH DVVHVVPHQW PHWKRGV ,Q
WKHDEVHQFHRIVFLHQWL¿FDGYLVHUVWKHSUHVHQWHGIUDPHZRUN VKRXOG KHOS GHFLVLRQ PDNHUV DQG VWDNHKROGHUV
RUJDQL]H VFLHQWL¿F LQIRUPDWLRQ DQG LGHQWLI\ DYDLODEOH
DOWHUQDWLYHV
178
+21(<(7$/
2YHUDOOWKHIUDPHZRUNZHSUHVHQWVKRXOGDLGDQ\RQH
LQWHUHVWHG LQ DVVHVVLQJ ORFDO VWRFNV DQGRU LPSURYLQJ
WKH VFLHQWL¿F EDVLV IRU ¿VKHULHV PDQDJHPHQW UHJDUGOHVV RI WKH DPRXQW RI GDWD DYDLODEOH %RWK PDQDJHUV
DQG VWDNHKROGHUV FDQ EHQH¿W IURP WKH DSSOLFDWLRQ RI
GDWDSRRUPHWKRGVDQGIURPWKHIUDPHZRUNZHSURYLGHKHUHWRSDLUPHWKRGVZLWK¿VKHU\JRDOVDQGDYDLODEOHGDWD:LWKEHWWHUNQRZOHGJHRIWKHPHWKRGVDQG
WKHLU UHVSHFWLYH GDWD UHTXLUHPHQWV VWDNHKROGHUV FDQ
actively drive research and better engage in managePHQW 5HFHQWO\ WKLV HQJDJHPHQW KDV H[SDQGHG ZLWK
JURZLQJFRRSHUDWLYHHIIRUWVVXFKDV¿VKHU\LQGHSHQdent data collection for marine-reserve monitoring for
VWRFN DVVHVVPHQWV 0DULQH 6WHZDUGVKLS &HUWL¿FDWLRQ
DQG)03GHYHORSPHQWHJ&DOLIRUQLD¶VDEDORQHOREVWHUDQGXUFKLQ¿VKHULHV8OWLPDWHO\VXFKHIIRUWVZLOO
KHOSWRRYHUFRPHWKHEDUULHUVRILQDGHTXDWHUHVRXUFHV
lack of sensitivity to scale, and lack of information
ÀRZEHWZHHQPDQDJHUVDQGVWDNHKROGHUV
Conclusion
2QJRLQJFROOHFWLRQRIKLJKTXDOLW\GDWDFRPELQHG
ZLWKDSSURSULDWHDQGFRPSUHKHQVLYHGDWDDQDO\VLVDUH
WKHLGHDOVROXWLRQVWRWKHGLOHPPDRIGDWDSRRU¿VKHULHVPDQDJHPHQW,QWKHDEVHQFHRIVXI¿FLHQWUHVRXUFHV
WR FROOHFW DQG DQDO\]H PRUH ¿VKHULHV GDWD KRZHYHU
UHVSRQVLEOH¿VKLQJSUDFWLFHVDQGPDQDJHPHQWDUHVWLOO
UHTXLUHG6XFKFKDOOHQJHVVHHPSDUWLFXODUO\FRPPRQ
DQG DFXWH LQ ORZYDOXH ¿VKHULHV PDQ\ RI ZKLFK DUH
DOVRVPDOOVFDOH¿VKHULHVZKLFKGRQRWJHQHUDWHVXI¿FLHQWUHYHQXHWRMXVWLI\ODUJHFRVWO\GDWDDFTXLVLWLRQ
SURJUDPV
'DWDSRRU DQG VPDOOVFDOH ¿VKHULHV QHHG QRW EH
LJQRUHG 1HZ PHWKRGV DUH DYDLODEOH IRU H[WUDFWLQJ
PRUH XVHIXO LQIRUPDWLRQ IURP VFDQW GDWD 'DWDSRRU
methods include trend analysis of indicators, vulneraELOLW\DQDO\VLVH[WUDSRODWLRQGHFLVLRQWUHHVDQG06(
PHWKRGVDVVXPPDUL]HGLQ7DEOHVDQGVHHSS
(DFKPDNHVYDOXDEOHFRQWULEXWLRQVWRRYHUFRPLQJ GLIIHUHQW ¿VKHU\ PDQDJHPHQW FKDOOHQJHV 7UHQG
DQDO\VLV DQG H[WUDSRODWLRQ PHWKRGV VXFK DV '&$&
VHH RXU SDJH DQG 0DF&DOO FDQ SURYLGH D
³¿UVWORRN´DWVWRFNVWDWXVIURPH[WUHPHO\OLPLWHGGDWD
)RU QHZ DQG HPHUJLQJ ¿VKHULHV YXOQHUDELOLW\ DQDO\VHVDQGH[WUDSRODWLRQFDQ\LHOGLQIRUPDWLRQXVHIXOIRU
SULRULWL]LQJ UHVHDUFK DQG PDQDJHPHQW HIIRUWV 'HFLVLRQWUHHVDQG06(IDFLOLWDWHWKHV\VWHPDWLFHYDOXDWLRQ
RI DYDLODEOH GDWD DQG PDQDJHPHQW RSWLRQV 1RQH DUH
PXWXDOO\H[FOXVLYHDVDOO¿YHRIWKHVHJHQHUDOFDWHJRries may be used together in synergistic and complePHQWDU\ZD\V
:HVHHRXUZRUNDVDVWHSWRZDUGRUJDQL]LQJH[LVWLQJLQIRUPDWLRQDQGUHVRXUFHVZLWKDWDUJHWDXGLHQFH
RI¿VKHU\PDQDJHUVDQGVWDNHKROGHUVWRLPSURYHPDQDJHPHQWFKRLFHVJLYHQOLPLWHGLQIRUPDWLRQ2QJRLQJ
FROODERUDWLYH SDUWQHUVKLSV FDQ H[WHQG WKLV HIIRUW E\
making information on data-poor alternatives more
accessible to a larger audience of stakeholders, includLQJ¿VKHUPHQWKHPVHOYHV
,JQRUDQFHLQ¿VKHULHVPDQDJHPHQWLVQRWEOLVVEXW
D ULVN 'DWDSRRU PHWKRGV FDQ UHGXFH RXU LJQRUDQFH
JLYHQZKDWZHNQRZQRZHYHQLIWKDWLVUHODWLYHO\OLWWOH
7KHLUDSSURSULDWHDSSOLFDWLRQUHGXFHVWKHULVNVRIRYHU¿VKLQJ¿VKHU\FROODSVHDQGORVWHFRQRPLF\LHOGV7KLV
improves prospects for biological sustainability and
HFRQRPLFYLDELOLW\LQDOO¿VKHULHV²ODUJHDQGVPDOO
GDWDSRRUDQGGDWDULFK
Acknowledgements
7KH DXWKRUV ZLVK WR WKDQN FROOHDJXHV DW (QYLURQPHQWDO 'HIHQVH )XQG (') HVSHFLDOO\ -DNH .ULW]HU
$VKOH\$SHODQG2FHDQV3URJUDPVWDIIIRUWKHLULPSRUWDQWFRQWULEXWLRQVWRWKLVZRUN5LFN6WDUURIWKH8QLYHUVLW\ RI &DOLIRUQLD 6HD *UDQW ([WHQVLRQ 3URJUDP
gave constructive comments on early versions of this
ZRUNDVGLG'HDQ:HQGWDQG'RQ0DUXVNDRI6DQ/XLV
2ELVSR6FLHQFHDQG(FRV\VWHP$OOLDQFHDQG$OHF0DF&DOORI12$$)LVKHULHV:HDOVRZLVKWRWKDQNWKHFR
RUJDQL]HUV 5LFN 6WDUU &DUULH &XOYHU &DUULH 3RPHUR\7RP%DUQHV'HEELH$VHOWLQH1LHOVHQDQG6HOHQD
0F0LOODQRIWKHZRUNVKRSRQ³0DQDJLQJ'DWD3RRU
)LVKHULHV &DVH 6WXGLHV 0RGHOV DQG 6ROXWLRQV´ WKDW
LQVSLUHGWKLVZRUN)LQDQFLDOVXSSRUWZDVSURYLGHGE\
WKH6WDQIRUG*UDGXDWH)HOORZVKLSLQ6FLHQFHDQG(QJLQHHULQJ6WDQIRUG8QLYHUVLW\(')WKH(')6WDQIRUG
/RNH\)HOORZVKLS5HVRXUFHV/HJDF\)RXQGDWLRQDQG
WKH+LJK0HDGRZV)HOORZVKLSRI3ULQFHWRQ8QLYHUVLW\
)LQDOO\ ZH WKDQN &DUO :DOWHUV (GLWRU -RDQQ )XUVH
6HD *UDQW 3XEOLVKLQJ &RRUGLQDWRU DQG WZR DQRQ\PRXVUHYLHZHUVZKRVHLPSRUWDQWDQGLQIRUPDWLYHVXJJHVWLRQVJUHDWO\LPSURYHGWKHTXDOLW\RIWKLVZRUN
References
$EXUWR2URSH]D2(6DOD*3DUHGHV$0HQGR]DDQG(
%DOOHVWHURV3UHGLFWDELOLW\RIUHHI¿VKUHFUXLWPHQW
LQDKLJKO\YDULDEOHQXUVHU\KDELWDW(FRORJ\
$ORQ]R6+DQG00DQJHO6H[FKDQJHUXOHVVWRFN
G\QDPLFVDQGWKHSHUIRUPDQFHRIVSDZQLQJSHUUHFUXLW
PHDVXUHV LQ SURWRJ\QRXV VWRFNV )LVKHU\ %XOOHWLQ
$UDQGD0DQG/0RWRV0DQDJHPHQWVWUDWHJ\HYDOXDWLRQ 06( DQG PDQDJHPHQW SURFHGXUH 03 LPSOHPHQWDWLRQV LQ SUDFWLFH$ UHYLHZ RI FRQVWUDLQWV UROHV
DQG VROXWLRQV 3DJHV LQ / 0RWRV DQG ' &
:LOVRQHGLWRUV7KHNQRZOHGJHEDVHIRU¿VKHULHVPDQDJHPHQW 'HYHORSPHQWV LQ $TXDFXOWXUH DQG )LVKHULHV
6FLHQFH9RO(OVHYLHUSS
%DEFRFN($DQG$'0DF&DOO&DQWKHUDWLRRI¿VKGHQsity outside versus inside no-take marine reserves be
XVHGDVDPHWULFIRU¿VKHU\PDQDJHPHQWFRQWUROUXOHV"
LQUHYLHZ
179
'$7$32250(7+2'6)25),6+(5<0$1$*(56
%DNXQ$3DWWHUQVLQWKHRFHDQ2FHDQSURFHVVHVDQG
PDULQHSRSXODWLRQG\QDPLFV&DOLIRUQLD6HD*UDQW&ROOHJH6\VWHP/D-ROOD&$
%DOODQW\QH ) DQG FRDXWKRUV &OLPDWH IRUFLQJ GHWHUPLQHV
WRWDO UHHI ¿VK ELRPDVV LQ WKH *XOI RI &DOLIRUQLD ,Q
SUHSDUDWLRQ
%HDPLVK5DQG'%RXLOORQ3DFL¿FVDOPRQSURGXFWLRQ WUHQGV LQ UHODWLRQ WR FOLPDWH &DQDGLDQ -RXUQDO RI
)LVKHULHVDQG$TXDWLF6FLHQFHV
%HQWOH\ 1 DQG . 6WRNHV &RQWUDVWLQJ SDUDGLJPV
IRU ¿VKHULHV PDQDJHPHQW GHFLVLRQ PDNLQJ +RZ ZHOO
GR WKH\ VHUYH GDWDSRRU ¿VKHULHV 0DULQH DQG &RDVWDO
)LVKHULHV'\QDPLFV0DQDJHPHQWDQG(FRV\VWHP6FLHQFH
%HUNHV)50DKRQ30F&RQQH\53ROOQDFDQG53RPHUR\ 0DQDJLQJ VPDOOVFDOH ¿VKHULHV$OWHUQDWLYH
GLUHFWLRQV DQG PHWKRGV ,QWHUQDWLRQDO 'HYHORSPHQW
5HVHDUFK&HQWUH2WWDZD&DQDGD
%HUNVRQ - . 0 +XQW - & :KLWHKHDG ' - 0XULH 7
- .ZDN DQG - %RUHPDQ ,V WKHUH D VKRUWDJH RI
¿VKHULHVVWRFNDVVHVVPHQWVFLHQWLVWV")LVKHULHV
%ORHVHU - / &REE DQG - *ROGHQ $ ZRUNVKRS LQ
DOWHUQDWLYH WRROV IRU QHDUVKRUH ¿VKHULHV PDQDJHPHQW
DQGDFDVHVWXG\RIWKH3RUW2UIRUG6WHZDUGVKLS$UHD
DQGSODQWRLPSOHPHQWFRPPXQLW\EDVHG¿VKHULHVPDQDJHPHQW 0DQDJLQJ GDWDSRRU ¿VKHULHV &DVH VWXGLHV
PRGHOVDQGVROXWLRQV
%RWVIRUG /: DQG ' 3 .LOGXII 7KH GDWDULFKQHVV
VSHFWUXP DQG VXVWDLQDELOLW\ RI &DOLIRUQLD ¿VKHULHV 5
6WDUUHGLWRU0DQDJLQJ'DWD3RRU)LVKHULHV&DVH6WXGLHV 0RGHOV DQG 6ROXWLRQV 8QLYHUVLW\ RI &DOLIRUQLD
%HUNHOH\ $YDLODEOH DW KWWSPGSIPOPOFDOVWDWHHGX
VLWHVGHIDXOWILOHV337V%RWVIRUGB'DWD3RRUB&$SSW
SGI
%XWWHUZRUWK'66--RKQVWRQDQG$%UDQGmR2Q
SUHWHVWLQJWKHOLNHO\HI¿FDF\RIVXJJHVWHGPDQDJHPHQW
DSSURDFKHVIRUGDWDSRRU¿VKHULHV0DQDJLQJGDWDSRRU
¿VKHULHV &DVH VWXGLHV PRGHOV DQG VROXWLRQV &')* &DOLIRUQLD 'HSDUWPHQW RI )LVK DQG *DPH 1HDUVKRUH ¿VKHU\ PDQDJHPHQW SODQ )03 &RGH 6HFWLRQ &DOLIRUQLD 'HSDUWPHQW RI )LVK DQG *DPH
6DFUDPHQWR&$
&')* &DOLIRUQLD 'HSDUWPHQW RI )LVK DQG *DPH 5HJLRQDOSUR¿OHRIWKHQRUWKFHQWUDOFRDVWVWXG\UHJLRQ
$OGHU &UHHN3RLQW $UHQD WR 3LJHRQ 3RLQW &DOLIRUQLD
'HSDUWPHQW RI )LVK DQG *DPH $YDLODEOH DW KWWS
ZZZGIJFDJRYPOSDQFFSUR¿OHDVS$SULO
&')* &DOLIRUQLD 'HSDUWPHQW RI )LVK DQG *DPH 'UDIW UHJLRQDO SUR¿OH RI WKH 0/3$ VRXWK FRDVW VWXG\
UHJLRQ3RLQW&RQFHSWLRQWRWKH&DOLIRUQLD0H[LFRERUGHU'HSDUWPHQWRI)LVKDQG*DPH$YDLODEOHDWKWWS
ZZZGIJFDJRY0/3$VFSUR¿OHDVS$SULO
&LQQHU-0-0DUQDQHDQG70F&ODQDKDQD3HULodic closures as adaptive coral reef management in the
,QGR3DFL¿F(FRORJ\DQG6RFLHW\
&LQQHU-0-0DUQDQHDQG70F&ODQDKDQE&RQVHUYDWLRQDQGFRPPXQLW\EHQH¿WVIURPWUDGLWLRQDOFRUDO
UHHI PDQDJHPHQW DW$KXV ,VODQG 3DSXD 1HZ *XLQHD
&RQVHUYDWLRQ%LRORJ\
&ODUN : * *URXQG¿VK H[SORLWDWLRQ UDWHV EDVHG RQ
OLIH KLVWRU\ SDUDPHWHUV &DQDGLDQ -RXUQDO RI )LVKHULHV
DQG$TXDWLF6FLHQFHV
&ODUN: * 7KH HIIHFW RI UHFUXLWPHQW YDULDELOLW\ RQ
WKH FKRLFH RI D WDUJHW OHYHO RI VSDZQLQJ ELRPDVV SHU
UHFUXLW3DJHV±LQ*.UXVH5-0DUDVFR&
3DXW]NH DQG 7 - 4XLQQ HGLWRUV 3URFHHGLQJV RI WKH
,QWHUQDWLRQDO 6\PSRVLXP RQ 0DQDJHPHQW 6WUDWHJLHV
IRU([SORLWHG)LVK3RSXODWLRQV$ODVND6HD*UDQW&ROOHJH)DLUEDQNV$.
&ODUN: * (IIHFWV RI DQ HUURQHRXV QDWXUDO PRUWDOLW\ UDWH RQ D VLPSOH DJHVWUXFWXUHG VWRFN DVVHVVPHQW
&DQDGLDQ -RXUQDO RI )LVKHULHV DQG $TXDWLF 6FLHQFHV
&RSH-([SORULQJLQWUDVSHFL¿FOLIHKLVWRU\SDWWHUQVLQ
VKDUNV)LVKHU\%XOOHWLQ
&RSH - 0 DQG$ ( 3XQW /HQJWKEDVHG UHIHUHQFH
points for data-limited situations: Applications and
UHVWULFWLRQV 0DULQH DQG &RDVWDO )LVKHULHV '\QDPLFV
0DQDJHPHQWDQG(FRV\VWHP6FLHQFH
'$)) 'HSDUWPHQW RI$JULFXOWXUH )LVKHULHV DQG )RUHVWU\
&RPPRQZHDOWK¿VKHULHVKDUYHVWVWUDWHJ\SROLF\
JXLGHOLQHV 'HSDUWPHQW RI $JULFXOWXUH )LVKHULHV DQG
)RUHVWU\,6%1&DQEHUUD$XVWUDOLD
'HZHHV&00RUHWKDQRQHZD\WRVNLQD¿VK,GHQWLI\LQJDSSURDFKHVWRPDQDJLQJ&DOLIRUQLD¶VGDWDSRRU
PDULQH ¿VKHULHV 0DQDJLQJ GDWDSRRU ¿VKHULHV &DVH
VWXGLHVPRGHOVDQGVROXWLRQV
'LFKPRQW&0DQG,:%URZQ$FDVHVWXG\LQVXFFHVVIXOPDQDJHPHQWRIDGDWDSRRU¿VKHU\XVLQJVLPSOH
GHFLVLRQ UXOHV 7KH 4XHHQVODQG VSDQQHU FUDE ¿VKHU\
0DULQHDQG&RDVWDO)LVKHULHV'\QDPLFV0DQDJHPHQW
DQG(FRV\VWHP6FLHQFH
'RUQ 0 : $GYLFH RQ ZHVW FRDVW URFN¿VK KDUYHVW
rates from Bayesian meta-analysis of stock-recruit relaWLRQVKLSV 1RUWK $PHULFDQ -RXUQDO RI )LVKHULHV 0DQDJHPHQW
(QJOXQG * 2 6DUQHOOH DQG 6 &RRSHU 7KH LPSRUWDQFHRIGDWDVHOHFWLRQFULWHULD0HWDDQDO\VHVRIVWUHDP
SUHGDWLRQH[SHULPHQWV(FRORJ\
)LHOG--&RSHDQG0.H\$GHVFULSWLYHH[DPSOHRI
applying vulnerability evaluation criteria to California
QHDUVKRUHVSHFLHV0DQDJLQJGDWDSRRU¿VKHULHV&DVH
VWXGLHVPRGHOVDQGVROXWLRQV
)UDQFLV 5 & DQG 6 5 +DUH 'HFDGDOVFDOH UHJLPH
shifts in the large marine ecosystems of the north-east
3DFL¿F$FDVHIRUKLVWRULFDOVFLHQFH)LVKHULHV2FHDQRJUDSK\
)URHVH5.HHSLWVLPSOH7KUHHLQGLFDWRUVWRGHDOZLWK
RYHU¿VKLQJ)LVKDQG)LVKHULHV
)XMLWD50.7+RQH\$0RUULV+5XVVHOODQG-:LOVRQ&RRSHUDWLYHVWUDWHJLHVLQ¿VKHULHVPDQDJHPHQW7UDQVJUHVVLQJWKHP\WKDQGGHOXVLRQRIDSSURSULDWHVFDOH%XOOHWLQRI0DULQH6FLHQFH
*RQ]DOH]/D[H)7KHSUHFDXWLRQDU\SULQFLSOHLQ¿VKHULHVPDQDJHPHQW0DULQH3ROLF\
*RRGPDQ'DQGFRDXWKRUV6FLHQWL¿FUHYLHZRIWKH
KDUYHVW VWUDWHJ\ FXUUHQWO\ XVHG LQ WKH %6$, DQG *2$
JURXQG¿VK PDQDJHPHQW SODQV 1RUWK 3DFL¿F )LVKHU\
0DQDJHPHQW&RXQFLO$QFKRUDJH$.
*UDQGFRXUW(07+HFKW$-%RRWKDQG6-5RELQVRQ
5HWURVSHFWLYH VWRFN DVVHVVPHQW RI WKH (PSHURU
UHG VQDSSHU Lutjanus sebae RQ WKH 6H\FKHOOHV %DQN
EHWZHHQDQG,&(6-RXUQDORI0DULQH6FLHQFH
*XQGHUVRQ'DQGFRDXWKRUV7KHFKDOOHQJHRIPDQDJLQJURFN\UHHIUHVRXUFHV)LVKHULHV
180
+21(<(7$/
*XUHYLWFK-DQG/+HGJHV6WDWLVWLFDOLVVXHVLQHFRORJLFDOPHWDDQDO\VHV(FRORJ\
+HGJHV/-*XUHYLWFKDQG3&XUWLV7KHPHWDDQDO\VLVRIUHVSRQVHUDWLRVLQH[SHULPHQWDOHFRORJ\(FRORJ\
+HOVHU 7 ( DQG +/ /DL $ %D\HVLDQ KLHUDUFKLFDO
PHWDDQDO\VLVRI¿VKJURZWK:LWKDQH[DPSOHIRU1RUWK
American largemouth bass, Micropterus salmoides.
(FRORJLFDO0RGHOOLQJ
+HOVHU 7 ( , - 6WHZDUW DQG +/ /DL $ %D\HVLDQKLHUDUFKLFDOPHWDDQDO\VLVRIJURZWKIRUWKHJHQXV
6HEDVWHVLQWKHHDVWHUQ3DFL¿F2FHDQ&DQDGLDQ-RXUQDO
RI)LVKHULHVDQG$TXDWLF6FLHQFH
+LOERUQ 5 &RPSDULVRQ RI ¿VKHULHV FRQWURO V\VWHPV
WKDW XWLOL]H FDWFK DQG HIIRUW GDWD -RXUQDO RI )LVKHULHV
5HVHDUFK%RDUGRI&DQDGD
+LOERUQ 5 7KH VWDWH RI WKH DUW LQ VWRFN DVVHVVPHQW
:KHUHZHDUHDQGZKHUHZHDUHJRLQJ6FLHQWLD0DULQD
+LOERUQ5)LVKHULHVVXFFHVVDQGIDLOXUH7KHFDVHRI
WKH%ULVWRO%D\VDOPRQ¿VKHU\%XOOHWLQRI0DULQH6FLHQFH
+LOERUQ5DQG00DQJHO7KHHFRORJLFDOGHWHFWLYH
&RQIURQWLQJ PRGHOV ZLWK GDWD 3ULQFHWRQ 8QLYHUVLW\
3UHVV3ULQFHWRQ1-
+LOERUQ 5 DQG & - :DOWHUV 4XDQWLWDWLYH )LVKHULHV
6WRFN$VVHVVPHQW&KRLFH'\QDPLFVDQG8QFHUWDLQW\
&KDSPDQ+DOO1<
+RJJDUWK''DQGFRDXWKRUV6WRFNDVVHVVPHQWIRU
¿VKHU\ PDQDJHPHQW$ IUDPHZRUN JXLGH WR WKH VWRFN
DVVHVVPHQWWRROVRIWKH)LVKHULHV0DQDJHPHQW6FLHQFH
3URJUDPPH)LVKDQG$JULFXOWXUH2UJDQL]DWLRQ5RPH
,&(65HSRUWRQWKH6WXG\*URXSRQ5LVN$VVHVVPHQW
DQG 0DQDJHPHQW $GYLFH 6*5$0$ )HEUXDU\
&DSH7RZQ6RXWK$IULFD
-RKDQQHV5(7KHFDVHIRUGDWDOHVVPDULQHUHVRXUFH
PDQDJHPHQW([DPSOHVIURPWURSLFDOQHDUVKRUH¿Q¿VKHULHV7UHQGVLQ(FRORJ\DQG(YROXWLRQ
.DXIPDQ / / +HQHPDQ - %DUQHV DQG 5 )XMLWD 7UDQVLWLRQIURPORZWRKLJKGDWDULFKQHVVLQWKHPDQDJHPHQWRI¿VKHU\LPSDFWV$SURYRFDWLYHH[SHULPHQW
IURP &DOLIRUQLD %XOOHWLQ RI 0DULQH 6FLHQFH .HOO\&-DQG($&RGOLQJ³&KHDSDQGGLUW\´¿VKHULHV VFLHQFH DQG PDQDJHPHQW LQ WKH 1RUWK $WODQWLF
)LVKHULHV5HVHDUFK
/LHUPDQQ 0 DQG 5 +LOERUQ 'HSHQVDWLRQ LQ ¿VK
VWRFNV$KLHUDUFKLF%D\HVLDQPHWDDQDO\VLV&DQDGLDQ
-RXUQDO RI )LVKHULHV DQG $TXDWLF 6FLHQFH 0DF&DOO $ ' 'HSOHWLRQFRUUHFWHG DYHUDJH FDWFK
A simple formula for estimating sustainable yields
LQ GDWDSRRU VLWXDWLRQV ,&(6 -RXUQDO RI 0DULQH 6FLHQFH $YDLODEOH IURP 10)6 )LVKHULHV
7RROER[ 'HSOHWLRQFRUUHFWHG DYHUDJH FDWFK '&$&
12$$10)6 KWWSQIWQHIVFQRDDJRY -DQXDU\
0DFH30DQG06LVVHQZLQH+RZPXFKVSDZQLQJ
SHUUHFUXLWLVQHFHVVDU\"3DJHV±LQ66PLWK-
+XQWDQG'5LYDUGHGLWRUV5LVNHYDOXDWLRQDQGELRORJLFDOUHIHUHQFHSRLQWVIRU¿VKHULHVPDQDJHPHQWYROXPH&DQDGLDQ6SHFLDO3XEOLFDWLRQRI)LVKHULHVDQG
$TXDWLF6FLHQFHV
0DQO\ % ) - 6WDWLVWLFV IRU (QYLURQPHQWDO 6FLHQFH
DQG0DQDJHPHQW&KDSPDQ+DOO&5&/RQGRQ
0DQO\%)-DQG'0DF.HQ]LH$FXPXODWLYHVXP
W\SHRIPHWKRGIRUHQYLURQPHQWDOPRQLWRULQJ(QYLURQPHWULFV
0DXQGHU01$GHSOHWLRQHVWLPDWRUIRUZLWKLQVHDVRQPDQDJHPHQWRI\HOORZ¿QWXQD0DQDJLQJGDWDSRRU
¿VKHULHV &DVH VWXGLHV PRGHOV DQG VROXWLRQV 0F$OOLVWHU0.'-$JQHZ*3.LUNZRRG-5%HGGLQJWRQ DQG 6 / +LOO $ %D\HVLDQ KLHUDUFKLFDO
IRUPXODWLRQRIWKH'H/XU\VWRFNDVVHVVPHQWPRGHOIRU
DEXQGDQFHHVWLPDWLRQRI)DONODQG,VODQGV¶VTXLGLoligo
gahi &DQDGLDQ -RXUQDO RI )LVKHULHV DQG$TXDWLF 6FLHQFHV
0LOOHU7 5 0XOOHU % 2¶%R\OH DQG$ 5RVHQEHUJ 5HSRUWE\WKHSHHUUHYLHZSDQHOIRUWKH1RUWKHDVWGDWD
SRRU VWRFNV ZRUNLQJ JURXS :RUNLQJ *URXS 5HSRUW
1RUWKHDVW)LVKHULHV6FLHQFH&HQWHUDQG12$$10)6
:RRGV+ROH0$
0XVLFN - $ D &ULWHULD WR GH¿QH H[WLQFWLRQ ULVN LQ
PDULQH¿VKHV)LVKHULHV
0XVLFN-$E(FRORJ\DQGFRQVHUYDWLRQRIORQJOLYHG
PDULQHDQLPDOV3DJHV±LQ-$0XVLFNHGLWRU/LIH
LQWKHVORZODQH(FRORJ\DQGFRQVHUYDWLRQRIORQJOLYH
PDULQHDQLPDOVYROXPH$PHULFDQ)LVKHULHV6RFLHW\
6\PSRVLXP%HWKHVGD0'
0XVLFN -$ DQG FRDXWKRUV 0DULQH HVWXDULQH DQG
GLDGURPRXV ¿VK VWRFNV DW ULVN RI H[WLQFWLRQ LQ 1RUWK
$PHULFD H[FOXVLYH RI 3DFL¿F VDOPRQLGV )LVKHULHV
0\HUV 5$ :KHQ GR HQYLURQPHQWUHFUXLWPHQWFRUUHODWLRQVZRUN"5HYLHZVLQ)LVK%LRORJ\DQG)LVKHULHV
0\HUV 5$ 1 - %DUURZPDQ -$ +XWFKLQJV DQG$$
5RVHQEHUJ3RSXODWLRQG\QDPLFVRIH[SORLWHG¿VK
VWRFNVDWORZSRSXODWLRQOHYHOV6FLHQFH
1DWLRQDO 5HVHDUFK &RXQFLO ,PSURYLQJ )LVK 6WRFN
$VVHVVPHQWV 1DWLRQDO $FDGHP\ 3UHVV :DVKLQJWRQ
'&
12$$1DWLRQDO2FHDQLFDQG$WPRVSKHULF$GPLQLVWUDWLRQ
DQG'HSDUWPHQWRI&RPPHUFH10)61DWLRQDO0DULQH
)LVKHULHV6HUYLFH)LVKHULHVRIWKHH[FOXVLYHHFRQRPLF]RQHRII$ODVND%HULQJ6HDDQG$OHXWLDQ,VODQGV
.LQJDQG7DQQHUFUDEV&)53DUW9RO1R
12$$10)6:DVKLQJWRQ'&
2¶%R\OH 5 1 3URFHHGLQJV RI D PDULWLPHV UHJLRQDO
DGYLVRU\ SURFHVV PHHWLQJ RQ DVVHVVPHQW IUDPHZRUNV
DQGGHFLVLRQUXOHVIRU;<FRGDQGKDGGRFN5HSRUW
'HSDUWPHQW RI )LVKHULHV DQG 2FHDQV &DQDGD
2¶)DUUHOO 0 5 DQG / : %RWVIRUG (VWLPDWLRQ RI
change in lifetime egg production from length freTXHQF\GDWD&DQDGLDQ-RXUQDORI)LVKHULHVDQG$TXDWLF
6FLHQFHV
2¶)DUUHOO 0 5 DQG / : %RWVIRUG (VWLPDWLQJ WKH
VWDWXVRIQHDUVKRUHURFN¿VK6HEDVWHVVSSSRSXODWLRQV
ZLWK OHQJWK IUHTXHQF\ GDWD (FRORJLFDO $SSOLFDWLRQV
2VHQEHUJ & 2 6DUQHOOH 6 &RRSHU DQG 5 +ROW 5HVROYLQJHFRORJLFDOTXHVWLRQVWKURXJKPHWDDQDO\VLV
*RDOVPHWULFVDQGPRGHOV(FRORJ\
181
'$7$32250(7+2'6)25),6+(5<0$1$*(56
3DOPHU0*XOIRI0DLQHKDGGRFNGUDIWZRUNLQJSDSHU
:RUNLQJ3DSHU512$$10)6:RRGV+ROH0$
3DWULFN : DQG FRDXWKRUV 8VH RI 3URGXFWLYLW\ DQG
Susceptibility Indices to determine stock vulnerability,
ZLWKH[DPSOHDSSOLFDWLRQVWRVL[86¿VKHULHV12$$
)LVKHULHV 12$$ 7HFKQLFDO 0HPRUDQGXP 10)6)
632
3DXO\'9&KULVWHQVHQ-'DOVJDDUG5)URHVHDQG)-
7RUUHV)LVKLQJGRZQPDULQHIRRGZHEV6FLHQFH
3DXO\'DQG0/3DORPDUHV)LVKLQJGRZQPDULQH
IRRGZHE,W¶VIDUPRUHSHUYDVLYHWKDQZHWKRXJKW%XOOHWLQRI0DULQH6FLHQFH
3RORYLQD--DQGFRDXWKRUV3K\VLFDODQGELRORJLFDO
FRQVHTXHQFHV RI D FOLPDWH HYHQW LQ WKH FHQWUDO QRUWK
3DFL¿F)LVKHULHV2FHDQRJUDSK\
3RWWV::6DXHU$5&KLOGVDQG$'XDUWH8VLQJ
baseline biological and ecological information to design
DWUDI¿FOLJKWSUHFDXWLRQDU\PDQDJHPHQWIUDPHZRUNIRU
OHHU¿VKLichia amia/LQQDHXVLQVRXWKHUQ$QJROD
$IULFDQ-RXUQDORI0DULQH6FLHQFH
3ULQFH-'0DQDJLQJGDWDSRRU¿VKHULHV6ROXWLRQV
IURP DURXQG WKH ZRUOG 0DQDJLQJ GDWDSRRU ¿VKHULHV
&DVHVWXGLHVPRGHOVDQGVROXWLRQV
3XQW$5&DPSEHOODQG$6PLWK(YDOXDWLQJHPSLULFDO LQGLFDWRUV DQG UHIHUHQFH SRLQWV IRU ¿VKHULHV PDQDJHPHQW$SSOLFDWLRQWRWKHEURDGELOOVZRUG¿VK¿VKHU\
RIIHDVWHUQ$XVWUDOLD0DULQHDQG)UHVKZDWHU5HVHDUFK
3XQW$ DQG 5 +LOERUQ %D\HVLDQ VWRFN DVVHVVPHQW
PHWKRGVLQ¿VKHULHVXVHU¶VPDQXDO)RRGDQG$JULFXOWXUH2UJDQL]DWLRQ5RPH
5DJR ' 3 10)6 )LVKHULHV 7RROER[ $Q ,QGH[
0HWKRG$,012$$10)6$YDLODEOHDWKWWSQIW
QHIVFQRDDJRY$,0KWPO$SULO
5HVWUHSR 9 5 DQG FRDXWKRUV 7HFKQLFDO JXLGDQFH
on the use of precautionary approaches to implementLQJ1DWLRQDO6WDQGRIWKH0DJQXVRQ6WHYHQV)LVKHU\
&RQVHUYDWLRQDQG0DQDJHPHQW$FW12$$7HFKQLFDO
0HPRUDQGXP10)6)632
5RD8UHWD 5 DQG$ ,$UNKLSNLQ 6KRUWWHUP VWRFN
assessment of Loligo gahi at the Falkland Islands:
6HTXHQWLDO XVH RI VWRFKDVWLF ELRPDVV SURMHFWLRQ DQG
VWRFN GHSOHWLRQ PRGHOV ,&(6 -RXUQDO RI 0DULQH 6FLHQFH
6DLQVEXU\.-$(3XQWDQG$'06PLWK'HVLJQ
of operational management strategies for achieving
¿VKHU\ HFRV\VWHP REMHFWLYHV ,&(6 -RXUQDO RI 0DULQH
6FLHQFH
6FDQGRO-38VHRIFXPXODWLYHVXP&8680FRQWUROFKDUWVRIODQGHGFDWFKLQWKHPDQDJHPHQWRI¿VKHULHV)LVKHULHV5HVHDUFK
6LPSIHQGRUIHU & DQG FRDXWKRUV $Q LQWHJUDWHG
DSSURDFK WR GHWHUPLQLQJ WKH ULVN RI RYHUH[SORLWDWLRQ
IRUGDWDSRRUSHODJLF$WODQWLFVKDUNV$QH[SHUWZRUNLQJJURXSUHSRUW/HQIHVW2FHDQ3URJUDP:DVKLQJWRQ
'&
6PLWK$()XOWRQ$+REGD\'6PLWKDQG36KRXOGHU
6FLHQWL¿FWRROVWRVXSSRUWSUDFWLFDOLPSOHPHQWDWLRQ RI HFRV\VWHP EDVHG ¿VKHULHV PDQDJHPHQW ,&(6
-RXUQDORI0DULQH6FLHQFH
6PLWK'HWDO5HFRQFLOLQJDSSURDFKHVWRWKHDVVHVVPHQWDQGPDQDJHPHQWRIGDWDSRRUVSHFLHVDQG¿VKHULHVZLWK$XVWUDOLD¶V+DUYHVW6WUDWHJ\3ROLF\0DULQHDQG
&RDVWDO )LVKHULHV '\QDPLFV 0DQDJHPHQW DQG (FRV\VWHP6FLHQFH
6RXWKZDUG*0$VLPXODWLRQRIPDQDJHPHQWVWUDWHJLHVLQWKH3DFL¿FKDOLEXW¿VKHU\,QWHUQDWLRQDO3DFL¿F
+DOLEXW&RPPLWWHH6FLHQWL¿F5HSRUW
7KRPSVRQ * 7KH SUHFDXWLRQDU\ SULQFLSOH LQ 1RUWK
3DFL¿F JURXQG¿VK PDQDJHPHQW$ODVND )LVKHULHV 6FLHQFH &HQWHU 1DWLRQDO 0DULQH )LVKHULHV 6HUYLFH DQG
12$$)LVKHULHV
9DQFH'-0'(+D\ZRRG'6+HDOHV5$.HQ\RQ
DQG15/RQHUDJDQ6HDVRQDODQGDQQXDOYDULDWLRQ LQ DEXQGDQFH RI SRVWODUYDO DQG MXYHQLOH EDQDQD
SUDZQVPenaeus merguiensis and environmental variaWLRQ LQ WZR HVWXDULHV LQ WURSLFDO QRUWKHDVWHUQ $XVWUDOLD$VL[\HDUVWXG\0DULQH(FRORJ\3URJUHVV6HULHV
:DOWHUV & - ,QIRUPDWLRQ UHTXLUHPHQWV IRU VDOPRQ
PDQDJHPHQW3DJHV±LQ'-6WRXGHU3$%LVVRQ
DQG5-1DLPDQHGLWRUV3DFL¿FVDOPRQDQGWKHLUHFRV\VWHPV6WDWXVDQGIXWXUHRSWLRQV6SULQJHU3XEOLVKLQJ
1<
:DOWHUV & - DQG 6 %XFNLQJKDP $ FRQWURO V\VWHP
IRU LQWUDVHDVRQ VDOPRQ PDQDJHPHQW 3URFHHGLQJV RI
D ZRUNVKRS RQ VDOPRQ PDQDJHPHQW )HEUXDU\ ±
&3HGLWLRQ,QWHUQDWLRQDO,QVWLWXWHIRU$SSOLHG6\VWHPV$QDO\VLV/X[HPERXUJ
:DOWHUV&-DQG6-'0DUWHOO)LVKHULHVHFRORJ\
DQG PDQDJHPHQW 3ULQFHWRQ 8QLYHUVLW\ 3UHVV 3ULQFHWRQ1-
:HEHU 0 / DQG % +HQHPDQ *XLGH WR &DOLIRUQLD¶V
0DULQH /LIH 0DQDJHPHQW $FW &RPPRQ .QRZOHGJH
3UHVV%ROLQDV&$
:HQGW'(DQG506WDUU&ROODERUDWLYHUHVHDUFK
$QHIIHFWLYHZD\WRFROOHFWGDWDIRUVWRFNDVVHVVPHQWV
DQG HYDOXDWH PDULQH SURWHFWHG DUHDV LQ &DOLIRUQLD
0DULQHDQG&RDVWDO)LVKHULHV'\QDPLFV0DQDJHPHQW
DQG(FRV\VWHP6FLHQFH
:LOVRQ - 5 - ' 3ULQFH DQG + 6 /HQLKDQ 6HWting harvest guidelines for sedentary nearshore species
XVLQJPDULQHSURWHFWHGDUHDVDVDUHIHUHQFH0DULQHDQG
&RDVWDO )LVKHULHV '\QDPLFV 0DQDJHPHQW DQG (FRV\VWHP6FLHQFH
:LQHPLOOHU . 2 /LIH KLVWRU\ VWUDWHJLHV SRSXODWLRQ
UHJXODWLRQDQGLPSOLFDWLRQVIRU¿VKHULHVPDQDJHPHQW
&DQDGLDQ -RXUQDO RI )LVKHULHV DQG $TXDWLF 6FLHQFHV
:LQHPLOOHU . 2 DQG . $ 5RVH 3DWWHUQV RI OLIH
KLVWRU\GLYHUVL¿FDWLRQLQ1RUWK$PHULFDQ¿VKHV,PSOLFDWLRQVIRUSRSXODWLRQUHJXODWLRQV&DQDGLDQ-RXUQDORI
)LVKHULHVDQG$TXDWLF6FLHQFHV
182
183
References for extrapolation and “Robin Hood” methods:
(Johannes 1998; Prince 2010, this volume; Smith et al. 2009, this volume)
Extrapolation methods
or “Robin Hood”
management (in Australia)
Ecological understanding of stock from:
Anecdotal observations.
Local knowledge.
Related “sister” species and systems with
similar characteristics that are known.
The more information, the better, from
observations or similar systems.
Life-history data.
Detailed and accurate knowledge of lifehistory parameters.
Life-history data to estimate stock
Detailed and accurate knowledge of fishing
Life-history vulnerability
productivity.
mortality.
analyses
Fishing mortality data to estimate stock
Multiple data sources, fishery independent
susceptibility.
sources of information, and/or expert
knowledge to corroborate estimates for
calculated parameters.
References for productivity and susceptibility analysis (PSA), an example of life-history vulnerability analyses:
(Simpfendorfer et al. 2008; Patrick et al. 2009; Field et al. 2010, this volume)
References for CUSUM control charts and statistical methods:
(Manly and MacKenzie 2000; Manly 2001; Scandol 2003; Kelly and Codling 2006)
References for multivariate El Niño Southern Oscillation index (MEI), which is an example of an environmental proxy:
(Ballantyne et al., in review; Aburto-Oropeza et al. 2007)
References for fractional change in lifetime egg production (FLEP), which is a per-recruit method:
(O'Farrell and Botsford 2005, 2006)
References for depletion estimator for in-season management:
(Hilborn and Walters 1992; Maunder 2010, this volume)
References for an-index-method (AIM), which is a population and length-based index:
(Palmer 2008; Rago 2008; Miller et al. 2009)
Method Type
(Fishery-Evaluation Methods presented in order of high to low information requirements).
Minimum
Optimal
Data Needs
Data Needs
Sequential trend analysis
(index indicators)
The more data and longer the time series,
Series data (most commonly time-series
the better.
Sub-category types include:
data), although data requirements vary
The higher the input-data quality, the
o
Population and
by type of trend analysis.
better (e.g., consistent data-collection
length-based
Common requirements are:
protocols through time).
indices
o
Life-history data.
As a broad generalization, 30+ data points
o
Per-recruit
o
Catch time series.
in a series is preferred (e.g., 30+ years of
methods
o
Abundance index time series
time-series data for annual catch),
o
Environmental
(from CPUE or fishery
although this varies with system
proxies
independent surveys).
dynamics.
TABLE²)LVKHUH\(YDOXDWLRQ0HWKRGVDWDJODQFH
Only assesses expected, relative vulnerability to
fishing pressure (not absolute population numbers).
Will not specify harvest guidelines (i.e., Total
Allowable Catch [TAC] or target catch limits).
Managers still must decide how detected trends
affect harvest control rules.
Trend indicator only.
Managers still must decide how detected trends
affect harvest control rules.
Assumes system dynamics and assumptions remain
constant for the period over which data are
analyzed (e.g., no environmental regime shifts; no
major change in fleet dynamics or technologies).
Relationships should be tested and updated
regularly (e.g., annually) as new data emerge.
Large scientific and management uncertainty.
Risk of misspecifying stock status, vulnerability, and
sustainable harvest levels if the data-poor stock of
interest differs from its data-rich “sister” population.
Not a replacement for quantitative management.
Managers still must decide how detected trends affect
harvest control rules.
Cautions and Caveats
+21(<(7$/
Clear fishery goals and metrics with evaluation
criteria.
Depending on decision-tree design (highly
flexible) and manager goals, exact metrics and
data requirements vary.
Common data inputs to evaluate metrics and
decision points are:
o
Life-history data.
o
Catch time series.
o
CPUE time series.
o
Socioeconomic context and data.
184
Highly skilled technical expertise, time, and
resources for advanced programming and
simulation modeling.
Clear fishery goals and metrics with evaluation
criteria.
Depending on MSE design (highly flexible)
and manager goals, exact metrics and data
requirements vary.
Common data inputs to evaluate metrics and
decision points are:
o
Life-history data.
o
Catch time series.
o
CPUE time series.
o
Environmental context and data.
o
Socioeconomic context and data.
Given defined metrics and evaluation
criteria, the biological, social and/or
economic data have:
Multiple information sources to
increase the robustness of and
confidence in information.
Long time series.
Quality data.
Given defined metrics and evaluation
criteria, the biological, social and/or
economic data have:
Multiple information sources to
increase the robustness of and
confidence in information.
Long time series.
Quality data.
Cautions and Caveats
MSE is powerful but data intensive. It requires careful
design and appropriate development to individually
match the MSE with stock characteristics, fishery
context and management goals.
MSE is suited for “data-medium” and “data-rich”
fisheries, yet often limited by the method’s need for
large time investment and highly skilled technical
work. It is not recommended for “data-poor” stocks on
the low end of the data-richness spectrum.
The statistical power of MSE outputs depends strongly
on the quality of data inputs and underlying model
assumptions.
Choice about objective function(s) and evaluation
criteria drive outcomes.
Assumptions about how to link MSE sub-models with
one another are critically important, but potentially
hidden from view. Be wary of “black box” outputs.
Decision trees are flexible tools, requiring appropriate
design to individually match the decision tree with
stock characteristics, fishery context and management
goals.
A decision tree can provide a simple assessment
method, helpful for management (e.g., to maintain
conservative levels of spawning biomass, SPR),
although it may not directly address harvest control
rules.
The accuracy and statistical power of decision-tree
outputs depends strongly on the quality of data inputs
and underlying model assumptions.
References for MSE:
(Sainsbury et al. 2000; Bentley and Stokes 2009, this volume; Butterworth et al. 2010, this volume; Dewees 2010, this volume; Dichmont and Brown 2010, this volume; Smith et al.
2009, this volume).
Management strategy
evaluation (MSE)
References for length-based reference points set by decision tree:
(Froese 2004; Cope and Punt 2010, this volume)
References for MPA-based decision tree:
(Prince 2010, this volume; Wilson et al. 2010, this volume)
Decision-tree approach
Method Type
(Decision-Making Methods presented in order of expected practical use for data-poor management).
Minimum
Optimal
Data Needs
Data Needs
TABLE²'HFLVLRQ0DNLQJ0HWKRGVDWDJODQFH
'$7$32250(7+2'6)25),6+(5<0$1$*(56