Phylogenetic relationships in the iguanid lizard genus Liolaemus

Biological Journal of the Linnean Society (2000), 69: 75–102. With 7 figures
doi: 10.1006/bijl.1999.0346, available online at http://www.idealibrary.com on
Phylogenetic relationships in the iguanid lizard
genus Liolaemus: multiple origins of viviparous
reproduction and evidence for recurring Andean
vicariance and dispersal
JAMES A. SCHULTE II1∗, J. ROBERT MACEY1, ROBERT E. ESPINOZA2
AND ALLAN LARSON1
1
Department of Biology, Box 1137, Washington University, St. Louis, MO, USA
63130–4899.
2
Ecology, Evolution and Conservation Biology/MS314, University of Nevada, Reno, NV, USA
89557
Received 2 March 1998; accepted for publication 15 January 1999
Phylogenetic relationships within the iguanid lizard genus Liolaemus are investigated using
1710 aligned base positions (785 phylogenetically informative) of mitochondrial DNA
sequences, representing coding regions for eight tRNAs, ND2, and portions of ND1 and
COI. Sixty new sequences ranging in length from 1736 to 1754 bases are compared with
four previously reported sequences. Liolaemus species form two well-supported monophyletic
groups of subgeneric status, Liolaemus and Eulaemus. These subgenera appear to have separated
at least 12.6 million years ago based on the amount of molecular evolutionary divergence
between them. Hypotheses that species occurring in the Andes, west of the Andes, and east
of the Andes, each comprise distinct monophyletic groups are independently rejected
statistically. The shortest estimate of phylogeny suggests that Liolaemus originated either in
the Andes or the eastern lowlands. Numerous evolutionary shifts have occurred between the
Andes, and the eastern and western lowlands, suggesting recurring vicariance and dispersal.
Species occurring at high elevations or high latitudes usually have viviparous reproduction.
Depending on whether parity mode is considered reversible in Liolaemus, the most parsimonious
reconstruction supports at least six independent origins of viviparity or at least three gains
followed by three losses of viviparity among the 60 Liolaemus lineages examined.
 2000 The Linnean Society of London
ADDITIONAL KEYWORDS:—Reptilia – Squamata – Iguania – Iguanidae – Liolaemus –
phylogeny – reproduction – historical biogeography – viviparity – South America – Andes.
CONTENTS
Introduction . . . . . . . . . . . . . . . . . . . . . . .
Methods . . . . . . . . . . . . . . . . . . . . . . . .
76
79
∗ Corresponding author. E-mail: [email protected]
0024–4066/00/010075+28 $35.00/0
75
 2000 The Linnean Society of London
76
J. A. SCHULTE ET AL.
Specimen information . . . . . . . . .
Laboratory protocols . . . . . . . . .
Phylogenetic analysis . . . . . . . . .
Results . . . . . . . . . . . . . . .
Authentic mitochondrial DNA . . . . . .
Assessment of homology and sequence alignment
Genic variation . . . . . . . . . . .
Phylogenetic analyses . . . . . . . . .
Evaluating Andean vicariance . . . . . .
Evolution of viviparity . . . . . . . . .
Discussion . . . . . . . . . . . . . .
Historical biogeography . . . . . . . .
Dating phylogenetic divergence and vicariance .
Evolution of parity mode . . . . . . . .
Phylogenetic relationships and taxonomy . . .
Acknowledgements
. . . . . . . . . . .
References . . . . . . . . . . . . . .
Appendix 1 . . . . . . . . . . . . . .
Appendix 2 . . . . . . . . . . . . . .
Appendix 3 . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
79
80
80
81
81
82
82
83
87
88
89
89
91
93
93
95
95
98
99
101
INTRODUCTION
The iguanid lizard genus Liolaemus contains over 160 species distributed in the
Andes and adjacent lowlands of South America from Peru to Tierra del Fuego (Cei,
1986, 1993; Donoso-Barros, 1966; Etheridge, 1995). This genus has one of the
largest latitudinal, elevational, and climatic distributions among lizards world-wide,
with species found from sea level to over 5000 m (Cei, 1986, 1993; Donoso-Barros,
1966).
Physiographic factors divide the distribution of Liolaemus into three major regions:
(1) Andean highlands, (2) lowlands east of the Andes, and (3) lowlands west of the
Andes. We test the hypothesis that the uplift of the Andes divided the ancestral
Liolaemus into monophyletic groups corresponding to one or more of the three
physiographic regions (Fig. 1). Alternatively, continual uplifting of the Andes over
the last 25 million years (Norabuena et al., 1998) may have caused recurring episodes
of vicariance superimposed on periodic dispersal events between the Andes, and the
eastern and western lowlands. The latter hypothesis predicts that none of the three
regions should comprise monophyletic groupings of Liolaemus species. The highest
elevation of the Andean mountain chain currently extends up to 7000 m and presents
a formidable barrier to dispersal for Liolaemus; however, numerous potential dispersal
corridors occur under 5000 m.
Because approximately half of the Liolaemus species are live-bearing, the phylogenetic pattern of reproductive mode presents an interesting issue for investigation.
Viviparity, the retention within the uterus of a developing neonate until development
is complete, appears to have evolved frequently among squamate reptiles in cool
environments at high latitudes and elevations (Guillette, 1993; Shine, 1985; Shine
& Bull, 1979; Tinkle & Gibbons, 1977). Recent molecular phylogenetic work on
iguanid lizards of the Sceloporus scalaris complex has demonstrated that viviparity
evolved twice within that species group and possibly reversed to oviparous reproduction once (Benabib, Kjer & Sites, 1997; Creer et al., 1997; Mink & Sites,
1996). An evolutionary analysis of reproductive modes within Liolaemus may reveal
whether viviparity has evolved multiple times and potentially could reverse (Lee &
Shine, 1998).
LIOLAEMUS PHYLOGENETICS
Eastern and Western
77
Andean
A
High-elevation
species form a clade
Andean and Western
Eastern
B
Eastern lowland
species form a clade
Andean and Eastern
Western
C
Western lowland
species form a clade
Figure 1. Hypotheses for the historical biogeography of Liolaemus. A possible outcome of the initial
uplifting of the Andes is the geographic fragmentation of Liolaemus populations into major subgroups
located in (A) the Andes, (B) the eastern lowlands and/or (C) the western lowlands (Table 1). If
Liolaemus populations in these three regions formed a genetically homogeneous entity prior to the
Andean uplift, and populations in one or more regions remained isolated following the initial uplifting,
one to three major clades of Liolaemus corresponding to any or all of the geographic regions may result.
If phylogenetic structure was present in Liolaemus prior to the Andean uplift, or if episodes of vicariance
and dispersal between these three regions followed the initial uplift, one or more of the three major
areas would contain a phylogenetically heterogeneous grouping of species.
A well supported estimate of phylogeny is used to test these hypotheses of historical
biogeography and evolution of viviparity. Samples of approximately one-third of the
recognized Liolaemus species, including representatives occurring in all physiographic
provinces and exhibiting both reproductive modes, are examined. These species
represent the major groups from the most recent taxonomy of Liolaemus (Etheridge,
1995; Table 1). Sixty new mitochondrial DNA sequences are reported for the same
region sequenced for a broad sampling of iguanid lizard taxa by Macey et al.
(1997b). This sequence extends from the end of the gene encoding ND1 (NADH
dehydrogenase 1) to the beginning of the gene encoding COI (cytochrome c oxidase
I) and includes all of the ND2 gene, eight tRNA genes, and the origin for lightstrand replication (OL). This same region of DNA sequenced for Liolaemus pictus
(Macey et al., 1997b) is included in this analysis.
Outgroups are based on the phylogenetic hypothesis of Schulte et al. (1998). In
J. A. SCHULTE ET AL.
78
T 1. Taxa included in this study, by region of largest distribution, range in elevation (meters
above sea level), and parity mode (O=oviparous, and V=viviparous) primarily based on museum
specimens, Cei (1986, 1993), and Donoso-Barros (1966). Key references for parity mode are given to
the right. Andean taxa occur above 2500 meters, whereas eastern and western taxa occur exclusively
from sea level to 2500 meters on either side of the Andes. Museum catalogue numbers and localities
are given in Appendix 1. Subgeneric designations are after Laurent (1984) and correspond to the
phylogenetic results of this study. Species sections and series for the subgenus Eulaemus are largely after
Etheridge (1995), and are amended to correspond with results of this study. Taxa denoted with a cross
are members of the L. wiegmannii group of Etheridge (1995) and here are called the ‘sand-lizard clade’
of the L. boulengeri series
Taxon
Outgroup taxa
1. Oplurus cuvieri
2. Phrynosoma douglassii
3. Phymaturus palluma
4. P. somuncurensis
Subgenus Liolaemus
5. Liolaemus coeruleus
6. L. alticolor
7. L. bitaeniatus
8. L. robertmertensi
9. L. bibronii
10. L. gracilis
11. L. bellii
12. L. chiliensis
13. L. cyanogaster
14. L. pictus – Neuquén
15. L. pictus – Rio Negro
16. L. zapallarensis
17. L. tenuis
18. L. lemniscatus
19. L. monticola
20. L. nitidus
21. L. fuscus
22. L. nigroviridis
23. L. capillitas
24. L. leopardinus
25. L. buergeri
26. L. ceii
27. L. petrophilus
28. L. austromendocinus
29. L. elongatus
Subgenus Eulaemus
L. lineomaculatus section
30. L. lineomaculatus
31. L. somuncurae
32. L. magellanicus
L. montanus section
L. montanus series
33. L. ruibali
34. L. andinus – La Rioja
35. L. famatinae
36. L. orientalis
37. L. dorbignyi
38. L. poecilochromus
39. L. multicolor
40. L. andinus – Jujuy
Region
Elevation
range
Parity
mode
Reference
—
—
Andean
Eastern
—
—
2500–4000
1200
O
V
V
V
Donoso-Barros (1966)
Cei (1986)
Eastern
Andean
Andean
Andean
Andean
Eastern
Andean
Western
Western
Eastern &
Western
Eastern &
Western
Western
Western
Western
Western
Andean
Western
Andean
Andean
Andean
Andean
Eastern
Eastern
Eastern
Andean
1500–1700
3000–3600
700–2800
690–2600
0–3000
0–1380
2000–3200
0–2100
0–225
10–1600
O
O
O
O
O
O
V
O
V
V
Espinoza, unpubl. data
Espinoza, unpubl. data
Cei (1993)
Cei (1993)
Cei (1986)
Cei (1986)
Ramı́rez Pinilla (1991a)
Donoso-Barros (1966)
Donoso-Barros (1966)
Cei (1986)
10–1600
V
Cei (1986)
0–762
0–1800
0–1800
500–1800
0–3153
0–1800
500–4000
2500–3900
1800–2700
1500–3000
1000–2300
900–1400
900–2310
700–3000
O
O
O
O
O
O
V
V
V
V
V
V
V
V
Espinoza, unpubl. data
Donoso-Barros (1966)
Donoso-Barros (1966)
Donoso-Barros (1966)
Ramı́rez Pinilla (1991a)
Donoso-Barros (1966)
Donoso-Barros (1966)
Cei (1993)
Donoso-Barros (1966)
Donoso-Barros (1966)
H. Núñez, pers. comm.
Cei (1986)
Cei (1986)
Cei (1986)
Eastern
Eastern
Eastern
0–1500
1200–1600
0–1050
V
V
V
Donoso-Barros (1966)
Scolaro and Cei (1997)
Donoso-Barros (1966)
Andean
Andean
Andean
Andean
Andean
Andean
Andean
Andean
2370–3000
3000–4700
3700–4200
4000–4320
3200–4400
3500–4130
3360–4400
3390
V
V
V
V
V
V
V
V
Cei (1986)
Ramı́rez Pinilla (1991a)
Espinoza, unpubl. data
Espinoza, unpubl. data
Donoso-Barros (1966)
Cei (1993)
Ramı́rez Pinilla (1991a)
Espinoza, unpubl. data
continued
LIOLAEMUS PHYLOGENETICS
79
T 1—continued
Taxon
Region
Elevation
range
L. boulengeri series
41. L. cuyanus
42. L. fitzingerii
43. L. pseudoanomalus
44. L. lutzae‡
45. L. occipitalis‡
46. L. multimaculatus‡
47. L. scapularis‡
48. L. salinicola‡
49. L. wiegmannii‡
50. L. melanops
51. L. rothi
52. L. abaucan
53. L. koslowskyi
54. L. quilmes
55. L. ornatus
56. L. albiceps
57. L. irregularis
58. L. uspallatensis
59. L. chacoensis
60. L. olongasta
61. L. darwinii – Mendoza
62. L. darwinii – La Rioja
63. L. boulengeri
64. L. laurenti
Eastern
Eastern
Eastern
Eastern
Eastern
Eastern
Eastern
Eastern
Andean
Eastern
Eastern
Eastern
Eastern
Andean
Andean
Andean
Andean
Eastern
Eastern
Eastern
Eastern
Andean
Eastern
Eastern
400–2000
0–1100
990–1700
0
0–200
0–1000
1100–2100
0–2050
1335–2910
900–2070
500–1600
1200–1900
800–2450
1600–3000
2000–4800
3060–4020
3060–5000
900–2500
700
900–1770
1380
0–3000
0–2000
800–1100
Parity
mode
O
O
O
O
O
O
O
O
O
O
O
O
O
O
V
V
V
O
O
O
O?
O
O
O
Reference
Cei (1986)
Cei (1986)
Espinoza, unpubl. data
Rocha (1992)
Espinoza, unpubl. data
Cei (1986)
Ramı́rez Pinilla (1994)
Espinoza, unpubl. data
Cei (1986)
Ramı́rez Pinilla (1991a)
Cei (1986)
Espinoza, unpubl. data
Espinoza, unpubl. data
Espinoza, unpubl. data
Ramı́rez Pinilla (1991a)
Espinoza, unpubl. data
Ramı́rez Pinilla (1991a)
Cei (1986)
Cei (1986)
Espinoza, unpubl. data
Espinoza, unpubl. data
Cei (1986)
Cei (1986)
Cei (1993)
their study of the major clades within the Iguanidae (sensu Macey et al., 1997b),
Phymaturus is well supported as the sister taxon and closest outgroup to Liolaemus.
Phymaturus palluma is examined to compare with the previously published sequence
of P. somuncurensis (Schulte et al., 1998). This same outgroup structure has been
supported by morphological data (Etheridge & de Queiroz, 1988). Monophyly of
the subfamily Tropidurinae∗ (sensu Macey et al., 1997b), of which Liolaemus and
Phymaturus are members, is statistically neither supported nor rejected (Schulte et al.,
1998); therefore, representative species from two other major iguanid clades are
used. The previously published sequences (Macey et al., 1997b) of the Old World
species, Oplurus cuvieri, and the New World species, Phrynosoma douglassii, are used as
outgroups to represent a broad phylogenetic sampling of the Iguanidae.
METHODS
Specimen information
See Appendix 1 for museum numbers, localities of voucher specimens from which
DNA was extracted, and GenBank accession numbers for DNA sequences. The
sequence for Phymaturus somuncurensis (GenBank accession number AF049865, Schulte
et al., 1998) originally had position 35 (Human position 4214, Anderson et al., 1981)
in the ND1 gene as a T; however, the correct nucleotide is a G. The GenBank file
has been updated.
80
J. A. SCHULTE ET AL.
Laboratory protocols
Genomic DNA was extracted from liver or muscle using the Qiagen QIAamp
tissue kit. Amplification of genomic DNA was conducted using a denaturation at
94°C for 35 sec, annealing at 50°C for 35 sec, and extension at 70°C for 150 sec
with 4 sec added to the extension per cycle, for 30 cycles. Negative controls were
run on all amplifications to check for contamination. Amplified products were
purified on 2.5% Nusieve GTG agarose gels and reamplified under the conditions
described above. Reamplified double-stranded products were purified on 2.5%
acrylamide gels (Maniatis, Fritsch & Sambrook, 1982). Template DNA was eluted
from acrylamide passively over three days with Maniatis elution buffer (Maniatis et
al., 1982). Cycle-sequencing reactions were run using the Promega fmol DNA
sequencing system with a denaturation at 95°C for 35 sec, annealing at 45–60°C
for 35 sec, and extension at 70°C for 1 min for 30 cycles. Sequencing reactions were
run on Long Ranger sequencing gels for 5–12 hours at 38–40°C.
Two primer pairs were used to amplify genomic DNA from the ND1 gene to
the COI gene: L3878 and H4980, and L4437 and H5934. Both strands were
sequenced using L3878, L4221, H4419b, L4437, L4645, L4882a, L4882b, H5617b,
L5638b, H5692, and H5934. DNA from L. multimaculatus was amplified also using
the primer pairs L4437 and H5692, and L4882b and H5934, to yield smaller
fragments of DNA. All primers are from Macey et al. (1997a) except L3878, which
is from Macey et al. (1998b), and L4882b, which is from Schulte et al. (1998). Primer
numbers refer to the 3′ end on the human mitochondrial genome (Anderson et al.,
1981), where L and H denote extension of light and heavy strands, respectively.
Phylogenetic analysis
DNA sequences were aligned manually. Positions encoding part of ND1, all of
ND2, and part of COI were translated to amino acids using MacClade (Maddison
& Maddison, 1992) for confirmation of alignment. Alignments of sequences encoding
tRNAs were constructed manually based on secondary structural models (Kumazawa
& Nishida, 1993; Macey & Verma, 1997). Secondary structures of tRNAs were
inferred from primary structures of the corresponding tRNA genes using these
models. Unalignable regions were excluded from phylogenetic analyses (see Results).
Phylogenetic trees were estimated using PAUP∗ beta version 4.0b1 (Swofford,
1998) with 100 heuristic searches featuring random addition of sequences. Bootstrap
resampling (Felsenstein, 1985a) was applied to assess support for individual nodes
using 500 bootstrap replicates with 10 random additions per replicate.
Decay indices (=‘branch support’ of Bremer, 1994) were calculated for all internal
branches of the tree using two methods. First, 100 heuristic searches (with random
addition of sequences), which retained suboptimal trees one to five steps longer than
the overall shortest trees, were conducted to obtain decay indices of one to five.
Nodes that remained uncollapsed in the preceding analysis had decay indices above
five. For each of these nodes, a phylogenetic topology containing the single node in
question was constructed using MacClade (Maddison & Maddison, 1992) and
analysed as a constraint in PAUP∗ beta version 4.0b1 (Swofford, 1998) with 100
heuristic searches featuring random addition of sequences. In these searches, trees
that did not contain the imposed constraint were retained. We then obtained the
LIOLAEMUS PHYLOGENETICS
81
decay index by tabulating the minimum increase in number of steps resulting from
removal of the node of interest from the shortest tree.
Wilcoxon signed-ranks tests (Felsenstein, 1985b; Templeton, 1983) were used to
examine statistical significance of the shortest tree relative to alternative hypotheses.
This test determines whether the most parsimonious tree is significantly shorter
than an alternative tree or whether their differences in length are statistically
indistinguishable (Larson, 1998). Wilcoxon signed-ranks tests were conducted as
two-tailed tests (Felsenstein, 1985b). Tests were conducted using PAUP∗ beta version
4.0b1 (Swofford, 1998) which incorporates a correction for tied ranks.
Alternative phylogenetic hypotheses were tested using the most parsimonious
phylogenetic topologies compatible with them. To find the most parsimonious tree(s)
compatible with a particular phylogenetic hypothesis, phylogenetic topologies were
constructed using MacClade (Maddison & Maddison, 1992) and analysed as constraints using PAUP∗ beta version 4.0b1 (Swofford, 1998) with 100 heuristic searches
with random addition of sequences.
The evolution of viviparity among Liolaemus species was reconstructed using
MacClade (Maddison & Maddison, 1992) on a strict consensus of the trees that are
equally most parsimonious overall. One outgroup species, Phyrynosoma douglassii, is
viviparous. However, most species within the Phrynosomatinae (sensu Macey et al.,
1997b), excluding some nested species of Phrynosoma and Sceloporus, are oviparous
(Méndez-de la Cruz, Villagrán-Santa Cruz & Andrews, 1998; Montanucci, 1987;
Reeder & Wiens, 1996; Schulte et al., 1998; Sites et al., 1992). Therefore, we treated
the ancestral condition of the Phrynosoma outgroup as oviparous. Occurrence in cold
environments (defined as latitudes exceeding 40 degrees south and/or elevations
above 2500 m) was partitioned on the tree in a similar manner. Forty degrees south
latitude corresponds to the division between Patagonia, and Pampas and Grand
Chaco east of the Andes (Markgraf, 1993). West of the Andes, regions south of 40
degrees south latitude are dominated by steep mountains, and mixed coniferous
and broadleaf forest (Markgraf, 1993).
Data on latitudinal and elevational distributions for the 60 Liolaemus taxa (Table
1) were assembled from a combination of sources including (1) primary and secondary
literature [with about one third of the data from Cei (1986, 1993), Veloso and
Navarro (1988), and Nuñez, (1992)], (2) records of catalogued museum specimens,
and (3) unpublished field notes (R.E.E.). Data for reproductive modes primarily
came from Cei (1986, 1993), Donoso-Barros (1966), and Ramı́rez Pinilla (1991a,
b), and through examination of catalogued museum specimens (R.E.E.).
RESULTS
Authentic mitochondrial DNA
Several observations support our conclusion that the DNA sequences analyzed
here are from the mitochondrial genome and do not represent nuclear integrated
copies of mitochondrial genes (see Zhang & Hewitt, 1996). All sequences reported
here show strong strand bias against guanine on the light strand (G=11.8–13.0%,
T=23.3–27.0%, A=33.2–36.1%, and C=25.1–30.3%), which is characteristic of
the mitochondrial genome but not the nuclear genome (Macey et al., 1997a). Similar
82
J. A. SCHULTE ET AL.
strand bias has been reported for other squamate lizards from this region of the
mitochondrial genome (Macey et al., 1997a, b, 1998a,1999; Schulte et al., 1998). All
genes sequenced appear functional; transfer RNA genes encode tRNAs that form
stable secondary structures and protein-coding genes have no premature stop codons.
Therefore, we interpret these sequences as authentic mitochondrial DNA.
Assessment of homology and sequence alignment
All regions in protein-coding genes are alignable. Gaps are placed in ND2 gene
sequences at amino acid position 320 (positions 1259–1261) in L. lutzae. Gaps are
placed in ND2 gene sequences at amino acid position 322 (positions 1265–1267) in
L. multimaculatus, L. salinicola, L. scapularis, and L. wiegmannii.
Among tRNA genes, several loop regions are unalignable as are noncoding regions
between genes. The dihydrouridine (D) and part of the TwC (T) loops for the gene
encoding tRNAIle (positions 100–107, 142–146), and the T and D-loops for the gene
encoding tRNACys (positions 1604–1610, 1643–1645) are excluded from the analyses.
The D-loop from the gene encoding tRNATrp (positions 1353–1362) is excluded
from analyses. The loop of the origin for light-strand replication (OL, positions
1574–1582) between the tRNAAsn and tRNACys genes is not alignable and therefore
not used for phylogenetic analysis. Noncoding sequences between the ND2 and
tRNATrp genes (positions 1334–1339, including the ND2 stop codon), between the
tRNATrp and tRNAAla genes (positions 1417–1418), and between the tRNACys and
tRNATyr genes (positions 1659–1672) are not used.
Three taxa have genes that appear to encode tRNAs with shifted T-stems in the
tRNATyr gene. Liolaemus dorbignyi has tRNA position 65 (Kumazawa & Nishida, 1993)
deleted (gap placed at alignment position 1681), and the L. darwinii population from
Mendoza and L. olongasta have tRNA position 49 deleted (gap placed at alignment
position 1697). Sequences from these taxa are aligned to the secondary structure
observed in all other taxa for the T-stem of the tRNATyr gene.
In the phylogenetic analysis, 64 of the 1774 aligned positions are found to have
an ambiguous alignment. Excluded regions comprise less than 4% of the aligned
sequence positions.
Genic variation
The 60 new mitochondrial DNA sequences range in size from 1736 to 1754
bases. These sequences are aligned with DNA sequences of the outgroups, Oplurus
cuvieri and Phrynosoma douglassii, as well as the sequences from Liolaemus pictus (Macey
et al., 1997b) and Phymaturus somuncurensis (Schulte et al., 1998) as 1774 positions
(Appendix 2). All newly reported Liolaemus and Phymaturus sequences have a mitochondrial gene order of ND1, tRNAIle, tRNAGln, tRNAMet, ND2, tRNATrp, tRNAAla,
tRNAAsn, OL (origin for light-strand replication), tRNACys, tRNATyr, and COI. This
gene order is typical for vertebrates and helps confirm that iguanids do not contain
a derived gene order in this region, in contrast to acrodont lizards (Macey et al.,
1997a, b, 1998a). These aligned sequences contain 785 phylogenetically informative
characters (parsimony criterion).
Different levels of variation are observed among the three protein-coding genes
LIOLAEMUS PHYLOGENETICS
83
T 2. Distribution of phylogenetically informative and variable positions
ND1
Codon positions
1st
2nd
3rd
Informative sites
Variable sites
13
15
5
8
27
27
ND2
Codon positions
1st
2nd
3rd
Informative sites
Variable sites
178
208
92
130
322
340
a
tRNACys
Informative sites
Variable sites
tRNAIle
tRNAGln
Non-stem
Stem
Non-stem
Stem
Non-stem
5
10
5
5
14
22
4
9
2
2
5
6
a
tRNATrp
tRNAAla
Non-stem
Stem
Non-stem
Stem
Non-stem
19
23
6
6
10
12
4
8
15
22
8
10
tRNATyr
COI
Stem
Nonstem
1st
7
12
7
8
15
21
13
16
1
2
Protein-coding
Codon positions
2nd
3rd
1
2
5
6
b
Noncoding
regions
2
4
b
Non- All aligned
coding sequence
regions
tRNA
Codon positions
1st
2nd
3rd
Stem
Non-stem
192
225
87
124
52
68
354
373
tRNAAsn
Stem
Nonstem
98
140
tRNAMet
Stem
Stem
Total
Informative sites
Variable sites
a
2
4
785
934
a
Not including excluded positions.
Noncoding region one is between the ND1 and tRNAIle genes and contains two variable positions. Noncoding
region two is between the tRNAAla and tRNAAsn genes and contains one informative position. Noncoding region
three is between the tRNATyr and COI genes and contains one informative position.
b
and eight tRNA genes included in the analysis (Table 2). All eleven genes sequenced
provide phylogenetically informative characters. Approximately 80% of the variation
and phylogenetically informative sites are from protein-coding regions. First and
second positions of codons provide 45% of the informative characters from proteincoding genes, and stem regions of tRNA genes provide over 60% of the phylogenetically informative characters from tRNA genes. The eight tRNA genes each
provide between seven and 28 (mean 17) phylogenetically informative characters.
In each of the three protein-coding genes, phylogenetically informative sites are
found in first, second, and third positions of codons. In all eight tRNA genes,
phylogenetically informative sites are found in both stem and unpaired regions.
Therefore, no single region dominates the phylogenetic analyses.
Phylogenetic analyses
Analyses of the DNA sequence data produce 60 equally most parsimonious trees,
each with a length of 5858 steps (Figs 2, 3, and 4). Relative to Oplurus and Phrynosoma,
monophyletic grouping of the tropidurine∗ (sensu Macey et al., 1997b) genera,
Liolaemus and Phymaturus, is well supported (100% bootstrap, decay index 26).
J. A. SCHULTE ET AL.
84
100
29
100
26
Oplurus cuvieri
Phrynosoma douglassii
Phymaturus palluma
Phymaturus somuncurensis
91
8
See Fig. 3
Clade 1
Subgenus
Liolaemus
96
11
See Fig. 4
Clade 2
Subgenus
Eulaemus
100
42
Figure 2. Strict consensus of 60 equally most parsimonious trees obtained from analysis of 1710 aligned
base positions (785 phylogenetically informative) of mitochondrial DNA (length=5858, consistency
index 0.271). Bootstrap values are presented above branches and decay indices are shown in bold
below branches. The two clades recovered largely correspond to the subgeneric designations of Laurent
(1984) with clade 1 representing the subgenus Liolaemus and clade 2 representing the subgenus Eulaemus.
See Figures 3 and 4 for topologies of clades 1 and 2, respectively.
Monophyly of Phymaturus also is well supported (100% bootstrap, decay index 29)
as is the monophyly of Liolaemus (100% bootstrap, decay index 42).
Within Liolaemus, two major clades are found: one containing taxa from all three
regions (Andes, eastern lowlands, and western lowlands; clade 1, subgenus Liolaemus;
Fig. 2), and the other composed of Andean and eastern lowland taxa (clade 2,
subgenus Eulaemus; Fig. 2). Both clades receive good support in the phylogenetic
analysis (91% bootstrap, decay index 8, and 96% bootstrap, decay index 11,
respectively).
The first dichotomy within clade 1 of Figure 2 (subgenus Liolaemus; Fig. 3) separates
a well supported monophyletic group (99% bootstrap, decay index 15) from another
poorly supported monophyletic group (decay index 2). Within the well supported
group, L. coeruleus is the sister taxon to the remaining species, which are grouped
with weak support (decay index 1). These remaining species form two well-supported
clades, a primarily Andean clade (100% bootstrap, decay index 16) composed of L.
alticolor, L. bitaeniatus, L. robertmertensi, L. bibronii, and L. gracilis, and a cosmopolitan
clade (100% bootstrap, decay index 24) composed of L. bellii, L. chiliensis, L. cyanogaster,
and L. pictus. Within these two groups, only the grouping of L. bibronii with L. gracilis,
LIOLAEMUS PHYLOGENETICS
99
15
72
1
100
16
69
2
96
8
1
100
24
See
Fig. 2
98
9
71
3
56
3
60
2
2
100
31
97
9
100
16
55
3
100
19
95
11
100
15
100
18
85
L. coeruleus
L. alticolor
L. bitaeniatus
L. robertmertensi
L. bibronii
L. gracilis
L. bellii
L. chiliensis
L. cyanogaster
L. pictus-Neuquén
L. pictus-Rio Negro
L. zapallarensis
L. tenuis
L. lemniscatus
L. monticola
L. nitidus
L. fuscus
L. nigroviridis
L. capillitas
L. leopardinus
L. buergeri
L. ceii
L. petrophilus
L. austromendocinus
L. elongatus
Figure 3. Topology of clade 1 (subgenus Liolaemus) in Figure 2. Bootstrap values exceeding fifty percent
are presented above branches and decay indices are shown in bold below branches. See Figures 2
and 4 for topologies of major lineages and clade 2, respectively.
and the clade comprising both L. pictus populations receive strong support (96%
bootstrap, decay index 8, and 98% bootstrap, decay index 9, respectively).
Within the weakly supported group from the primary dichotomy in clade 1 (Fig.
3), a mainly western lowland clade receives weak support (71% bootstrap, decay
index 3), and its sister taxon, an Andean/eastern lowland clade, receives strong
support (100% bootstrap, decay index 31). The primarily western lowland clade is
composed of L. zapallarensis, L. tenuis, L. lemniscatus, L. monticola, L. nitidus, L. fuscus,
and L. nigroviridis, with the last four species forming a well-supported clade (97%
bootstrap, decay index 9). In addition, strong support is acquired for the sister-taxon
relationships of L. monticola and L. nitidus (100% bootstrap, decay index 19), and L.
fuscus and L. nigroviridis (95% bootstrap, decay index 11). The Andean/eastern
lowland clade is composed of L. capillitas, L. leopardinus, L. buergeri, L. ceii, L. petrophilus,
L. austromendocinus, and L. elongatus. Strong support is acquired for a clade containing
L. leopardinus, L. buergeri, and L. ceii (100% bootstrap, decay index 16) and the sistertaxon relationship of the latter two species (100% bootstrap, decay index 15). In
addition, the sister-taxon relationship of L. austromendocinus and L. elongatus is well
supported (100% bootstrap, decay index 18).
Clade 2 (subgenus Eulaemus) in Figure 2 is composed of taxa restricted to the
Andes and eastern lowlands (Fig. 4). A monophyletic group (100% bootstrap, decay
J. A. SCHULTE ET AL.
86
100
19
See
100
23
Fig. 2
99
11
63
2
87
10
65
7
70
6
89
9
97
9
95
9 100
26 100
15
99
14
97
9
100
17
97
13
2
53
3
100
16
86
6
100
18
1
100
15 100
26
57
3
61
2
Roman numerals = Section
Letters = Series
Number 1 = Clade
98
9
96
9 100
23
L. lineomaculatus
L. somuncurae
L. magellanicus
L. ruibali
L. andinus-La Rioja A
L. famatinae
L. orientalis
L. dorbignyi
L. poecilochromus
L. multicolor
L. andinus-Jujuy
L. cuyanus
B
L. fitzingerii
L. pseudoanomalus
L. lutzae
1
L. occipitalis
L. multimaculatus
L. scapularis
L. salinicola
L. wiegmannii
L. melanops
L. rothi
L. abaucan
L. koslowskyi
L. quilmes
L. ornatus
L. albiceps
L. irregularis
L. uspallatensis
L. chacoensis
L. olongasta
L. darwinii-Mendoza
L. darwinii-La Rioja
L. boulengeri
L. laurenti I
II
Figure 4. Topology of clade 2 (subgenus Eulaemus) in Figure 2. Bootstrap values exceeding fifty percent
are presented above branches and decay indices are shown in bold below branches. Informal taxonomic
sections (I=L. lineomaculatus section, II=L. montanus section), series (A=L. montanus series, B=L. boulengeri
series), and the sand-lizard clade of the L. boulengeri series (1) are labelled to the right. See Figures 2
and 3 for topologies of major lineages and clade 1, respectively.
index 19) containing southeastern lowland species (L. lineomaculatus, L. somuncurae,
and L. magellanicus; recognized here as the L. lineomaculatus section) forms the sister
taxon to a moderately supported group containing all remaining species of Eulaemus
(recognized here as the L. montanus section; 87% bootstrap, decay index 10). Among
these remaining species, a well-supported group (100% bootstrap, decay index 23)
composed of Andean species from the Puna Plateau (recognized here as the L.
montanus series of the L. montanus section) forms the sister group to a weakly supported
clade (70% bootstrap, decay index 6) composed primarily of eastern lowland taxa
(recognized here as the L. boulengeri series of the L. montanus section). Among taxa
from the Puna Plateau, a clade comprising L. ruibali, L. andinus – La Rioja, and L.
famatinae receives strong support (99% bootstrap, decay index 11) and forms the
sister taxon to all other species (L. orientalis, L. dorbignyi, L. poecilochromus, L. multicolor,
and L. andinus – Jujuy) from the Puna Plateau (63% bootstrap, decay index 2). All
relationships within both groups from the Puna Plateau receive strong support (at
least 95% bootstrap, decay index 9).
Among species in the primarily eastern clade corresponding to the L. boulengeri
series, three clades can be distinguished: (1) the eastern L. cuyanus and L. fitzingerii
(99% bootstrap, decay index 14), (2) a primarily eastern sand-dwelling clade (65%
LIOLAEMUS PHYLOGENETICS
87
bootstrap, decay index 7), and (3) remaining species occurring in both Andean and
eastern lowland regions (86% bootstrap, decay index 6). In the eastern sand-dwelling
clade, L. pseudoanomalus is the sister taxon to the other species (here called the ‘sandlizard clade’ of the L. boulengeri series) with good support (97% bootstrap, decay
index 9). Two well-supported clades are distinguished within the sand-lizard clade:
(1) L. lutzae and L. occipitalis (100% bootstrap, decay index 17), and (2) monophyly
of a group containing L. multimaculatus, L. scapularis, L. salinicola, and L. wiegmannii
(97% bootstrap, decay index 13). However, relationships among the latter four
species are not well supported.
Within the clade composed of both Andean and eastern lowland species, L.
melanops and L. rothi form a monophyletic group (100% bootstrap, decay index 16)
whose sister taxon (100% bootstrap, decay index 18) contains all other species (L.
abaucan, L. koslowskyi, L. quilmes, L. ornatus, L. albiceps, L. irregularis, L. uspallatensis, L.
chacoensis, L. olongasta, L. darwinii, L. boulengeri, and L. laurenti). Two well-supported
subgroups of the latter clade include (1) an Andean clade (100% bootstrap, decay
index 15) containing L. ornatus as the sister taxon to a clade comprising L. albiceps
and L. irregularis (100% bootstrap, decay index 26), and (2) a clade composed of L.
chacoensis, L. olongasta, L. darwinnii, L. boulengeri, and L. laurenti (98% bootstrap, decay
index 9). The last three species form a well-supported clade (96% bootstrap, decay
index 9), with the Mendoza population of L. darwinii as the sister taxon to a clade
composed of L. darwinii from La Rioja, L. boulengeri, and L. laurenti (100% bootstrap,
decay index 23).
Two populations are sampled for each of three different species. In clade 1
(subgenus Liolaemus), the two populations of L. pictus form a monophyletic group
with 3.2% sequence divergence. In contrast, neither of the two species examined in
clade 2 (subgenus Eulaemus) constitute monophyletic groups. In the L. montanus
section, the two populations of L. andinus examined have 8.4% sequence divergence;
L. andinus from La Rioja is the sister taxon to L. famatinae, and L. andinus from Jujuy
is the sister taxon to L. multicolor. Liolaemus poecilochromus, formerly attributed to L.
andinus, is recognized here as a full species and is the sister taxon to a clade containing
L. andinus from Jujuy and L. multicolor. In the L. boulengeri series, L. darwinii from
Mendoza is the sister taxon to a clade containing L. darwinii from La Rioja, L.
boulengeri, and L. laurenti. The two L. darwinii populations show 4.9% sequence
divergence. Taxonomic revision awaits further sampling of these species.
Evaluating Andean vicariance
Our molecular phylogenetic analysis rejects the hypothesis that Liolaemus comprises
monophyletic groupings corresponding geographically to the Andes, the eastern
lowlands, and the western lowlands (Figs 1 and 5). When a representative of the
overall shortest trees (A in Appendix 3) is compared to a representative of the
shortest alternative trees constraining Andean (B in Appendix 3), eastern-lowland
(C in Appendix 3), or western-lowland (D in Appendix 3) species to form monophyletic
groups, each alternative hypothesis is rejected in favor of the overall most parsimonious tree (Table 3; comparisons 1, 2, and 3, respectively). Therefore, our
phylogenetic estimate requires multiple invasions of each of the three geographic
regions investigated.
88
J. A. SCHULTE ET AL.
Phymaturus palluma
Phymaturus somuncurensis
L. coeruleus
L. alticolor
L. bitaeniatus
L. robertmertensi
L. bibronii
L. gracilis
L. bellii
L. chiliensis
L. cyanogaster
L. pictus-Neuquén
L. pictus-Rio Negro
L. zapallarensis
L. tenuis
L. lemniscatus
L. monticola
L. nitidus
L. fuscus
L. nigroviridis
L. capillitas
L. leopardinus
L. buergeri
L. ceii
L. petrophilus
L. austromendocinus
L. elongatus
L. lineomaculatus
L. somuncurae
L. magellanicus
L, ruibali
L. andinus-La Rioja
L. famatinae
L. orientalis
L. dorbignyi
L. poecilochromus
L. multicolor
L. andinus-Jujuy
L. cuyanus
L. fitzingerii
L. pseudoanomalus
L. lutzae
L. occipitalis
L. multimaculatus
L. scapularis
L. salinicola
L. wiegmannii
L. melanops
L. rothi
L. abaucan
L. koslowskyi
L. quilmes
L. ornatus
L. albiceps
L. irregularis
L. uspallatensis
L. chacoensis
L. olongasta
L. darwinii-Mendoza
L. darwinii-La Rioja
L. boulengeri
L. laurenti
Figure 5. Phylogenetic reconstruction of Liolaemus distributions. The topology is after Figures 2, 3, and
4. Light branches represent Andean taxa; gray branches represent taxa that occur east of the Andes,
and dark branches represent taxa that occur west of the Andes. Hatched branches are equivocal for
occurrence in the Andes or the eastern or western lowlands. Liolaemus pictus occurs at low elevations
on both sides of the Andes and its origins are uncertain.
Evolution of viviparity
We investigate multiple origins of viviparity, the reversibility of parity mode, and
the hypothesis of viviparity being associated with cool environments. The strict
consensus tree from the phylogenetic analysis depicts multiple origins of viviparity
in Liolaemus (Fig. 6A). When the Wilcoxon signed-ranks test is used to compare a
representative overall shortest tree (A in Appendix 3) to a representative alternative
tree (E in Appendix 3) depicting a monophyletic grouping of all viviparous taxa,
the latter hypothesis is significantly longer and therefore rejected in favor of the
overall shortest tree (Table 3; comparison 4).
LIOLAEMUS PHYLOGENETICS
89
T 3. Results of Wilcoxon signed-ranks tests
Hypothesis
Treesa
Nb
Zc
P-valued
1. Andean species form a
monophyletic group
2. Eastern lowland species form
a monophyletic group
3. Western lowland species
form a monophyletic group
4. Viviparous species form a
monophyletic group
5. Viviparous species in clade 1
form a monophyletic group
6. Viviparous species in clade 2
form a monophyletic group
A vs. B
420
16.65
0.001∗
A vs. C
375
15.45
0.001∗
A vs. D
225
8.38
0.001∗
A vs. E
285
10.06
0.001∗
A vs. F
191
6.53
0.001∗
A vs. G
151
3.43
0.001∗
a
See Appendix 3 for phylogenetic topologies used in tests.
Number of characters differing in minimum numbers of changes on paired topologies.
c
Normal approximation for Wilcoxon signed-ranks test.
d
Asterisks indicate a significant difference between the representative overall shortest tree (A) and a representative
alternative tree (B-G) using the two-tailed probability for the Wilcoxon signed-ranks test (Felsenstein, 1985b;
Templeton, 1983). A significant result denotes rejection of the stated hypothesis.
b
Each of the two major clades (subgenera Liolaemus and Eulaemus) of Liolaemus
contains oviparous and viviparous forms. The hypothesis that viviparous lineages
form a monophyletic group is tested separately within each of these clades. A
representative of the shortest alternative trees showing viviparous taxa forming a
monophyletic group is compared to a representative of the overall shortest trees for
each major clade. The Wilcoxon signed-ranks test rejects each of the alternative
hypotheses (F and G in Appendix 3) in favor of the overall shortest tree (Table 3;
comparisons 5 and 6, respectively). These results reject monophyly of viviparous
lineages within both major clades of Liolaemus.
To evaluate the evolutionary association between viviparity and cool environments,
the most parsimonious reconstruction of occurrence at high elevation (above 2500
meters in elevation) and high latitude (exceeding 40 degrees south) is mapped onto
the strict consensus of the 60 overall most parsimonious trees using MacClade
(Maddison & Maddison, 1992) (Fig. 6B). All six origins of viviparity inferred under
the assumption that viviparity is irreversible occur in cold environments, consistent
with the hypothesis that viviparity is adaptive in these environments. Because a
large portion of the phylogeny of Liolaemus occurs in cold environments, this
association between viviparity and cold climates is not significant using the concentrated changes test (Maddison, 1990). If reproductive mode is considered reversible, both gains and losses of viviparity occur in cold environments, a result that
is equivocal with respect to the hypothesis that viviparity is adaptive in cold
environments.
DISCUSSION
Historical biogeography
Phylogenetic relationships among Liolaemus species reject the hypothesis that
species occurring in the Andes, in the eastern lowlands, and in the western lowlands
Figure 6. Caption on facing page.
90
J. A. SCHULTE ET AL.
LIOLAEMUS PHYLOGENETICS
91
comprise distinct geographic clades. The shortest phylogenetic estimate suggests
multiple invasions of each of these geographic areas (Fig. 5). Liolaemus appears to
have originated either in the low-elevation region east of the Andes or in the Andes.
Clade 2 (subgenus Eulaemus) in Figures 2 and 4 is composed entirely of species from
these two regions, whereas clade 1 (subgenus Liolaemus) in Figures 2 and 3 contains
taxa from these regions and the lowlands west of the Andes. Both major clades
require multiple origins of Andean species. Furthermore, clade 1 requires at least
two independent origins of western lowland species from either the Andes or the
low-elevation region east of the Andes, and at least one independent invasion of the
eastern lowlands from the Andes. In clade 2, species occurring at latitudes higher
than 40 degrees south on the east side of the Andes (L. lineomaculatus section in Table
1) form the sister taxon to all other species (L. montanus section) in this clade. Species
that occur in the Andes on the Puna Plateau (L. montanus series) form the sister
group to the rest of the species (L. boulengeri series) in this clade with the exception
of species occurring at high latitudes (L. lineomaculatus section). Most of the remaining
species (L. boulengeri series) in clade 2 occur east of the Andes and at least three
separate invasions of the Andes have occurred among these species. Across the
phylogenetic tree, at least fourteen evolutionary shifts in geographic distribution
have occurred among species now occupying the three regions.
The phylogenetic pattern of Liolaemus suggests recurring vicariance with subsequent
dispersal between regions, making further vicariant events possible. The Andes have
been uplifting continually for the last 25 million years (Norabuena et al., 1998) and
Liolaemus populations have had numerous opportunities to become regionally isolated
by vicariance. Subsequent dispersal between regions may have occurred either by
climatic changes or shifts in life history, such as the development of viviparous
reproduction; this dispersal then would permit further vicariance.
Dating phylogenetic divergence and vicariance
Accumulation of DNA substitutions between species can be used to date evolutionary divergences. Recent studies have shown that the segment of mitochondrial
DNA used in this study is evolving at a rate of approximately 0.65% change per
million years per lineage in other iguanian and gekkonid lizards, bufonid frogs, and
Figure 6. Parsimony reconstructions of viviparous reproduction and occurrence in cold climates
(altitudes above 2500 m and/or latitudes exceeding 40 degrees south). The strict consensus tree as
shown in Figures 2, 3, and 4 is presented. A, evolution of viviparity in Liolaemus. The outgroup, Phrynosoma
douglassii, is coded as oviparous, a condition observed in most species within the Phrynosomatinae and
considered ancestral for that taxon. Light branches represent oviparous lineages; dark branches are
viviparous lineages, and hatched branches are lineages equivocal for parity mode. Clades numbered
1, 2, and 6 require independent origins of viviparity and, if viviparity is considered irreversible, clades
3, 4, and 5 each require an additional independent origin of viviparity. Arrows denote branches that
potentially have losses of viviparity under the hypothesis that viviparity is reversible. B, parsimony
reconstruction of species occurring in cold climates. Light branches represent lineages found below
2500 meters elevation and/or north of 40 degrees south latitude; dark branches denote lineages that
have part or all of their distribution above 2500 meters elevation and/or exceeding 40 degrees south
latitude, and hatched branches are lineages equivocal for occurrence in cold climates. Arrows and
clade designations show evolutionary shifts of parity mode as described in part A.
J. A. SCHULTE ET AL.
92
Number of pairwise comparisons
300
250
200
150
100
50
0
1
2
3
4
5
6
7
8
9 10 11 12
Estimated timing of divergence in million years
13
14
Figure 7. Plot of the number of pairwise comparisons among Liolaemus species and their inferred ages.
For pairwise comparisons, 1.3% sequence divergence is expected to accumulate over one million years
(Macey et al., 1998a). Note that less than two percent of pairwise comparisons are suggested to be
younger than six million years. The average pairwise comparisons between the two major clades
specify 12.6 million years divergence (marked by an arrow on the x axis) assuming a linear relationship
between nucleotide substitutions and time. This divergence is most likely older than 12.6 million years
because mitochondrial DNA is expected to show some degree of saturation beyond 10 million years
of divergence (Moritz et al., 1987).
fishes (Bermingham, McCafferty & Martin, 1997; Macey et al., 1998a, b, 1999). The
mean number of substitutions between all pairwise comparisons of taxa across the
two major clades (Fig. 2) is 279, which is equivalent to 16.4% sequence divergence
for any pair of lineages. This number corresponds to 8.2% change per lineage and
predicts 12.6 million years divergence time between the subgenera using the
calibration given above. Moritz, Dowling & Brown (1987) have suggested that
mitochondrial DNA begins to saturate at ten million years, and that a linear
relationship between nucleotide substitution and time is not expected beyond 10
million years. Therefore, our estimation of 12.6 million years is probably too low
and perhaps this initial divergence event in Liolaemus corresponds to an earlier phase
of the Andean uplift.
The timing of additional divergence events may be inferred from pairwise
comparisons. A plot of the number of pairwise comparisons between all Liolaemus
sampled reveals that less than two percent of the divergence events post-date the
end of the Miocene, approximately 6 million years ago (Harland et al., 1989; Fig.
7). This result suggests that the majority of divergence events studied here precede
the Pliocene and Pleistocene climatic changes, further supporting our suggestion of
vicariant divergence events caused by the Andean uplift with subsequent dispersal.
Fossil evidence documents occurrence of Liolaemus in the Miocene (Albino, 1998).
LIOLAEMUS PHYLOGENETICS
93
Evolution of parity mode
Phylogenetic analyses reveal multiple origins of viviparous reproduction among
Liolaemus species. The transition from oviparity to viviparity occurs unequivocally
three times in the parsimony reconstruction of viviparity (Fig. 6): two times in clade
1 (subgenus Liolaemus) and once in clade 2 (subgenus Eulaemus). In clade 1, viviparity
evolves independently in L. nigroviridis and the ancestor of an unresolved group
containing L. bellii, L. cyanogaster, and L. pictus. The latter group is compatible with
although not supported by the molecular phylogenetic analysis, and could be resolved
to require additional gains of viviparity. In clade 2, viviparity evolves independently
in the ancestor of a high-elevation group composed of L. ornatus, L. albiceps, and L.
irregularis.
Further interpretation of the evolution of viviparity in this group depends on
whether parity mode is considered reversible. If viviparity is irreversible, it has
evolved at least six times in Liolaemus and once in the outgroup, Phymaturus. If
viviparity is reversible and the ancestral condition for Liolaemus, at least three
independent losses of viviparity with three subsequent changes back to viviparity
are inferred for Liolaemus, plus an additional loss of viviparity is inferred for Phymaturus.
Several recent studies have addressed the issue of the reversibility of parity mode
in squamate reptiles (Benabib et al., 1997; Lee & Doughty, 1997; Lee & Shine,
1998), and agree that no undeniably strong evidence exists for irreversibility of
viviparity.
Although all six clades that are viviparous occupy cold environments at elevations
above 2500 meters and/or latitudes exceeding 40 degrees south, evolutionary
association between cool environments and origin of viviparity is equivocal. The
association of six independent origins of viviparity with cold environments would
be expected by chance alone in Liolaemus according to a concentrated changes test
(Maddison, 1990), because a majority of the phylogenetic history of Liolaemus species
is inferred to have occurred in cold environments. Furthermore, if viviparity is
reversible in Liolaemus, any reversals also would be associated with cold environments
and would reject the hypothesis that viviparity is an adaptation to cold climates. If
further evidence rejects the hypothesis that viviparity is reversible, the results from
Liolaemus analyzed in the broader context of squamate phylogeny may lend support
to the hypothesis that viviparity arises primarily in cold environments as an adaptation
to those conditions.
Phylogenetic relationships and taxonomy
Morphological data (Etheridge & de Queiroz, 1988; Etheridge, 1995; Frost &
Etheridge, 1989) suggest that Liolaemus, Phymaturus, and the monotypic genus,
Ctenoblepharys, together compose one of three major subgroups of the Tropidurinae∗
(sensu Macey et al., 1997b). Schulte et al. (1998) report that the Tropidurinae∗
appears nonmonophyletic, although monophyly cannot be rejected statistically. The
relationship of Phymaturus and Liolaemus as sister taxa receives strong support both
in our analysis and the analysis of Schulte et al. (1998). Phylogenetic analyses
including DNA sequence for the monotypic genus Ctenoblepharys suggest that it is
outside of the Phymaturus and Liolaemus clade (unpublished data). Therefore, we
consider the monophyly of Liolaemus well corroborated.
94
J. A. SCHULTE ET AL.
Several subgenera are recognized within Liolaemus (reviewed in Etheridge, 1995).
Two of these subgenera, Liolaemus and Eulaemus (Laurent, 1992), are hypothesized
to correspond largely to the two major clades recovered in this phylogenetic analysis.
In addition, a subgeneric name is available for the ‘sand lizard’ clade, Ortholaemus
(Girard, 1857; Laurent, 1984). Our phylogenetic analysis finds this group monophyletic and well supported (97% bootstrap, decay index 9). However, recognition
of Ortholaemus would render Eulaemus paraphyletic. Another subgenus, Ceiolaemus
(Laurent, 1984), represented in our sampling by L. pseudoanomalus, also is nested
within Eulaemus. Hence, our phylogenetic analysis is most compatible with the
recognition of only two subgenera, Liolaemus and Eulaemus, corresponding to the two
major clades recovered.
Etheridge (1995) recognizes numerous species groups within Liolaemus. The L.
nitidus group (sensu Etheridge, 1995) is not monophyletic because L. chacoensis, L.
lineomaculatus, L. magellanicus, and the species in clade 1 of figure 2 do not form a
monophyletic group in our analysis. Clade 1 does correspond to the L. chiliensis
group of Etheridge (1995) with the exception of our placing L. chacoensis in clade 2
as proposed by Laurent (1984). Our clade 2 corresponds to the L. signifer group of
Etheridge (1995) with the exception of our inclusion of L. lineomaculatus, L. somuncurae,
L. magellanicus, and L. chacoensis. We recover a monophyletic L. montanus group
(Etheridge, 1995) except for our inclusion of L. chacoensis and L. pseudoanomalus. In
our taxonomic sampling, species within Etheridge’s (1995) L. montanus group,
excluding the L. boulengeri group, form a monophyletic group composed of L. ruibali,
L. andinus – La Rioja, L. famatinae, L. orientalis, L. dorbignyi, L. poecilochromus, L. multicolor,
and L. andinus – Jujuy. We find support for Etheridge’s (1995) L. boulengeri group
except for our inclusion of L. chacoensis and L. pseudoanomalus. Nested within the L.
boulengeri group is the L. wiegmannii group. Support is found for monophyly of the L.
wiegmannii group, consisting of L. lutzae, L. occipitalis, L. multimaculatus, L. scapularis, L.
salinicola, and L. wiegmannii in our sampling.
The subgenus Liolaemus is largely synonymous with the L. chiliensis group of
Etheridge (1995) and we recommend recognition of this subgenus. Because the L.
nitidus group is not monophyletic, we recommend that this group not be recognized.
The subgenus Eulaemus, as defined above, corresponds closely with the L. signifer
group of Etheridge (1995) and use of the subgeneric name is recommended. The
L. lineomaculatus group of Etheridge (1995) is monotypic, and inclusion of L. somuncurae
and L. magellanicus in this group is supported by our analysis; we refer to this clade
as the L. lineomaculatus section of the subgenus Eulaemus. The L. montanus and L.
wiegmannii groups are found to be monophyletic, and the L. boulengeri group as defined
above is monophyletic. We recognize Etheridge’s (1995) L. montanus group as a
section of the subgenus Eulaemus, and Etheridge’s (1995) L. boulengeri group as a
series of the L. montanus section. The clade found on the Puna Plateau is recognized
as the L. montanus series of the L. montanus section. Because the L. wiegmannii group
(sensu Etheridge, 1995) overlaps in content with the L. boulengeri series, we refer to
the L. wiegmannii group as the ‘sand-lizard clade’ of the L. boulengeri series.
A recent study uses behavioral characters associated with burial in sand to
reconstruct the phylogeny of the L. boulengeri series (Halloy, Etheridge & Burghardt,
1998). This phylogenetic study uses outgroup taxa from the L. montanus series, which
forms the monophyletic sister taxon to the L. boulengeri series in our phylogenetic
analysis. The phylogenetic hypothesis presented in Halloy et al. (1998) suggests that
L. ornatus is the sister taxon to all remaining members of the L. boulengeri series,
LIOLAEMUS PHYLOGENETICS
95
followed by L. darwinii as the sister taxon to all other species except L. ornatus. Each
of these species is deeply nested in our phylogenetic analysis with strong support.
In addition, these taxa are not closely related, suggesting that the conflicts between
phylogenetic reconstruction using the behavioral characters and molecular characters
are not simply a difference in the position of the root. None of the branching
patterns recovered from behavioral characters are compatible with our phylogenetic
analysis. If the molecular phylogeny is correct, numerous parallelisms and reversals
of behavioral characteristics associated with sand burial must have occurred in
Liolaemus.
ACKNOWLEDGEMENTS
This work is supported by grants from the National Science Foundation (predoctoral fellowships to J.A.S. and J.R.M.; DEB-9318642 to J.B. Losos, K. de
Queiroz, and A.L.; DEB-9726064 to A.L., J.R.M and Theodore J. Papenfuss), a
Porter Fellowship from the American Physiological Society, and grants from the
Explorers Club, the Society of Integrative and Comparative Biologists, the Chicago
and Upstate [New York] Herpetological Societies, the American Society of Ichthyologists and Herpetologists, and the Graduate School, Biology Department, and
Biology Resources Research Center at the University of Nevada, Reno (to R.E.E).
The third author thanks the following for permission to examine specimens in
their care: José Navarro (DBCUCH), Raymond Laurent, Gustavo Scrocchi, Sonia
Kretzschmar (FML), Alan Resetar and Harold Voris (FMNH), Herman Nuñez
(MNHNC), and Richard Etheridge (SDSU). Tissue specimens were kindly provided
by Carla Cicero, Félix Cruz, Richard Etheridge, Fred da Rocha, Richard D. Sage,
Laura E. Vega, David B. Wake, Jorge D. Williams, and Hussan Zaher. We thank
Kevin de Queiroz, Richard Etheridge, and Jonathan B. Losos for valuable comments
on an earlier draft of the manuscript, and Kraig Adler for consultation on taxonomic
issues.
REFERENCES
Albino AM. 1998. Primer registro fósil de Liolaemus (Squamata: Iguania: Tropiduridae). Actas del VII
Congreso Argentino de Paleontologı́a y Biostratigrafı́a (Bahı́a, Blanca), p. 57. [Abstract].
Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC,
Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG. 1981.
Sequence and organization of the human mitochondrial genome. Nature 290: 457–465.
Benabib M, Kjer KM, Sites JW Jr. 1997. Mitochondrial DNA sequence-based phylogeny and the
evolution of viviparity in the Sceloporus scalaris group (Reptilia, Squamata). Evolution 51: 1262–1275.
Bermingham E, McCafferty SS, Martin AP. 1997. Fish biogeography and molecular clocks:
Perspectives from the Panamanian Isthmus. In: Kocher TD, Stepien CA, eds. Molecular Systematics
of Fishes San Diego: Academic Press, 113–128.
Bremer K. 1994. Branch support and tree stability. Cladistics 10: 295–304.
Cei JM. 1986. Reptiles del centro, centro-oeste y sur de la Argentina. Herpetofauna de las zonas
áridas y semiáridas. Museo Regionale di Scienze Naturali Torino, Monografie 4: 1–527.
Cei JM. 1993. Reptiles del noroeste, nordeste y este de la Argentina. Herpetofauna de las selvas
subtropicales, Puna y Pampas. Bollettino Museo Regionale di Scienze Naturali–Torino, Monografie 14: 1–949.
Creer DA, Kjer KM, Simmons DL, Sites JW Jr. 1997. Phylogenetic relationships of the Sceloporus
scalaris complex (Squamata). Journal of Herpetology 31: 353–364.
96
J. A. SCHULTE ET AL.
Donoso-Barros R. 1966. Reptiles de Chile. Santiago: Universidad de Chile.
Etheridge R. 1995. Redescription of Ctenoblepharys adspersa Tschudi, 1845, and the taxonomy of
Liolaeminae (Reptilia: Squamata: Tropiduridae). American Museum Novitates 3142: 1–34.
Etheridge R, de Queiroz K. 1988. A Phylogeny of Iguanidae. In: Estes R, Pregill G, eds. Phylogenetic
Relationships of the Lizard Families, Essays Commemorating Charles L. Camp. Stanford: Stanford University
Press, 283–368.
Felsenstein J. 1985a. Confidence limits on phylogenies: an approach using the bootstrap. Evolution
39: 783–791.
Felsenstein J. 1985b. Confidence limits on phylogenies with a molecular clock. Systematic Zoology 34:
152–161.
Frost DR, Etheridge R. 1989. A phylogenetic analysis and taxonomy of iguanian lizards (Reptilia:
Squamata). University of Kansas Museum of Natural History, Miscellaneous Publications 81: 1–65.
Girard C. 1857. Descriptions of some new reptiles, collected by the United States Exploring Expedition,
under the command of Capt. Charles Wilkes, U.S.N. Fourth Part. – Including the species of
saurians, exotic to North America. Proceedings of the Academy of Sciences in Philadelphia 9: 195–199.
Guillette LJ Jr. 1993. The evolution of viviparity in lizards. Bioscience 43: 742–751.
Halloy M, Etheridge R, Burghardt GM. 1998. To bury in sand: Phylogenetic relationships among
lizard species of the boulengeri group, Liolaemus (Reptilia: Squamata: Tropiduridae), based on
behavioral characters. Herpetological Monographs 12: 1–37.
Harland WB, Armstrong RL, Cox AV, Craig LE, Smith AG, Smith DG, 1989. A Geologic Time
Scale 1989. Cambridge: Cambridge University Press.
Kumazawa Y, Nishida M. 1993. Sequence evolution of mitochondrial tRNA genes and deepbranch animal phylogenetics. Journal of Molecular Evolution 37: 380–398.
Larson A. 1998. The comparison of morphological and molecular data in phylogenetic systematics.
In: DeSalle R, Schierwater B, eds. Molecular Approaches to Ecology and Evolution. Basel, Switzerland:
Birkhäuser Verlag, 275–296.
Laurent RF. 1984. On some iguanid genera related to or previously confused with Liolaemus Wiegmann.
Journal of Herpetology 18: 357–373.
Laurent RF. 1992. On some overlooked species of the genus Liolaemus Wiegmann (Reptilia Tropiduridae) from Peru. Breviora 494: 1–33.
Lee MSY, Doughty P. 1997. The relationship between evolutionary theory and phylogenetic analysis.
Biological Reviews 72: 471–495.
Lee MSY, Shine R. 1998. Reptilian viviparity and Dollo’s Law. Evolution 52: 1441–1450.
Macey JR, Larson A, Ananjeva NB, Fang Z, Papenfuss TJ. 1997a. Two novel gene orders and
the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome.
Molecular Biology and Evolution 14: 91–104.
Macey JR, Larson A, Ananjeva NB, Papenfuss TJ. 1997b. Evolutionary shifts in three major
structural features of the mitochondrial genome among iguanian lizards. Journal of Molecular Evolution
44: 660–674.
Macey JR, Schulte II JA, Ananjeva NB, Larson A, Rastegar-Pouyani N, Shammakov SM,
Papenfuss TJ. 1998a. Phylogenetic relationships among agamid lizards of the Laudakia caucasia
species group: Testing hypotheses of biogeographic fragmentation and an area cladogram for the
Iranian Plateau. Molecular Phylogenetics and Evolution 10: 118–131.
Macey JR, Schulte II JA, Larson A, Fang Z, Wang Y, Tuniyev BS, Papenfuss TJ. 1998b.
Phylogenetic relationships of toads in the Bufo bufo species group from the eastern escarpment of
the Tibetan Plateau: A case of vicariance and dispersal. Molecular Phylogenetics and Evolution 9: 80–87.
Macey JR, Wang Y, Ananjeva NB, Larson A, Papenfuss TJ. 1999. Vicariant patterns of
fragmentation among gekkonid lizards of the genus Teratoscincus produced by the Indian collision:
A molecular phylogenetic perspective and an area cladogram for Central Asia. Molecular Phylogenetics
and Evolution 12: 320–332.
Macey JR, Verma A. 1997. Homology in phylogenetic analysis: Alignment of transfer RNA genes
and the phylogenetic position of snakes. Molecular Phylogenetics and Evolution 7: 272–279.
Maddison WP. 1990. A method for testing the correlated evolution of two binary characters: Are
gains or losses concentrated on certain branches of a phylogenetic tree? Evolution 44: 539–557.
Maddison WP, Maddison DR. 1992. MacClade, analysis of phylogeny and character evolution, version 3.0.
Sunderland, Mass: Sinauer.
Maniatis T, Fritsch EF, Sambrook J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring
Harbor, New York: Cold Spring Harbor Laboratory Press.
LIOLAEMUS PHYLOGENETICS
97
Markgraf V. 1993. Climatic history of Central and South America since 18,000 yr B.P.: Comparison
of pollen records and model simulations. In: Wright Jr. HE, Kutzbach JE, Webb III T, Ruddiman
WF, Street-Perrott FA and Bartlein PJ, eds. Global Climates Since the Last Glacial Maximum. Minneapolis,
Minnesota: University of Minnesota Press, 357–385.
Méndez-de la Cruz FR, Villagrán-Santa Cruz M, Andrews RM. 1998. Evolution of viviparity
in the lizard genus Sceloporus. Herpetologica 54: 521–532.
Mink DG, Sites JW Jr. 1996. Species limits, phylogenetic relationships, and origins of viviparity in
the scalaris complex of the lizard genus Sceloporus (Phrynosomatidae: Sauria). Herpetologica 52: 551–571.
Montanucci RR. 1987. A phylogenetic study of the horned lizards, genus Phrynosoma, based on
skeletal and external morphology. Contributions of the Natural History Museum of Los Angeles County 113:
1–26.
Moritz C, Dowling TE, Brown WM. 1987. Evolution of animal mitochondrial DNA: Relevance
for population biology and systematics. Annual Review of Ecology and Systematics 18: 269–292.
Norabuena E, Leffler-Griffin L, Mao A, Dixon T, Stein S, Sacks IS, Ocola L, Ellis M. 1998.
Space geodetic observations of Nazca-South America convergence across the central Andes. Science
279: 358–362.
Nuñez H. 1992. Geographical data of Chilean lizards and snakes in the Museo Nacional de Historia
Natural Santiago, Chile. Smithsonian Herpetological Information Service 91: 1–29.
Ramı́rez Pinilla MP. 1991a. Estudio histológico de los tractos reproductivos y actividad cı́clica anual
reproductiva de machos y hembras de dos especies del género Liolaemus (Reptilia: Sauria: Iguanidae).
Unpubl. Disser. Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, Tucumán,
Argentina.
Ramı́rez Pinilla MP. 1991b. Variaciones histológicas en los tractos reproductivos de machos de
algunas especies de Liolaemus (Reptilia: Sauria: Iguanidae) en diferentes estados de actividad
reproductiva. Revista Brasileira de Biologia 52: 133–140.
Ramı́rez Pinilla MP. 1994. Reproductive and fat body cycles of the oviparous lizard Liolaemus
scapularis. Journal of Herpetology 28: 521–524.
Reeder TW, Wiens JJ. 1996. Evolution of the lizard family Phrynosomatidae as inferred from diverse
types of data. Herpetological Monographs 10: 43–84.
Rocha CFD. 1992. Reproductive and fat body cycles of the tropical sand lizard (Liolaemus lutzae) of
southeastern Brazil. Journal of Herpetology 26: 17–23.
Schulte JA II, Macey JR, Larson A, Papenfuss TJ. 1998. Molecular tests of phylogenetic
taxonomies: A general procedure and example using four subfamilies of the lizard family Iguanidae.
Molecular Phylogenetics and Evolution 10: 367–376.
Scolaro JA, Cei JM. 1997. Systematic status and relationships of Liolaemus species of the archeforus
and kingii groups: a morphological and taxonumerical approach (Reptilia: Tropiduridae). Bollettino
Museo Regionale di Scienze Naturali Torino 15(2): 369–406.
Shine R. 1985. The evolution of viviparity in reptiles: An ecological analysis. In: Gans C and Billet
F, eds. Biology of the Reptilia. Volume 15. New York: Wiley, 605–694.
Shine R, Bull JJ. 1979. The evoluation of live-bearing in lizards and snakes. American Naturalist 113:
905–923.
Sites JW, Archie JW, Cole CJ, Villela OF. 1992. A review of phylogenetic hypotheses for the lizard
genus Sceloporus (Phrynosomatidae): Implications for ecological and evolutionary studies. Bulletin of
the American Museum of Natural History 213: 1–110.
Swofford DL. 1998. PAUP∗. Phylogenetic Analysis Using Parsimony (∗ and Other Methods), Beta Version 4.0b1.
Sunderland, Mass: Sinauer.
Templeton AR. 1983. Phylogenetic inference from restriction endonuclease cleavage site maps with
particular reference to the evolution of humans and the apes. Evolution 37: 221–244.
Tinkle DW, Gibbons JW. 1977. The distribution and evolution of viviparity in reptiles. Miscellaneous
Publications of the Museum of Zoology, University of Michigan 154: 1–55.
Veloso A, Navarro J. 1988. Lista systemética y distribución geográfica de anfı́bios y reptiles de Chile.
Bollettino Museo Regionale Scienze Naturale Torino 6: 481–539.
Zhang D-X, Hewitt GM. 1996. Nuclear integrations: Challenges for mitochondrial DNA markers.
Trends in Ecology & Evolution 11: 247–251.
98
J. A. SCHULTE ET AL.
APPENDIX 1
Museum numbers and localities for voucher specimens from which DNA was obtained, and GenBank
accession numbers are presented below in phylogenetic order (Table 1). Acronyms are FML for
Fundacion Miguel Lillo, Tucumán, Argentina; MIC for the personal collection of Miguel I. Christie;
MLP for Museo La Plata, La Plata, Argentina; MNRJ for Museu Nacional do Rio de Janeiro, Brazil;
MVZ for the Museum of Vertebrate Zoology, University of California at Berkeley; MVZ-RDS for
the personal collection of Richard D. Sage being deposited at the Museum of Vertebrate Zoology;
MVZ-RM for the personal collection of the second author being deposited at the Museum of Vertebrate
Zoology; REE for the personal collection of the third author; UFRGS for Universidade Federal do
Rio Grande do Sul, Porto Alegre, Brazil; UNMdP for Universidad Nacional Mar del Plata, Mar del
Plata, Argentina; SDSU for San Diego State University, San Diego.
Outgroup
Oplurus cuvieri, Madagascar (MVZ-RM 10468, U82685; Macey et al., 1997b); Phrynosoma douglassii, 3.0
miles south of Hwy 60 on Water Canyon Campground Rd., Socorro Co., New Mexico (MVZ 180332,
U82686; Macey et al., 1997b); Phymaturus palluma, 2768 m, 32°28′52″S 69°09′59″W, 27 km NE Uspallata,
Dpto. La Heras, Prov. Mendoza, Argentina (SDSU 3387, AF099216); Phymaturus somuncurensis, Meseta
Somuncurá, Dpto. Rı́o Negro, Argentina (SDSU 1648, AF049865; Schulte et al., 1998).
Liolaemus, subgenus Liolaemus
L. coeruleus, 1800 m, Portal de Atravesada, Dpto. Picunchea, Prov. Neuquén, Argentina (SDSU 3692,
AF099217); L. alticolor, 3360 m, 22°42′24.4″S 65°43′12.4″W, 4.2 km W Abra Pampa on Ruta Prov.
71, Dpto. Cochinoca, Prov. Jujuy, Argentina (SDSU 3574, AF099218); L. bitaeniatus, 1860 m, 10 km
E Tafı́ del Valle on Ruta Prov. 307, Dique de la Angostura, Dpto. Tafı́ del Valle, Prov. Tucumán,
Argentina (SDSU 3568, AF099219); L. robertmertensi, 690 m, 6.6 km W Ruta 46, 33.1 km S Andalgalá,
Dpto. Pomán, Prov. Catamarca, Argentina (SDSU 3498, AF099220); L. bibronii, 1440 m, 34 km W
Bardas Blancas on Ruta Prov. 224, Dpto. Malargüe, Prov. Mendoza, Argentina (SDSU 3407,
AF099221); L. gracilis, 1380 m, 35°02′36.2″S 68°40′42.2″W, SE beach of Embalse Nihuı́l, Dpto. San
Rafael, Prov. Mendoza, Argentina (SDSU 3409, AF099222); L. bellii, 2530 m, near Farellones, Reg.
Santiago, Chile (SDSU 3719, AF099223); L. chiliensis, 1 km N El Salitral on Ruta Nac. 40, Dpto.
Collon Cruz, Prov. Neuquén, Argentina (MIC 1259, AF099224); L. cyanogaster, Puyehue, N̄ilque Costas,
Prov. Neuquén, Argentina (MIC 1241, AF099225); L. pictus – Neuquén, 1475 m, 3 km W Ardillas,
Dpto. Los Lagos, Prov. Neuquén, Argentina (MIC 1108, AF099226); L. pictus – Rio Negro, Bariloche,
44 km west at Rio Castaño Overo, Dpto. Rio Negro, Argentina (MVZ 162076, U82684; Macey et al.,
1997b); L. zapallarensis, no locality data (SDSU 3658, AF099227); L. tenuis, near El Ingenio, about
30 km SE Santiago, Reg. Santiago, Chile (SDSU 3723, AF099228); L. lemniscatus, near El Ingenio
about 30 km SE Santiago, Reg. Santiago, Chile (SDSU 3721, AF099229); L. monticola, near El Ingenio,
about 30 km SE Santiago, Reg. Santiago, Chile (SDSU 3724, AF099230); L. nitidus, near El Ingenio
about 30 km SE Santiago, Reg. Santiago, Chile (SDSU 3720, AF099231); L. fuscus, 1 km NE El
Romeral (near Ocoa), Prov. Quillota, Chile (MVZ-RDS 12818, AF099232); L. nigroviridis, 2530 m,
near Farellones, Reg. Santiago, Chile (SDSU 3715, AF099233); L. capillitas, 2825 m, 27°26′51.6″S
66°24′40.5″W, 22 km S Mina Capillitas on Ruta Prov. 47, Dpto. Andalgalá, Prov. Catamarca,
Argentina, (SDSU 3481, AF099234); L. leopardinus, 2530 m, near Farellones, Reg. Santiago, Chile
(SDSU 3717, AF099235); L. buergeri, 2070 m, 19 km N intersect. Ruta Prov. 221 & Ruta Nac. 40 on
Ruta 221, Dpto. Malargüe, Prov. Mendoza, Argentina (SDSU 3420, AF099236); L. ceii, Copahue,
Dpto. Ñorquin, Prov. Neuquén, Argentina (MIC 1139, AF099237); L. petrophilus, Meseta Somuncurá,
Prov. Rio Negro, Argentina (MLP 1671, AF099238); L. austromendocinus, 2310 m, 48 km S intersect.
Ruta Prov. 221 & Ruta Nac. 40 on 221, Dpto. Malargüe, Prov. Mendoza, Argentina (SDSU 3425,
AF099239); L. elongatus, 2768 m, 27 km NE Uspallata, Dpto. La Heras, Prov. Mendoza, Argentina
(SDSU 3459, AF099240).
Subgenus Eulaemus, L. lineomaculatus section
L. lineomaculatus, Laguna LaPlata, Prov. Chubut, Argentina (MLP 1670, AF099241); L. somuncurae,
Laguna Raimundo, Meseta Somuncurá, Prov. Rı́o Negro, Argentina (MLP 1661, AF099242); L.
magellanicus, 67 m, lighthouse at Cabo Espiritu Santo, 70 km E Cerro Sombrero, Tierra del Fuego,
Magallanes Region, Chile (MVZ 180141, AF099243).
LIOLAEMUS PHYLOGENETICS
99
L. montanus section, L. montanus series
L. ruibali, 2550 m, gravel flats S of Tocota, Dpto. Iglesia, Prov. San Juan, Argentina (SDSU 3455,
AF099244); L. andinus-La Rioja, 3177 m, 28°48′11.3″S 68°45′49.4″W, Agua Quemada, Reserva
Laguna Brava, Prov. La Rioja, Argentina (REE 265, AF099245); L. famatinae, >3600 m, 29°49′50″S
67°43′30″W, Cueva de Perez, Sierra de Famatina, Dpto. Famatina, Prov. La Rioja, Argentina (REE
193, AF099246); L. orientalis, 4300 m, 15.5 km E Orosmayo on Ruta Prov. 70, Dpto. Rinconada, Prov.
Jujuy, Argentina (SDSU 3517, AF099247); L. dorbignyi, 4320 m, 5.2 km E Olacapato on Ruta Nac.
51, Dpto. Los Andes, Prov. Salta, Argentina (SDSU 3443, AF099248); L. poecilochromus, 4130 m,
11.1 km E Olacapato on Ruta Nac. 51, Dpto. Los Andes, Prov. Salta, Argentina (SDSU 3593,
AF099249); L. multicolor, 3360 m, 4.2 km W Abra Pampa on Ruta Prov. 71, Dpto. Cochinoca, Prov.
Jujuy, Argentina (SDSU 3591, AF099250); L. andinus-Jujuy, 3390 m, 23°21′47.2″S 65°47′42.3″W,
16.7 km N turnoff to Emp. a los Colorados, 75.7 km S Abra Pampa on Ruta Nac. 40, Dpto Cochinoca,
Prov. Jujuy, Argentina (SDSU 3599, AF099251).
L. boulengeri series
L. cuyanus, 1530 m, 32°07′07″S 67°35′52″W, Los Medanitos, Dpto. Tinogasta, Prov. Catamarca,
Argentina (SDSU 3541, AF099252); L. fitzingerii, Prov. Santa Cruz, Argentina (FML not cat., AF099253);
L. pseudoanomalus, 990 m, 28°50′27.3″S 67°24′49.2″W, 32 km S Pituı́l, 3.7 km E Ruta Nac. 40 on road
to Antinaco, Dpto. Famatina, Prov. La Rioja, Argentina (SDSU 3539, AF099254); L. lutzae, Bahı́a de
Sepetiba, Restinga de Marambala, Estado de Rio de Janeiro, Brazil (MNRJ 4720, AF099255); L.
occipitalis, sea level, 29°58′S 50°08′W. Tramandaı́, Estado de Rio Grande do Sul, Brazil (UFRGS
2753, AF099256); L. multimaculatus, Costa Bonita, Partido de Necochea, Prov. Buenos Aires, Argentina
(UNMdP 407, AF099257); L. scapularis, 1650 m, 26°04′00″S 65°54′38″W, edge of dunes at “Los
Medanos,” 6.7 km E intersection of Rutas Nac. 68 and 40, Dpto. Cafayate, Prov. Salta, Argentina
(SDSU 3560, AF099258); L. salinicola, 1530 m, 32°07′00″S–67°45′02″W, Los Medanitos, Dpto.
Tinogasta, Prov. Catamarca, Argentina (SDSU 3531, AF099259); L. wiegmannii, 1565 m, Sierra Medina,
18 km W intersection Rutas Prov. 310 and 306, Dpto. Burrayacu, Prov. Tucumán, Argentina (SDSU
3494, AF099260); L. melanops, 1000 m, 7 km N Zapala on Ruta 231, Dpto. Zapala, Prov. Neuquén,
Argentina (SDSU 3704, AF099261); L. rothi, Laguna Raimundo, Meseta Somuncurá, Prov. Rı́o Negro,
Argentina (MLP 1662, AF099262); L. abaucan, 1650 m, 27°47′05.6″S 67°39′26.8″W, 10.8 km S
Fiambalá on Ruta Prov. 45, Dpto. Tinogasta, Prov. Catamarca, Argentina (SDSU 3532, AF099263);
L. koslowskyi, 1290 m, 28°31′55.1″S–67°21′46.5″W, 8.2 km E Pituı́l, Dpto. Famatina, Prov. La Rioja,
Argentina (SDSU 3598, AF099264); L. quilmes, 1770 m, 26°28′04″S 66°02′16″W, 8 km W Ruta 40,
Ruinas de Quilmes, Dpto. Tafı́ del Valle, Prov. Tucumán, Argentina (SDSU 3558, AF099265); L.
ornatus, 3360 m, 22°42′24″S 65°43′12″W, 4.2 km W Abra Pampa, Dpto. Cochinoca, Prov. Jujuy,
Argentina (SDSU 3521, AF099266); L. albiceps, 4020 m, 24°20′20″S 66°13′13.2″W, 9.4 km S intersection
Ruta Nac. 40 and 51 on Ruta 40, Dpto. Los Andes, Prov. Salta, Argentina (SDSU 3380, AF099267);
L. irregularis, 3450 m, 24°02′32.8″S–66°16′21.6″W, 18.3 km N Pueblo Nuevo, N of San Antonio de los
Cobres, Dpto. Los Andes, Prov. Salta, Argentina (SDSU 3525, AF099268); L. uspallatensis, 2370 m,
32°28′39.1″S 69°13′55.8″W, 20 km NE Uspallata, Dpto. Las Heras, Prov. Mendoza, Argentina (SDSU
3465, AF099269); L. chacoensis, Prov. Santiago del Estero, Argentina (FML 3640, AF099270); L.
olongasta, 1700 m, 28°39′25.7″S 68°20′11.4″W, sand dunes just west of Bajo Jagüé on Ruta Prov. 26,
Dpto. Vinchina, Prov. La Rioja, Argentina (SDSU 3546, AF099271); L. darwinii-Mendoza, 1380 m,
35°02′36.2″S 68°40′42.2″W, S shore of Embalse Nihuı́l, Dpto. San Rafael, Prov. Mendoza, Argentina
(SDSU 3472, AF099272); L. darwinii-La Rioja, 900 m, 30°12′20″S 67°20′26.6″W, 51 km W Patquia
on Ruta Nac. 160, Dpto. Independencia, Prov. La Rioja, Argentina (SDSU 3477, AF099274); L.
boulengeri, 1380 m, 35°02′36″S 68°40′42″W, S shore Embalse Nihuı́l, Dpto. San Rafael, Prov. Mendoza,
Argentina (SDSU 3469, AF099275); L. laurenti, 1020 m, 28°16′00″S 67°25′01.9″W, 20.2 km E Copacabana on Ruta Nac. 60, Dpto. Tinogasta, Prov. Catamarca, Argentina (SDSU 3530, AF099273).
APPENDIX 2
Sequence alignment
Gap positions are given so the alignment used in the phylogenetic analysis can be reconstructed. The
first number given is the base position before a gap position and the second number in parentheses is
100
J. A. SCHULTE ET AL.
the number of gaps placed in a particular position. If only a single gap is placed at a particular
position, no second number in parentheses is given. Base positions (first number) correspond to
numbering in GenBank accessions which begin with position 4180 and end with position 5933 of the
human mitochondrial genome (Anderson et al., 1981). Taxon names appear as in Table 1.
Oplurus cuvieri: 83(3), 103, 141, 240, 1331(2), 1350(4), 1386(5), 1400, 1470, 1522, 1589, 1597, 1622,
1637(12). Phrynosoma douglassii: 85, 104(2), 155, 211, 240, 1324(3), 1325(5), 1344(4), 1370, 1375(2),
1396, 1519, 1557(2), 1582(3), 1615(2), 1629(13). Phymaturus palluma: 78(3), 103, 141, 210, 239, 1327(5),
1346(4), 1372, 1378, 1380, 1398, 1468, 1520, 1559, 1586, 1594, 1634(13). Phymaturus somuncurensis:
78(3), 103, 211, 240, 1321(3), 1325(5), 1344(4), 1370, 1376, 1378, 1396, 1466, 1518, 1557, 1584,
1592, 1617, 1630(14). L. coeruleus: 83(3), 103, 141, 210, 239, 1328(4), 1347(4), 1373, 1379, 1381, 1399,
1469, 1521, 1559(2), 1586, 1594, 1618(2), 1643(2). L. alticolor: 83(3), 103, 141, 210, 239, 1328(4),
1349(2), 1375, 1381, 1383, 1401, 1471, 1523, 1561(2), 1597, 1621(2), 1643(5). L. bitaeniatus: 83(3), 103,
141, 210, 239, 1327(5), 1348(2), 1374, 1380, 1382, 1400, 1470, 1522, 1560(2), 1596, 1620(2), 1643(4).
L. robertmertensi: 83(3), 103, 141, 210, 239, 1328(4), 1349(2), 1375, 1381, 1383, 1401, 1471, 1523, 1562,
1589, 1597, 1644(6). L. bibronii: 83(3), 103, 141, 210, 239, 1328(4), 1349(2), 1375, 1381, 1383, 1401,
1471, 1523, 1562, 1589, 1597, 1647(3). L. gracilis: 83(3), 103, 141, 210, 239, 1328(4), 1349(2), 1375,
1381, 1383, 1401, 1471, 1523, 1562, 1598. L. bellii: 83(3), 103, 141, 210, 239, 1328(4), 1347(4), 1373,
1379, 1381, 1399, 1469, 1521, 1559(2), 1595, 1619(2), 1644(2). L. chiliensis: 83(3), 103, 141, 210, 239,
1328(4), 1347(4), 1373, 1379, 1381, 1399, 1469, 1521, 1559(2), 1586, 1594, 1618(2), 1643(2). L.
cyanogaster: 83(3), 103, 141, 210, 239, 1327(5), 1348(2), 1374, 1380, 1382, 1400, 1470, 1522, 1561,
1597, 1621(2), 1646(2). L. pictus – Neuqén: 83(3), 103, 141, 210, 239, 1328(4), 1349(2), 1375, 1381,
1383, 1401, 1471, 1523, 1562, 1589, 1597, 1621(2), 1646(2). L. pictus – Rio Negro: 83(3), 103, 141,
210, 239, 1328(4), 1349(2), 1375, 1381, 1383, 1401, 1471, 1523, 1561(2), 1588, 1596, 1620(2), 1645(2).
L. zapallarensis: 83(3), 103, 141, 210, 239, 1353(2), 1379, 1385, 1387, 1405, 1475, 1527, 1565(2), 1592,
1600, 1624(2), 1643(8). L. tenuis: 83(3), 103, 141, 210, 239, 1354, 1380, 1386, 1388, 1477, 1529, 1568,
1594(2), 1602, 1627, 1644(10). L. lemniscatus: 83(3), 103, 141, 210, 239, 1354, 1380, 1386, 1388, 1477,
1529, 1567(2), 1594, 1602, 1626(2), 1642(11). L. monticola: 83(3), 103, 141, 210, 239, 1381, 1387, 1389,
1478, 1530, 1568(2), 1594(2), 1602, 1626(2), 1650(3). L. nitidus: 83(3), 103, 211, 240, 1382, 1388, 1390,
1479, 1531, 1569(2), 1596, 1604, 1628(2), 1652(3). L. fuscus: 83(3), 103, 141, 210, 239, 1354, 1380,
1386, 1388, 1477, 1529, 1567(2), 1603, 1627(2), 1649(5). L. nigroviridis: 83(3), 103, 141, 210, 239, 1354,
1380, 1386, 1388, 1477, 1529, 1567(2), 1603, 1627(2), 1650(4). L. capillitas: 83(3), 103, 141, 210, 239,
1327(5), 1349, 1375, 1381, 1383, 1472, 1524, 1562(2), 1589, 1597, 1621(2), 1643(5). L. leopardinus:
83(3), 103, 141, 210, 239, 1327(5), 1349, 1375, 1381, 1383, 1472, 1524, 1563, 1590, 1598, 1622(2),
1643(6). L. buergeri: 83(3), 103, 141, 210, 239, 1327(5), 1376, 1382, 1384, 1473, 1525, 1563(2), 1599,
1623(2), 1645(5). L. ceii: 83(3), 103, 141, 210, 239, 1327(5), 1349, 1375, 1381, 1383, 1472, 1524,
1562(2), 1589, 1597, 1621(2), 1643(5). L. petrophilus: 83(3), 103, 141, 210, 239, 1327(5), 1349, 1375,
1381, 1383, 1472, 1524, 1562(2), 1589, 1597, 1621(2), 1643(5). L. austromendocinus: 83(3), 103, 141,
210, 239, 1327(5), 1349, 1375, 1381, 1383, 1472, 1524, 1562(2), 1589, 1597, 1621(2), 1643(5). L.
elongatus: 83(3), 103, 141, 210, 239, 1327(5), 1349, 1375, 1381, 1383, 1472, 1524, 1562(2), 1589, 1597,
1621(2), 1643(5). L. lineomaculatus: 83(3), 103, 141, 210, 239, 1353(2), 1379, 1385, 1387, 1476, 1528,
1567, 1594, 1602, 1626(2), 1642(11). L. somuncurae: 83(3), 103, 141, 210, 239, 1351(4), 1377, 1383,
1385, 1403, 1472(2), 1524, 1562(2), 1589, 1597, 1621(2), 1636(12). L. magellanicus: 83(3), 103, 141,
210, 239, 1351(4), 1377, 1383, 1385, 1403, 1473, 1525, 1563(2), 1599, 1624, 1641(10). L. ruibali: 83(3),
103, 141, 210, 239, 1353(2), 1379, 1385, 1387, 1476, 1528, 1566(2), 1593, 1601, 1625(2), 1642(10).
L. andinus – La Rioja: 83(3), 103, 141, 210, 239, 1354, 1380, 1386, 1388, 1477, 1568(2), 1595, 1603,
1627(2), 1645(9). L. famatinae: 83(3), 103, 141, 210, 239, 1354, 1380, 1386, 1388, 1477, 1529, 1568,
1595, 1603, 1627(2), 1645(9). L. orientalis: 83(3), 142, 211, 240, 1332, 1354, 1380, 1386, 1388, 1477,
1529, 1567(2), 1594, 1602, 1626(2), 1643(10). L. dorbignyi: 83(3), 142, 211, 240, 1355, 1381, 1387,
1389, 1478, 1530, 1568(2), 1595, 1603, 1627(2), 1644(10), 1652. L. poecilochromus: 83(3), 103, 141, 210,
239, 1328(4), 1350, 1376, 1382, 1384, 1473, 1525, 1564, 1591, 1599, 1623(2), 1641(9). L. multicolor:
83(3), 103, 141, 210, 239, 1328(4), 1350, 1376, 1382, 1384, 1473, 1525, 1564, 1591, 1599, 1624,
1642(9). L. andinus – Jujuy: 83(3), 103, 141, 210, 239, 1328(4), 1350, 1376, 1382, 1384, 1473, 1525,
1564, 1591, 1599, 1624, 1642(9). L. cuyanus: 83(3), 103, 141, 210, 239, 1330(2), 1352, 1378, 1384,
1386, 1475, 1527, 1565(2), 1592, 1600, 1625, 1649(3). L. fitzingerii: 83(3), 103, 141, 210, 239, 1330(2),
1352, 1378, 1384, 1386, 1475, 1527, 1565(2), 1592, 1600, 1625, 1642(10). L. pseudoanomalus: 83(3),
103, 141, 210, 1328(5), 1347(4), 1373, 1379, 1381, 1419, 1469, 1521, 1559(2), 1586, 1594, 1619,
1641(5). L. lutzae: 83(3), 103, 141, 210, 239, 1251(3), 1327(2), 1349, 1375, 1381, 1383, 1415, 1471,
1523, 1561(2), 1588, 1596, 1621, 1637(11). L. occipitalis: 83(3), 103, 141, 210, 239, 1330(2), 1352, 1378,
LIOLAEMUS PHYLOGENETICS
101
1384, 1386, 1418, 1474, 1526, 1564(2), 1591, 1599, 1624, 1640(11). L. multimaculatus: 83(3), 103, 141,
210, 239, 1257(3), 1327(2), 1349, 1375, 1381, 1383, 1472, 1499, 1523, 1561(2), 1588, 1596, 1621,
1638(10). L. scapularis: 83(3), 142, 211, 240, 1258(3), 1328(2), 1350, 1376, 1382, 1384, 1473, 1525,
1563(2), 1599, 1624, 1640(11). L. salinicola: 83(3), 103, 141, 210, 239, 1257(3), 1327(2), 1349, 1375,
1381, 1383, 1472, 1524, 1562(2), 1598, 1623, 1638(12). L. wiegmannii: 83(3), 103, 141, 210, 1258(3),
1325(5), 1347, 1373, 1379, 1381, 1470, 1522, 1560(2), 1587, 1595, 1620, 1637(10). L. melanops: 83(3),
103, 141, 210, 239, 1354, 1380, 1386, 1388, 1426, 1476, 1528, 1566(2), 1602, 1627, 1640(14). L. rothi:
83(3), 103, 141, 210, 239, 1354, 1380, 1386, 1388, 1477, 1529, 1567(2), 1594, 1602, 1627, 1644(10).
L. abaucan: 83(3), 103, 141, 210, 239, 1354, 1380, 1386, 1388, 1477, 1529, 1567(2), 1603, 1628,
1645(10). L. koslowskyi: 83(3), 102(2), 140, 209, 238, 1353, 1379, 1385, 1387, 1476, 1528, 1566(2),
1602, 1627, 1644(10). L. quilmes: 83(3), 102(2), 140, 209, 238, 1353, 1379, 1385, 1387, 1476, 1528,
1566(2), 1602, 1627, 1644(10). L. ornatus: 83(3), 102(2), 140, 209, 238, 1353, 1379, 1385, 1387, 1476,
1528, 1566(2), 1602, 1627, 1644(10). L. albiceps: 83(3), 102(2), 140, 209, 238, 1353, 1379, 1385, 1387,
1476, 1528, 1566(2), 1602, 1627, 1644(10). L. irregularis: 83(3), 102(2), 140, 209, 238, 1353, 1379, 1385,
1387, 1476, 1528, 1566(2), 1602, 1627, 1644(10). L. uspallatensis: 83(3), 102(2), 140, 209, 238, 1353,
1379, 1385, 1387, 1476, 1528, 1566(2), 1602, 1627, 1644(10). L. chacoensis: 83(3), 103, 141, 210, 239,
1354, 1380, 1386, 1388, 1477, 1529, 1567(2), 1603, 1628, 1645(10). L. olongasta: 83(3), 103, 141, 210,
239, 1354, 1380, 1386, 1388, 1477, 1529, 1567(2), 1603, 1628, 1645(10), 1669. L. darwinii-Mendoza:
83(3), 103, 141, 210, 239, 1354, 1380, 1386, 1388, 1477, 1529, 1567(2), 1603, 1628, 1644(11), 1668.
L. darwinii-LaRioja: 83(3), 103, 141, 210, 239, 1354, 1380, 1386, 1388, 1477, 1529, 1567(2), 1603,
1628, 1644(11). L. boulengeri: 83(3), 103, 141, 210, 239, 1354, 1380, 1386, 1388, 1477, 1529, 1567(2),
1603, 1628, 1644(11). L. laurenti: 83(3), 103, 141, 210, 239, 1354, 1380, 1386, 1388, 1477, 1529,
1567(2), 1603, 1628, 1644(11).
APPENDIX 3
Trees used in Templeton tests
Numbers correspond to species and populations in Table 1. Lengths of trees and consistency
indices (Swofford, 1998) are given in parentheses. A representative shortest tree from analysis of the
mitochondrial DNA is shown as A, and B-G are the shortest alternative trees recovered from
phylogenetic analyses imposing constraints.
A. Representative of the 60 equally most parsimonious trees from analysis of the DNA sequence
data (5858 steps, CI 0.271): (1, (2, ((3, 4), (((5, (((6, 7), (8, (9, 10))), (((11, 12), (14, 15)), 13))), ((16, (17,
(18, ((19, 20), (21, 22))))), (23, (((24, (25, 26)), (28, 29)), 27)))), ((30, (31, 32)), (((33, (34, 35)), (36, (37, (38,
(39, 40))))), ((41, 42), ((43, ((44, 45), ((46, 47), (48, 49)))), ((50, 51), (52, (((53, 54), (55, (56, 57))), (58, (59,
(60, (61, ((62, 64), 63)))))))))))))))).
B. Representative of the 24 equally most parsimonious trees constrained to show a monophyletic
grouping of Andean species (6465 steps, CI 0.246): (1, (2, ((3, 4), ((((5, (10, ((12, (14, 15)), 13))), ((26,
27), 28)), (16, (17, (18, (19, 21))))), ((((((((((((((((((((6, 7), (8, 9)), 11), ((20, 22), (23, ((24, 25), 29)))), (((33, (34,
35)), (37, (38, (39, 40)))), 36)), 49), (54, (55, (56, 57)))), 61), 62), 64), 63), 60), 59), 58), 53), 52), (50, 51)),
(43, ((44, 45), ((46, 47), 48)))), (41, 42)), (30, (31, 32))))))).
C. Representative of the 6 equally most parsimonious trees constrained to show a monophyletic
grouping of eastern lowland species (6326 steps, CI0.251): (1, (2, ((3, 4), ((((((((((((((((((5, 10), ((26, 27),
28)), (30, (31, 32))), ((41, 42), (43, ((44, 45), ((46, 47), 48))))), (50, 51)), 52), 53), 58), 59), 60), 63), 64),
62), 61), (54, (55, (56, 57)))), ((33, (34, 35)), (36, (37, (38, (39, 40)))))), 49), (((((6, 7), (8, 9)), ((11, 13), (12,
(14, 15)))), (23, ((24, 25), 29))), (16, (17, (18, ((19, 20), (21, 22)))))))))).
D. Representative of the 10 equally most parsimonious trees constrained to show a monophyletic
grouping of western lowland species (6016 steps, CI 0.264): (1, (2, ((3, 4), (((((5, ((6, 7), (8, (9, 10)))), (11,
((12, (13, (16, (17, (18, (19, 21)))))), (14, 15)))), (((23, 27), (24, (25, 26))), (28, 29))), (20, 22)), ((30, (31,
32)), (((33, (34, 35)), (36, (37, (38, (39, 40))))), (((41, 42), (43, ((44, 45), ((46, 47), (48, 49))))), ((50, 51), (52,
(((53, 54), (55, (56, 57))), (58, (59, (60, (61, ((62, 64), 63))))))))))))))).
E. Representative of the 14 equally most parsimonious trees with all viviparous taxa constrained to
form a monophyletic group (6096 steps, CI 0.260): (1, (2, ((3, 4), ((((5, ((6, 7), (8, (9, 10)))), (((11, (13,
(14, 15))), ((22, ((30, (31, 32)), (((33, (34, 35)), (36, (37, (38, (39, 40))))), (55, (56, 57))))), (23, ((24, (25,
102
J. A. SCHULTE ET AL.
26)), (27, (28, 29)))))), 12)), (16, ((17, ((19, 20), 21)), 18))), ((((41, 42), ((50, 51), (((52, 54), 53), (58, (59,
(60, (61, ((62, 64), 63)))))))), ((44, 45), ((46, 47), (48, 49)))), 43))))).
F. Representative of the 15 equally most parsimonious trees with all viviparous species in clade 1
(subgenus Liolaemus) constrained to form a monophyletic group (5969 steps, CI 0.266): (1, (2, ((3, 4),
((((5, ((6, 7), (8, (9, 10)))), (((11, (13, (14, 15))), (22, (23, ((24, (25, 26)), (27, (28, 29)))))), 12)), (16, ((17,
((19, 20), 21)), 18))), ((30, (31, 32)), (((33, (34, 35)), (36, (37, (38, (39, 40))))), (((41, 42), (43, ((44, 45), ((46,
47), (48, 49))))), ((50, 51), (52, (((53, 54), (55, (56, 57))), (58, (59, (60, (61, ((62, 63), 64))))))))))))))).
G. Representative of the 32 equally most parsimonious trees with all viviparous species in clade 2
(subgenus Eulaemus) constrained to form a monophyletic group (5906 steps, CI 0.269): (1, (2, ((3, 4),
(((5, (((6, 7), (8, (9, 10))), (((11, 13), (14, 15)), 12))), ((16, (17, (18, ((19, 20), (21, 22))))), (23, (((24, (25, 26)),
(28, 29)), 27)))), ((((((((30, (31, 32)), ((33, (34, 35)), (36, (37, (38, (39, 40)))))), (55, (56, 57))), ((52, 54), (53,
(58, (59, (60, (61, ((62, 64), 63)))))))), (50, 51)), (41, 42)), ((44, 45), ((46, 47), (48, 49)))), 43))))).