Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012 Superacidic or Not…? Synthesis, Characterisation, and Acidity of the RoomTemperature Ionic Liquid [CACHTUNGRE(CH3)3]+ [Al2Br7] Franziska Scholz, Daniel Himmel, Harald Scherer, and Ingo Krossing*[a] chem_201203260_sm_miscellaneous_information.pdf Out Supporting Information for A Superacidic Ionic Liquid: Synthesis, Structure and Characterisation of [C(CH3)3]+[Al2Br7]– Franziska Scholz, Daniel Himmel, Harald Scherer and Ingo Krossing* Institut für Anorganische und Analytische Chemie, FMF (Freiburger Materialforschungszentrum) and FRIAS (Freiburg Institute for Advanced Studies), AlbertLudwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg. Tel.: ++49 761 203 6122 Fax: ++49 761 203 6001 [email protected] 1. Experimental procedures and characterization data --------------------------------------------------------- 2 Techniques: ----------------------------------------------------------------------------------------------------------------- 2 Syntheses of AlBr3: ------------------------------------------------------------------------------------------------------- 2 Syntheses of [C(CH3)3][Al2Br7]: ---------------------------------------------------------------------------------------- 3 Attempts to synthesis [C(CH3)3][Al2Br7] in 1,2-difluorobenzene: ----------------------------------------------- 3 Attempted Synthesis of [C(CH3)3][Al2Br7] in CH2Br2:-------------------------------------------------------------- 3 Preferred Synthesis of [C(CH3)3][Al2Br7] in the presence of HBr: ---------------------------------------------- 3 Attempted Synthesis of [C(CH3)3][Al2Br7]: Reaction of isobutene, HBr and AlBr3: ------------------------ 3 Attempted Synthesis of [C(CH3)3][Al2Br7]: Reaction of polyisobutene, HBr and AlBr3: ------------------- 4 2. DFT-Calculations and IR- and Raman-Spectroscopy -------------------------------------------------------- 5 + – Fig. S 11 Unit cell of the crystal structure of [C(CH3)3] [Al2Br7] . For clarity only the central atoms of anion and cation are shown. Orange balls symbolize the non-disordered anion, the red ones the disordered, the black ones the non-disordered cation and the blue ones the disordered. The cations as well as the anions are in the respective octahedral voids. The packing pattern can be seen as a distorted CsCl-lattice. ---------------------------------------------------- 11 5. Crystal data and structure refinement for [(CH3)3C] [Al2Br7]. -------------------------------------------- 12 6. Quantum chemical calculations ---------------------------------------------------------------------------------- 15 Calculation of ∆lattH°---------------------------------------------------------------------------------------------------- 17 Calculation of ∆lattG°---------------------------------------------------------------------------------------------------- 18 Calculation of ∆solvH° and ∆solvG° of all species considered in the BFHCs -------------------------------- 19 1. Experimental procedures and characterization data Techniques: All reactions were carried out under argon atmosphere inside a glove box and using special double Schlenk flasks fitted with greaseless J. Young taps (see drawing). NMR spectra were recorded on a Bruker Biospin Avance II 400MHz WB spectrometer and then handled with the software Topspin. The measurements were conducted in sealed 3 mm NMR tubes (see figure). a) b) c) a) b) c) 3 mm NMR tube Teflon cap with 3 mm borehole 5 mm tube with deuterated solvent Infrared spectra were recorded on a ATR Nicolet (760 Magna IR) equipped with a diamond cell. Raman measurements were performed on a Bruker RAM II module of the Bruker Vertex 70. X-ray crystallographic measurements were made on a Bruker SMART APEX2 CCD area detector diffractometer with Mo-Kα radiation (λ = 0.71073 Å). Syntheses of AlBr3: Aluminium was weighted in a double Schlenk flask. The glassware was evacuated. The equipment was flooded by bromine. To start the reaction aluminium was selective heated to 650°C. The formed solid was re-crystallized in warm hexane and ultimately AlBr3 formed as a colourless solid. 27 Al-NMR (104,27 MHz, CH2Br2, 298 K) : δ = 77. -1 FT-Raman: 78.4, 112.4, 139.9, 208.8, 222.8 cm . 2 Syntheses of [C(CH3)3][Al2Br7]: AlBr3 (2.00 g; 7.50 mmol) was weighted in the glove box and tert-butyl bromide (514 mg, 0.42 ml, 3.75 mmol, 0.5 eq.) was added at -70°C. While stirring the mixture it was slowly warmed to 0°C and a yellow oil arose. At 2°C the liquid reversibly crystallised. MIR-IR: 440 (vs), 696 (w), 968 (m), 1065 (m), 1286 (s), 1459 (m), 2786 (s). -1 -1 -1 -1 -1 -1 -1 FT-Raman: 78 cm (m), 99 cm (m), 202 cm (s), 343 cm (w), 423 cm (w), 815 cm (w), 1281 cm (w), 2811 -1 -1 cm (w), 2950 cm (w). 1 H-NMR (104,27 MHz, 298 K): δ = 3,5 (bs, 9H, CH3), 2,6 – 0,5 (contamination, oligomers). 13 C-NMR (100,6 MHz, 298 K): δ = 327 (bs, 1C, Cq), 49 (d, 9C, CH3), (contamination, oligomers). 27 Al-NMR (104,27 MHz, 298 K) : δ = 82. Attempts to synthesis [C(CH3)3][Al2Br7] in 1,2-difluorobenzene: AlBr3 (1.50 g; 5.60 mmol) was weighted into a flask in the glove box and dissolved in 1,2-difluorbenzene. Tert-butyl bromide (0.38 mg, 0.30 ml, 2.80 mmol, 0.50 eq.) was added at -70°C. While stirring the mixture, it was slowly warmed to 0°C. NMR spectra indicated alkylation of the solvent (see S-Fig 3 and 4). Attempted Synthesis of [C(CH3)3][Al2Br7] in CH2Br2: AlBr3 (1.5 g; 5.6 mmol) was weighed into the in the glove box and dissolved in CH2Br2. Tert-butyl bromide (381 mg, 0.3 ml, 2.8 mmol; 0.5 eq.) was added at -70°C. While stirring the mixture was slowly warmed to 0°C. However, the NMR spectra did not show clear formation of the + [C(CH3)3] cation (see S-Fig. 1). Preferred Synthesis of [C(CH3)3][Al2Br7] in the presence of HBr: In a typical succesful preparation, AlBr3 (2.00 g; 7.50 mmol) was weighed in the glove box into a suitble flask and tert-butyl bromide (0.51 g, 0.42 ml, 3.75 mmol, 0.50 eq.) was condensed to it at –196 °C. For the in situ production of HBr, PBr3 (0.20 ml, 0.58 g, 2.10 mmol) was added to a suspension of CuSO4·5H2O (0.15 g, 0.60 mmol) in toluene (5 ml) in a 250 ml Schlenk flask. After warming the mixture to 90°C for 10 min, the by hydrolysis formed HBr was purified from toluene and water traces by trap-to-trap condensation (–196 to –78°C) and condensed to the mixture of AlBr3 and tert-butyl bromide. + – With stirring, the mixture was slowly warmed to 10 °C and the yellow oil of [C(CH3)3] [Al2Br7] arose after 15 min in quantitative yield. It reversibly crystallizes at 2 °C. 1 H-NMR (104,27 MHz, 298 K): δ = 2,6 (bs, 9H, CH3). 13 C-NMR (100,6 MHz, 298 K): δ = 325 (bs, 1C, Cq), 49 (d, 9C, CH3). 27 Al-NMR (104,27 MHz, 298 K) : δ = 82. IR: ν = 440 (1000), 696 (5), 968 (9), 1065 (15), 1283 (40), 1458 (14), 1533 (4), 2787 (37), 2953 (7), 3018 (5) cm –1 (%). FT-Raman: ν = 78 (27), 99 (37), 202 (100), 341 (4), 420 (3), 732 (1), 765 (1), 815 (2), 950 (1), 992 (1), 1089 (1), 1220 (1), 1241 (1), 1281 (4), 1295 (4), 1366 (1), 1396 (1), 1463 (1), 1488 (1), 2809 (12), 2950 (4), 2995 (2) cm –1 (%). Attempted Synthesis of [C(CH3)3][Al2Br7]: Reaction of isobutene, HBr and AlBr3: AlBr3 (1.50 g; 5.60 mmol) was weighed into the in the glove box. Isobutene (680 mbar, 2.74 mmol; 0.49 eq.) and HBr was added at -70°C. For the in situ production of HBr specidied above, PBr3 (0.20 ml, 0.58 g, 2.10 mmol) was added to a suspension of CuSO4·5H2O (0.15 g, 0.60 mmol) in toluene (5 ml) While stirring the mixture was slowly warmed to 0°C. + However, the NMR spectra did not show clear formation of the [C(CH3)3] cation but the presence of oligomers and higher carbo cations (see Fig. S 7 and Fig. S 8). 3 Attempted Synthesis of [C(CH3)3][Al2Br7]: Reaction of polyisobutene, HBr and AlBr3: AlBr3 (888 mg; 3.33 mmol) was weighed into the in the glove box. Polyisobutene Mn = 649.9 g/mol (1.08 mbar, 1.70 mmol; 0.51 eq.) and HBr was added at -70°C. For the in situ generation of HBr, PBr3 (0.2 ml, 576.9 mg, 2.1 mmol) was added as mentioned above to a suspension of CuSO4·5H2O (300 mg, 1.2 mmol) in toluene (5 ml) While stirring the mixture was slowly warmed to room temperature. The mixture was heated to 40 °C for 72 h. It + resulted in two phases. However, the NMR spectra did not show clear formation of the [C(CH3)3] cation. 4 2. DFT-Calculations and IR- and Raman-Spectroscopy DFT optimisations were carried out with TURBOMOLE [1] at the PBE0/def2-TZVPP [3] bases ). Vibrational frequencies were calculated analytically with the AOFORCE [2] [4] levels with RI-J auxiliary module and all structures represented true minima without imaginary To calculate the IR- and Raman wavenumbers and intensities the derivation of the polarization was calculated 5 with Egrad and was projected on the normal modes. The IR- and Raman bands were overlapped with a Lorentz function. Wavenumbers were scaled by a factor of 0.96. vibrational spectrum mode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 symmetry a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a wave number cm**(-1) 0.00 0.00 0.00 0.00 0.00 0.00 27.24 162.80 215.99 414.00 415.05 446.89 710.16 746.17 859.40 981.10 991.28 1019.03 1103.17 1300.00 1302.82 1321.81 1328.41 1360.71 1379.39 1403.16 1423.25 1488.71 1504.57 1509.90 2950.31 2955.63 2971.94 3097.57 3102.02 3106.87 3178.74 3181.43 3187.50 IR intensity km/mol 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.19656 5.27226 5.66345 1.01026 1.25922 4.45325 13.17940 6.51378 3.61271 7.69523 23.01364 0.99559 50.70187 37.09743 34.58762 116.53573 49.29288 141.70579 18.50497 2.39592 31.27567 6.76912 49.27593 47.22518 138.12238 91.80603 26.93988 8.16938 10.71648 20.72716 12.42584 1.70172 8.88192 selection rules IR RAMAN YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES 5 3. NMR-Spectroscopy 5 4 3 2 1 0 -1 -2 -3 ppm -4 1 Fig. S 1 H-NMR-spectrum (400.17 MHz, CH2Br2) of tert-butyl bromide and AlBr3 in CH2Br2 at 298 K. 7 1 6 5 4 3 2 1 0 -1 -2 -3 -4 ppm Fig. S 2 H-NMR-spectrum (400.17 MHz) of C(CH3)3[Al2Br7] at 298 K. The main signal at +2.6 ppm is due to + C(CH3)3 , the line at –3.4 ppm is due to HBr that slowly forms at RT with formation of protonated isobutene oligomers, to which the remaining lines are assigned. 6 350 300 Fig. S 3 1 9 8 13 250 200 1 150 100 C{ H}-NMR-spectrum (100,6 MHz) of C(CH3)3[Al2Br7] at 298 K. 7 6 5 4 3 2 50 ppm 1 ppm Fig. S 4 H-NMR-spectrum (400.17 MHz) of the attempted synthesis of C(CH3)3[Al2Br7] in o-difluorobenzene at 298 K. 7 ppm 50 100 150 200 250 300 350 10 9 8 7 6 5 4 3 2 1 0 ppm 1 13 Fig. S 5 H, C-long-range-correlation of the attempted synthesis of C(CH3)3[Al2Br7] in o-difluorobenzene at 298 K. -85 Fig. S 6 -90 19 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 ppm 13 F{ C}-NMR-spectrum of the attempted synthesis of C(CH3)3[Al2Br7] in o-difluorobenzene at 298 K. 8 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 ppm Fig. S 7 1H-NMR-spectrum (400.17 MHz) of the reaction of isobutene, AlBr3 in an HBr atmosphere at 298 K. ppm 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 11 10 9 8 7 6 5 4 3 2 1 0 ppm Fig. S 8 1H,13C-long-range-correlation the reaction of isobutene with AlBr3 in an HBr atmosphere at 298 K. 9 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 ppm Fig. S 9 1H-NMR-spectrum (200.13 MHz) of the reaction of polyisobutene with AlBr3 in an HBr atmosphere at 298 K. 350 300 250 200 150 100 50 0 ppm Fig. S 1013C{1H}-NMR-spectrum (50,32 MHz) of the reaction of polyisobutene with AlBr3 in an HBr atmosphere at 298 K. 10 4. Lattice Packing of [(CH3)3C] [Al2Br7] + – Fig. S 11 Unit cell of the crystal structure of [C(CH3)3] [Al2Br7] . For clarity only the central atoms of anion and cation are shown. Orange balls symbolize the non-disordered anion, the red ones the disordered, the black ones the non-disordered cation and the blue ones the disordered. The cations as well as the anions are in the respective octahedral voids. The packing pattern can be seen as a distorted CsCl-lattice. 11 5. Crystal data and structure refinement for [(CH3)3C] [Al2Br7]. Table 1: Crystal data and structure refinement for c2c Identification code c2c Empirical formula Al2Br7C4H9 Formula weight 670.44 Temperature / K 153.15 Crystal system monoclinic Space group C2/c a / Å, b / Å, c / Å 27.727(2), 13.1138(10), 13.8537(11) α/°, β/°, γ/° 90.00, 95.974(2), 90.00 3 Volume / Å 5010.0(7) Z 12 ρcalc / mg mm-3 2.667 µ / mm 1 16.889 F(000) 3648 3 Crystal size / mm 0.28 × 0.14 × 0.07 2Θ range for data collection 3.80 to 54.96° Index ranges -35 ≤ h ≤ 35, -17 ≤ k ≤ 17, -16 ≤ l ≤ 17 Reflections collected 38947 Independent reflections 5631[R(int) = 0.0617] Data/restraints/parameters 5631/13/198 2 Goodness-of-fit on F 1.029 Final R indexes [I>2σ (I)] R1 = 0.0491, wR2 = 0.1111 Final R indexes [all data] R1 = 0.0747, wR2 = 0.1225 -3 Largest diff. peak/hole / e Å 1.502/-1.823 12 13 14 6. Quantum chemical calculations [1] DFT optimizations were carried out with TURBOMOLE levels with RI-J auxiliary bases [10] [6] [7] at the BP86 /def-TZVP [8] and PBE0/def2-TZVPP ). Vibrational frequencies were calculated analytically with the AOFORCE [9] [11] module and all structures represented true minima without imaginary frequencies on the respective hypersurface. Thermal contributions to ab initio reaction energies (see below) were calculated with inclusion of zero point energy, thermal contributions to the enthalpy/entropy (FREEH tool; unscaled [13,14] Solvation effects were calculated using the COSMO [12] BP86 vibrational frequencies). . module with BP86/def-TZVP. Default options and standard optimized COSMO radii included in the module were used. COSMO-RS 15 16 , theory and the COSMOTHERM program (Version C2.1 Release 01.08) was used for calculation of IL thermodynamics. IR- and Raman spectra (wave numbers and intensities) were calculated analytically at the PBE0/def2-TZVPP level. Wave numbers were scaled by a factor of 0.96. MP2 structure optimizations were carried out with TURBOMOLE bases [17] program [6] and def2-QZVPP basis sets and RI-C auxiliary for all atoms. CCSD(T)/def2-TZVPP structure optimization of tBu [18] + was done with the CFOUR . Ab-initio calculations with correlation-consistent basis sets were done with Gaussian 03 [19] . Gas Phase Thermodynamics: t Experimental vaporisation and sublimation enthalpies / Gibbs energies were used for BuBr [20] 21 and Al2Br6. . The gas phase reaction energy was calculated at the CCSD(T)/double-ζ level plus MP2 extrapolation to quadruple-ζ.using correlation-consistent based on MP2/def2-QZVPP [9] structures. ∆Eextrapol. = ∆Eccsd(t)/A’VDZ -∆EMP2/A’VQZ +∆EMP2/A’VQZ. [22] [A’VXZ = cc-pVXZ for H [23] , aug-cc-pVXZ for C , aug-cc-pV(X+d)Z for Al [24] , and aug-cc-pVXZ-PP [25] for Br (X = D, Q)], Thermal contributions were calculated with BP86/def-TZVP at 1 bar, 298.15 K ∆U° = ∆Eextrapol. + ∆Evrt (∆Evrt = sum of translational, rotational, and vibrational energy incl. zero point vibrational energy) ∆H° = ∆U° + ∆n RT (∆n = particle number change in reaction equation) ∆G° = ∆H° -298.15 K • ∆S° 15 Energetic contributions in the Gas Phase (Excerpts from Excel sheet): CCSD(T) and MP2 single point energies on RI-MP2/def2-QZVPP structures in Hartree Evrt = Thermal (vib.+rot.+trans.) contribution to energy incl. ZPE @BP86/def-TZVP in kJ mol -1 S = Standard entropy @BP86/def-TZVP in kJ mol K t -1 -1 BuBr CCSD(T)/A’VDZ MP2/A’VDZ -573.049701 MP2/A’VQZ -572.960405 -573.242728 Evrt S 328.61 0.33223 Al2Br6 CCSD(T)/A’VDZ MP2/A’VDZ -2978.20798 t Bu Evrt S -2978.12148 -2978.64159 56.97 0.5586 + CCSD(T)/A’VDZ MP2/A’VDZ -157.094445 Al2Br7 MP2/A’VQZ -157.015351 -157.218262 Evrt S 313.85 0.32696 - CCSD(T)/A’VDZ MP2/A’VDZ -3394.02564 i MP2/A’VQZ MP2/A’VQZ Evrt S -3393.92672 -3394.52491 64.37 0.63522 C4H8 CCSD(T)/A’VDZ MP2/A’VDZ -156.781355 Br MP2/A’VQZ Evrt S -156.706536 -156.909838 288.96 0.29173 - CCSD(T)/A’VDZ MP2/A’VDZ MP2/A’VQZ Evrt -415.71035 -415.696489 -415.772881 3.72 S 0.163381 - Additional RI-MP2/A’VTZ calculations for [Al3Br10] formation and BP86/def-TZVP thermal contributions Al2Br6 Al2Br7 - Al3Br10 - MP2 Evrt S -2978,518741 56,97 0,55860 -3394,382603 64,37 0,63522 -4883,657617 96,52 0,86319 16 Condensed Phase Thermodynamics t The thermodynamics of solid Bu[Al2Br7] was calculated using semi-empirical correlations recently published by t our group (see below), of liquid Bu[Al2Br7] with the program package COSMO-RS from the Cosmologic GmbH. Calculation of ∆lattH° (Based on empirical correlations between calculated and experimental values ,calc ∆lattH° = -0.685 • ∆solvH° ,calc Calculation of ∆solvH° ,calc ∆solvH° ,COSMO ∆solvG° t Bu + Al2Br7 - ,calc +298.15 K • ∆solvS° ∆solvG*/H ∆solvG°/kJ mol -0,09227644 -234,3 ,COSMO (ref 26, eq. 7) calculation (COSMO, εr = ∞ @ BP86/def-TZVP): -1 ,COSMO Sum = ∆solvG° -391,8 -0,063035256 -157,5 ∆solvG° (ref. 26, eq. 11) from ,COSMO = ∆solvG° -1 + 172 kJ mol . ,COSMO =∆solvG* -1 + 7.96 kJ mol ) 17 Empirical correlation between calculated (BP86/def-TZVP) ion gas phase entropies and IL liquid entropy: ± -1 -1 ,± Sl° = 0.9402 • Sg -0.256 kJ mol K with Sg° = Sg°(cation) + Sg°(anion) , calc -> ∆solvS° , calc ∆solvS° = Sl° - Sg °,± Bu + -1 ± 0,32696 Al2Br7 - -1 -1 ,calc Sg° /kJ mol K Sl°/kJ mol K ∆solvS° 0.9622 0.6054 -0.3118 /kJ mol K -1 0,63522 ,calc ->∆solvH° -1 -1 = -391.8 kJ mol + 298.15 K • (-0.3118 kJ mol K ) = -484.8 kJ mol -> -1 -1 = (0.9402-1) • Sg° - 0.256 kJ mol K calculation (@ BP86/def-TZVP, FREEH tool): Sg°/kJ mol K t ,± (ref 27, eq. 8) ∆lattH° -1 -1 -1 = -0.685 • -484.7 kJ mol + 172 kJ mol . -1 = +504.1 kJ mol Note: ∆lattH° calculation with the frequently used approach of Jenkins for lattice energy[28] 117.3nm mol −1 U L = z ⋅ z ⋅ n ⋅ + 51.9 kJ ⋅ mol −1 3V therm + − + - Jenkins equation; UL = lattice energy; n = number of ions in the unit cell; z , z = cation and anion charges, Vtherm = thermochemical volume; α,β = empirical constants. ∆lattH°= Ul + [nA/2+nB/2 – 4] RT [28] . nA/B = 3 for monoatomic ions, 5 for linear polyatomic ions, 6 for nonlinear polyatomic ions yields ∆lattH° = +422.6 kJ mol -1 which is more than 80 kJ mol –1 lower than our calculation and absolutely inconsistent with our experimental findings: As lattice energy is a main driving force of the reaction, the reaction would never occur with this value. Calculation of ∆lattG° [29] Jenkins-Glasser relation for solid entropy Ss ° -1 K nm • Vm +0.015 kJ mol = 1.36 kJ mol -1 K nm • (Vcell/Z) +0.015 kJ mol = 1.36 kJ mol -1 K nm • (0.4175 nm ) +0.015 kJ mol = 0.5828 kJ mol ± -1 -3 -1 -3 -1 -3 : = 1.36 kJ mol -1 -1 K 3 -1 -1 -1 K -1 K -1 -1 K ∆lattS° = Sg° - Ss° = (0.9622-0.5828) kJ mol -1 -1 = 0.3794 kJ mol K -1 -1 K ∆lattG° =∆lattH° - 298.15 K • ∆lattS° -1 -1 -1 = +504.1 kJ mol - 298.15 K • 0.3794 kJ mol K -1 = 391.0 kJ mol 18 Calculation of ∆solvH° and ∆solvG° of all species considered in the BFHCs Excerpt from COSMOTHERM (Version C2.1 Release 01.08) output: -------------------------------------------------------Automatic computation of vapor pressures between T = 298.15000 [K] and T = 298.15000 [K] Steps = 1 -------------------------------------------------------- Results for mixture 1 ----------------------Temperature : Compound Nr. 298.150 K : 1 - Compound : Al2Br7 Mole Fraction : 0.5000 2 3 4 tBu+ Al3Br100.5000 HBr 0.0000 0.0000 Compound: 1 (Al2Br7-) Chemical potential of the compound in the mixture : Log10(partial pressure [kPa ]) : -51.16182 kJ/mol -30.45471 Free energy of molecule in mix (E_COSMO+dE+Mu) Total mean interaction energy in the mix (H_int) : Misfit interaction energy in the mix (H_MF) : -48581435.75245 kJ/mol -70.49220 kJ/mol : 24.23947 kJ/mol H-Bond interaction energy in the mix (H_HB) : 0.00000 kJ/mol VdW interaction energy in the mix (H_vdW) : -94.73167 kJ/mol Ring correction : 0.00000 kJ/mol Vapor pressure of compound over the mixture : 0.17549193E-30 kPa Chemical potential of compound in the gas phase : Heat of vaporization : -134.08882 kJ/mol 228.84422 kJ/mol Compound: 2 (tBu+) Chemical potential of the compound in the mixture : Log10(partial pressure [kPa ]) : 0.86470 kJ/mol -34.92334 Free energy of molecule in mix (E_COSMO+dE+Mu) Total mean interaction energy in the mix (H_int) : Misfit interaction energy in the mix (H_MF) : -413958.53055 kJ/mol -22.55980 kJ/mol : 8.22586 kJ/mol H-Bond interaction energy in the mix (H_HB) : 0.00000 kJ/mol VdW interaction energy in the mix (H_vdW) : -30.78566 kJ/mol Ring correction : 0.00000 kJ/mol Vapor pressure of compound over the mixture : 0.59653045E-35 kPa Chemical potential of compound in the gas phase : Heat of vaporization : -211.62214 kJ/mol 258.44514 kJ/mol 19 Compound: 3 (Al3Br10-) Chemical potential of the compound in the mixture : Log10(partial pressure [kPa ]) : -73.20073 kJ/mol -31.28571 Free energy of molecule in mix (E_COSMO+dE+Mu) Total mean interaction energy in the mix (H_int) : Misfit interaction energy in the mix (H_MF) : -69492780.59777 kJ/mol -100.55448 kJ/mol : 30.72201 kJ/mol H-Bond interaction energy in the mix (H_HB) : 0.00000 kJ/mol VdW interaction energy in the mix (H_vdW) : -131.27649 kJ/mol Ring correction : 0.00000 kJ/mol Vapor pressure of compound over the mixture : Chemical potential of compound in the gas phase : Heat of vaporization : 0.00000 kPa -116.79325 kJ/mol 241.61092 kJ/mol Compound: 4 (HBr) Chemical potential of the compound in the mixture : Log10(partial pressure [kPa ]) : -12.10202 kJ/mol 2.75312 Free energy of molecule in mix (E_COSMO+dE+Mu) Total mean interaction energy in the mix (H_int) : Misfit interaction energy in the mix (H_MF) : -6759702.73109 kJ/mol -15.13254 kJ/mol : 5.32458 kJ/mol H-Bond interaction energy in the mix (H_HB) : 0.00000 kJ/mol VdW interaction energy in the mix (H_vdW) : -20.45712 kJ/mol Ring correction : 0.00000 kJ/mol Vapor pressure of compound over the mixture : Chemical potential of compound in the gas phase : Heat of vaporization : 0.00000 kPa 16.40083 kJ/mol 27.17807 kJ/mol ∆solvH° from single ion contributions to heat of vaporisation ∆solvG° from “single ion vapour pressures over the mixture” (see “Log10(partial pressure [kPa ])” in Cosmotherm output) with the relation: pvap °(ion ) ⋅ x °(ion ) ∆ solv G °(ion ) = R T ln 1bar with x°(ion) = 0.5 for tBu+ and Al2Br7- (pure IL as standard state), 0.265 (mole fraction of an ideal one-molar solution as standard state) for HBr and Al3Br10- 20 Optimised Z-Matrix of tBu+ (CCSD(T)/def2-TZVPP, CFOUR format) X C 1 AAA C 2 BBB* 1 CCC C 2 DDD* 1 EEE* 3 FFF* C 2 GGG* 1 HHH* 3 III* H 3 JJJ* 2 KKK* 1 LLL H 3 MMM* 2 NNN* 6 OOO* H 3 PPP* 2 QQQ* 6 RRR* H 5 SSS* 2 TTT* 1 UUU* H 5 VVV* 2 WWW* 9 XXX* H 5 YYY* 2 ZZZ* 9 AAB* H 4 AAC* 2 AAD* 1 AAE* H 4 AAF* 2 AAG* 12 AAH* H 4 AAI* 2 AAJ* 12 AAK* AAA = 1.000000000000000 BBB = 1.460966237755092 CCC = 90.000000000000000 DDD = 1.463303690408774 EEE = 90.923190354776224 FFF = 119.648918512467958 GGG = 1.463303690408773 HHH = 90.923190354776210 III = -119.648918512467958 JJJ = 1.108785977742639 KKK = 102.003573327346999 LLL = 0.000000000000000 MMM = 1.089045955615453 NNN = 113.410184320770938 OOO = 114.283877105480045 PPP = 1.089045955615453 QQQ = 113.410184320770938 RRR = -114.283877105480045 SSS = 1.107376482830644 TTT = 103.051188998309982 UUU = 179.338953563299356 VVV = 1.087658026753454 WWW = 113.629674602349468 XXX = 115.913419320918834 YYY = 1.089948720973745 ZZZ = 112.602317101029485 AAB = -113.714380927072227 AAC = 1.107376482830644 AAD = 103.051188998309968 AAE = -179.338953563290829 AAF = 1.089948720973744 AAG = 112.602317101029456 AAH = 113.714380927072114 AAI = 1.087658026753454 AAJ = 113.629674602349439 AAK = -115.913419320918777 21 References to Supporting Information 1 [ ] a) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kølmel, Chem. Phys. Lett. 1989, 162, 165-169; b) O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346 – 354. 2 [ ] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297 – 3305. 3 [ ] K. Eichkorn, O. Treutler, H. Oehm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 242, 652 – 660. 4 [ ] a) P. Deglmann, F. Furche, R. Ahlrichs, Chem. Phys. Lett. 2002, 362, 511; b) P. Deglmann, F. Furche, J. Chem. Phys. 2002, 117, 9535. 5 Density functional theory for excited states: equilibrium structure and electronic spectra. F. Furche and D. Rappoport, Ch. III of ”Computational Photochemistry”, Ed. by M. Olivucci, Vol. 16 of ”Computational and Theoretical Chemistry”, Elsevier, Amsterdam, 2005. 6 [ ] a) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kølmel, Chem. Phys. Lett. 1989, 162, 165-169; b) O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346 – 354. 7 [ ] a) A. D. Becke, Phys. Rev. A 1988, 38, 3098 – 3100; b) J. P. Perdew, Phys. Rev. B 1986, 33, 8822 – 8824; erratum: J. P. Perdew, Phys. Rev. B 1986, 34, 7406. 8 [ ] A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571. 9 [ ] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297 – 3305. 10 [ ] K. Eichkorn, O. Treutler, H. Oehm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 242, 652 – 660. 11 [ ] a) P. Deglmann, F. Furche, R. Ahlrichs, Chem. Phys. Lett. 2002, 362, 511; b) P. Deglmann, F. Furche, J. Chem. Phys. 2002, 117, 9535. 12 [ ] By chance scaling factors for BP86/def-TZVP frequencies are very close to unity. Therefore we did not scale the contributions to entropy/enthalpy. 13 [ ] A. Klamt, G. Schüürmann, J. Chem. Soc., Perkin Trans. 2 1993, 799–805 14 [ ] A. Schäfer, A. Klamt, D. Sattel, J. C. W. Lohrenz, F. Eckert, Phys. Chem. Chem Phys. 2000, 2, 2187-2193. [15] A. Klamt, J. Phys. Chem. 1995, 99, 2224-2235. [16] A. Klamt, COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design, Elsevier B.V., Amsterdam, 2005, p. 234. 17 [ ] F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett.1998, 294, 143 - 152. [18]CFOUR, a quantum chemical program package written by J.F. Stanton, J. Gauss, M.E. Harding, P.G. Szalay with contributions from A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, Y.J. Bomble, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W.J. Lauderdale, D.A. Matthews, T. Metzroth, D.P. O'Neill, D.R. Price, E. Prochnow, K. Ruud, F. Schiffmann, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J.D. Watts and the integral packages MOLECULE (J. Almlöf and P.R. Taylor), PROPS (P.R. Taylor), ABACUS (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see http://www.cfour.de." 19 [ ] Gaussian 03, Revision D.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. 20 t th [ ] ∆vapH°( BuBr) from table 5-27 in Handbook of Chemistry and Physics, 76 EDITION 1995-1996, t CRC Press, Inc., Boca Raton, New York, London, Tokyo; ∆vapG°( BuBr) from D. Bryce-Smith, K. E. Howlett, J. Chem. Soc. 1951, 1141; calculated via Antoine equation at http://webbook.nist.gov/cgi/cbook.cgi?ID=C507197&Units=SI&Mask=4#Thermo-Phase 21 [ ] M. W. Chase Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. 22 [ ] T. H. Dunning, J. Chem. Phys. 1989, 90, 1007. 23 [ ] R. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796. 24 [ ] D. E. Woon, T.H. Dunning, K. A. Peterson, A. K. Wilson, J. Chem. Phys. 2001, 114, 9244. 25 [ ] K. A. Peterson, D. Figgen, E. Goll, H. Stoll, M. Dolg, J. Chem. Phys. 2003, 119, 11113. 26 U. Preiss, S. P. Verevkin, T. Koslowski, I. Krossing, Chem. Eur. J. 2011, 17, 6508-6517. 27 U.Preiss, V. N. Emel’yanenko, S. P. Verevkin, D. Himmel, Y. U. Paulechka, I. Krossing, ChemPhysChem 2010, 11(16), 3425-3431. 28 [ ] H. D. B. Jenkins, H. K. Roobottom, J. Passmore, L. Glasser, Inorg. Chem. 1999, 38, 3609. 22 29 [ ] H. D. B.Jenkins, L Glasser Inorg. Chem., 2003, 42, (26), 8702–8708. 23
© Copyright 2026 Paperzz