Supporting Information

Supporting Information
Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012
Superacidic or Not…? Synthesis, Characterisation, and Acidity of the RoomTemperature Ionic Liquid [CACHTUNGRE(CH3)3]+ [Al2Br7]
Franziska Scholz, Daniel Himmel, Harald Scherer, and Ingo Krossing*[a]
chem_201203260_sm_miscellaneous_information.pdf
Out
Supporting Information for
A Superacidic Ionic Liquid: Synthesis, Structure and
Characterisation of [C(CH3)3]+[Al2Br7]–
Franziska Scholz, Daniel Himmel, Harald Scherer and Ingo Krossing*
Institut
für
Anorganische
und
Analytische
Chemie,
FMF
(Freiburger
Materialforschungszentrum) and FRIAS (Freiburg Institute for Advanced Studies), AlbertLudwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg.
Tel.: ++49 761 203 6122 Fax: ++49 761 203 6001
[email protected]
1. Experimental procedures and characterization data --------------------------------------------------------- 2
Techniques: ----------------------------------------------------------------------------------------------------------------- 2
Syntheses of AlBr3: ------------------------------------------------------------------------------------------------------- 2
Syntheses of [C(CH3)3][Al2Br7]: ---------------------------------------------------------------------------------------- 3
Attempts to synthesis [C(CH3)3][Al2Br7] in 1,2-difluorobenzene: ----------------------------------------------- 3
Attempted Synthesis of [C(CH3)3][Al2Br7] in CH2Br2:-------------------------------------------------------------- 3
Preferred Synthesis of [C(CH3)3][Al2Br7] in the presence of HBr: ---------------------------------------------- 3
Attempted Synthesis of [C(CH3)3][Al2Br7]: Reaction of isobutene, HBr and AlBr3: ------------------------ 3
Attempted Synthesis of [C(CH3)3][Al2Br7]: Reaction of polyisobutene, HBr and AlBr3: ------------------- 4
2. DFT-Calculations and IR- and Raman-Spectroscopy -------------------------------------------------------- 5
+
–
Fig. S 11 Unit cell of the crystal structure of [C(CH3)3] [Al2Br7] . For clarity only the central
atoms of anion and cation are shown. Orange balls symbolize the non-disordered anion, the
red ones the disordered, the black ones the non-disordered cation and the blue ones the
disordered. The cations as well as the anions are in the respective octahedral voids. The
packing pattern can be seen as a distorted CsCl-lattice. ---------------------------------------------------- 11
5. Crystal data and structure refinement for [(CH3)3C] [Al2Br7]. -------------------------------------------- 12
6. Quantum chemical calculations ---------------------------------------------------------------------------------- 15
Calculation of ∆lattH°---------------------------------------------------------------------------------------------------- 17
Calculation of ∆lattG°---------------------------------------------------------------------------------------------------- 18
Calculation of ∆solvH° and ∆solvG° of all species considered in the BFHCs -------------------------------- 19
1. Experimental procedures and characterization data
Techniques: All reactions were carried out under argon atmosphere inside a glove box and using special double
Schlenk flasks fitted with greaseless J. Young taps (see drawing).
NMR spectra were recorded on a Bruker Biospin Avance II 400MHz WB spectrometer and then handled with the
software Topspin. The measurements were conducted in sealed 3 mm NMR tubes (see figure).
a)
b)
c)
a)
b)
c)
3 mm NMR tube
Teflon cap with 3 mm borehole
5 mm tube with deuterated solvent
Infrared spectra were recorded on a ATR Nicolet (760 Magna IR) equipped with a diamond cell. Raman
measurements were performed on a Bruker RAM II module of the Bruker Vertex 70. X-ray crystallographic
measurements were made on a Bruker SMART APEX2 CCD area detector diffractometer with Mo-Kα radiation
(λ = 0.71073 Å).
Syntheses of AlBr3: Aluminium was weighted in a double Schlenk flask. The glassware was evacuated. The
equipment was flooded by bromine. To start the reaction aluminium was selective heated to 650°C. The formed
solid was re-crystallized in warm hexane and ultimately AlBr3 formed as a colourless solid.
27
Al-NMR (104,27 MHz, CH2Br2, 298 K) : δ = 77.
-1
FT-Raman: 78.4, 112.4, 139.9, 208.8, 222.8 cm .
2
Syntheses of [C(CH3)3][Al2Br7]: AlBr3 (2.00 g; 7.50 mmol) was weighted in the glove box and tert-butyl bromide
(514 mg, 0.42 ml, 3.75 mmol, 0.5 eq.) was added at -70°C. While stirring the mixture it was slowly warmed to 0°C
and a yellow oil arose. At 2°C the liquid reversibly crystallised.
MIR-IR: 440 (vs), 696 (w), 968 (m), 1065 (m), 1286 (s), 1459 (m), 2786 (s).
-1
-1
-1
-1
-1
-1
-1
FT-Raman: 78 cm (m), 99 cm (m), 202 cm (s), 343 cm (w), 423 cm (w), 815 cm (w), 1281 cm (w), 2811
-1
-1
cm (w), 2950 cm (w).
1
H-NMR (104,27 MHz, 298 K): δ = 3,5 (bs, 9H, CH3), 2,6 – 0,5 (contamination, oligomers).
13
C-NMR (100,6 MHz, 298 K): δ = 327 (bs, 1C, Cq), 49 (d, 9C, CH3), (contamination, oligomers).
27
Al-NMR (104,27 MHz, 298 K) : δ = 82.
Attempts to synthesis [C(CH3)3][Al2Br7] in 1,2-difluorobenzene: AlBr3 (1.50 g; 5.60 mmol) was weighted into a
flask in the glove box and dissolved in 1,2-difluorbenzene. Tert-butyl bromide (0.38 mg, 0.30 ml, 2.80 mmol, 0.50
eq.) was added at -70°C. While stirring the mixture, it was slowly warmed to 0°C. NMR spectra indicated
alkylation of the solvent (see S-Fig 3 and 4).
Attempted Synthesis of [C(CH3)3][Al2Br7] in CH2Br2: AlBr3 (1.5 g; 5.6 mmol) was weighed into the in the glove
box and dissolved in CH2Br2. Tert-butyl bromide (381 mg, 0.3 ml, 2.8 mmol; 0.5 eq.) was added at -70°C. While
stirring the mixture was slowly warmed to 0°C. However, the NMR spectra did not show clear formation of the
+
[C(CH3)3] cation (see S-Fig. 1).
Preferred Synthesis of [C(CH3)3][Al2Br7] in the presence of HBr: In a typical succesful preparation, AlBr3 (2.00
g; 7.50 mmol) was weighed in the glove box into a suitble flask and tert-butyl bromide (0.51 g, 0.42 ml, 3.75
mmol, 0.50 eq.) was condensed to it at –196 °C. For the in situ production of HBr, PBr3 (0.20 ml, 0.58 g, 2.10
mmol) was added to a suspension of CuSO4·5H2O (0.15 g, 0.60 mmol) in toluene (5 ml) in a 250 ml Schlenk flask.
After warming the mixture to 90°C for 10 min, the by hydrolysis formed HBr was purified from toluene and water
traces by trap-to-trap condensation (–196 to –78°C) and condensed to the mixture of AlBr3 and tert-butyl bromide.
+
–
With stirring, the mixture was slowly warmed to 10 °C and the yellow oil of [C(CH3)3] [Al2Br7] arose after 15 min in
quantitative yield. It reversibly crystallizes at 2 °C.
1
H-NMR (104,27 MHz, 298 K): δ = 2,6 (bs, 9H, CH3).
13
C-NMR (100,6 MHz, 298 K): δ = 325 (bs, 1C, Cq), 49 (d, 9C, CH3).
27
Al-NMR (104,27 MHz, 298 K) : δ = 82.
IR: ν = 440 (1000), 696 (5), 968 (9), 1065 (15), 1283 (40), 1458 (14), 1533 (4), 2787 (37), 2953 (7), 3018 (5) cm
–1
(%). FT-Raman: ν = 78 (27), 99 (37), 202 (100), 341 (4), 420 (3), 732 (1), 765 (1), 815 (2), 950 (1), 992 (1), 1089
(1), 1220 (1), 1241 (1), 1281 (4), 1295 (4), 1366 (1), 1396 (1), 1463 (1), 1488 (1), 2809 (12), 2950 (4), 2995 (2)
cm
–1
(%).
Attempted Synthesis of [C(CH3)3][Al2Br7]: Reaction of isobutene, HBr and AlBr3: AlBr3 (1.50 g; 5.60 mmol)
was weighed into the in the glove box. Isobutene (680 mbar, 2.74 mmol; 0.49 eq.) and HBr was added at -70°C.
For the in situ production of HBr specidied above, PBr3 (0.20 ml, 0.58 g, 2.10 mmol) was added to a suspension
of CuSO4·5H2O (0.15 g, 0.60 mmol) in toluene (5 ml) While stirring the mixture was slowly warmed to 0°C.
+
However, the NMR spectra did not show clear formation of the [C(CH3)3] cation but the presence of oligomers
and higher carbo cations (see Fig. S 7 and Fig. S 8).
3
Attempted Synthesis of [C(CH3)3][Al2Br7]: Reaction of polyisobutene, HBr and AlBr3:
AlBr3 (888 mg; 3.33 mmol) was weighed into the in the glove box. Polyisobutene Mn = 649.9 g/mol (1.08 mbar,
1.70 mmol; 0.51 eq.) and HBr was added at -70°C. For the in situ generation of HBr, PBr3 (0.2 ml, 576.9 mg, 2.1
mmol) was added as mentioned above to a suspension of CuSO4·5H2O (300 mg, 1.2 mmol) in toluene (5 ml)
While stirring the mixture was slowly warmed to room temperature. The mixture was heated to 40 °C for 72 h. It
+
resulted in two phases. However, the NMR spectra did not show clear formation of the [C(CH3)3] cation.
4
2. DFT-Calculations and IR- and Raman-Spectroscopy
DFT optimisations were carried out with TURBOMOLE
[1]
at the PBE0/def2-TZVPP
[3]
bases ). Vibrational frequencies were calculated analytically with the AOFORCE
[2]
[4]
levels with RI-J auxiliary
module and all structures
represented true minima without imaginary
To calculate the IR- and Raman wavenumbers and intensities the derivation of the polarization was calculated
5
with Egrad and was projected on the normal modes. The IR- and Raman bands were overlapped with a Lorentz
function. Wavenumbers were scaled by a factor of 0.96.
vibrational spectrum
mode
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
symmetry
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
wave number
cm**(-1)
0.00
0.00
0.00
0.00
0.00
0.00
27.24
162.80
215.99
414.00
415.05
446.89
710.16
746.17
859.40
981.10
991.28
1019.03
1103.17
1300.00
1302.82
1321.81
1328.41
1360.71
1379.39
1403.16
1423.25
1488.71
1504.57
1509.90
2950.31
2955.63
2971.94
3097.57
3102.02
3106.87
3178.74
3181.43
3187.50
IR intensity
km/mol
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
1.19656
5.27226
5.66345
1.01026
1.25922
4.45325
13.17940
6.51378
3.61271
7.69523
23.01364
0.99559
50.70187
37.09743
34.58762
116.53573
49.29288
141.70579
18.50497
2.39592
31.27567
6.76912
49.27593
47.22518
138.12238
91.80603
26.93988
8.16938
10.71648
20.72716
12.42584
1.70172
8.88192
selection rules
IR RAMAN
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
YES YES
5
3. NMR-Spectroscopy
5
4
3
2
1
0
-1
-2
-3
ppm
-4
1
Fig. S 1 H-NMR-spectrum (400.17 MHz, CH2Br2) of tert-butyl bromide and AlBr3 in CH2Br2 at 298 K.
7
1
6
5
4
3
2
1
0
-1
-2
-3
-4
ppm
Fig. S 2 H-NMR-spectrum (400.17 MHz) of C(CH3)3[Al2Br7] at 298 K. The main signal at +2.6 ppm is due to
+
C(CH3)3 , the line at –3.4 ppm is due to HBr that slowly forms at RT with formation of protonated isobutene
oligomers, to which the remaining lines are assigned.
6
350
300
Fig. S 3
1
9
8
13
250
200
1
150
100
C{ H}-NMR-spectrum (100,6 MHz) of C(CH3)3[Al2Br7] at 298 K.
7
6
5
4
3
2
50
ppm
1
ppm
Fig. S 4 H-NMR-spectrum (400.17 MHz) of the attempted synthesis of C(CH3)3[Al2Br7] in o-difluorobenzene at
298 K.
7
ppm
50
100
150
200
250
300
350
10
9
8
7
6
5
4
3
2
1
0
ppm
1
13
Fig. S 5 H, C-long-range-correlation of the attempted synthesis of C(CH3)3[Al2Br7] in o-difluorobenzene at 298
K.
-85
Fig. S 6
-90
19
-95
-100
-105
-110
-115
-120
-125
-130
-135
-140
-145 ppm
13
F{ C}-NMR-spectrum of the attempted synthesis of C(CH3)3[Al2Br7] in o-difluorobenzene at 298 K.
8
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
-1
-2
-3
ppm
Fig. S 7 1H-NMR-spectrum (400.17 MHz) of the reaction of isobutene, AlBr3 in an HBr atmosphere at 298 K.
ppm
0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
11
10
9
8
7
6
5
4
3
2
1
0
ppm
Fig. S 8 1H,13C-long-range-correlation the reaction of isobutene with AlBr3 in an HBr atmosphere at 298 K.
9
9
8
7
6
5
4
3
2
1
0
-1
-2
-3
-4
ppm
Fig. S 9 1H-NMR-spectrum (200.13 MHz) of the reaction of polyisobutene with AlBr3 in an HBr atmosphere at
298 K.
350
300
250
200
150
100
50
0
ppm
Fig. S 1013C{1H}-NMR-spectrum (50,32 MHz) of the reaction of polyisobutene with AlBr3 in an HBr atmosphere at
298 K.
10
4. Lattice Packing of [(CH3)3C] [Al2Br7]
+
–
Fig. S 11 Unit cell of the crystal structure of [C(CH3)3] [Al2Br7] . For clarity only the central atoms of anion and
cation are shown. Orange balls symbolize the non-disordered anion, the red ones the disordered, the black ones
the non-disordered cation and the blue ones the disordered. The cations as well as the anions are in the
respective octahedral voids. The packing pattern can be seen as a distorted CsCl-lattice.
11
5. Crystal data and structure refinement for [(CH3)3C] [Al2Br7].
Table 1: Crystal data and structure refinement for c2c
Identification code
c2c
Empirical formula
Al2Br7C4H9
Formula weight
670.44
Temperature / K
153.15
Crystal system
monoclinic
Space group
C2/c
a / Å, b / Å, c / Å
27.727(2), 13.1138(10), 13.8537(11)
α/°, β/°, γ/°
90.00, 95.974(2), 90.00
3
Volume / Å
5010.0(7) Z 12
ρcalc / mg mm-3
2.667
µ / mm
1
16.889
F(000)
3648
3
Crystal size / mm
0.28 × 0.14 × 0.07
2Θ range for data collection
3.80 to 54.96°
Index ranges
-35 ≤ h ≤ 35, -17 ≤ k ≤ 17, -16 ≤ l ≤ 17
Reflections collected
38947
Independent reflections
5631[R(int) = 0.0617]
Data/restraints/parameters
5631/13/198
2
Goodness-of-fit on F
1.029
Final R indexes [I>2σ (I)]
R1 = 0.0491, wR2 = 0.1111
Final R indexes [all data]
R1 = 0.0747, wR2 = 0.1225
-3
Largest diff. peak/hole / e Å
1.502/-1.823
12
13
14
6. Quantum chemical calculations
[1]
DFT
optimizations were carried out with TURBOMOLE
levels with RI-J auxiliary bases
[10]
[6]
[7]
at the BP86 /def-TZVP
[8]
and PBE0/def2-TZVPP
). Vibrational frequencies were calculated analytically with the AOFORCE
[9]
[11]
module and all structures represented true minima without imaginary frequencies on the respective hypersurface.
Thermal contributions to ab initio reaction energies (see below) were calculated with inclusion of zero point
energy, thermal contributions to the enthalpy/entropy (FREEH tool; unscaled
[13,14]
Solvation effects were calculated using the COSMO
[12]
BP86 vibrational frequencies).
. module with BP86/def-TZVP. Default options and
standard optimized COSMO radii included in the module were used. COSMO-RS
15 16
,
theory and the
COSMOTHERM program (Version C2.1 Release 01.08) was used for calculation of IL thermodynamics.
IR- and Raman spectra (wave numbers and intensities) were calculated analytically at the PBE0/def2-TZVPP
level. Wave numbers were scaled by a factor of 0.96.
MP2 structure optimizations were carried out with TURBOMOLE
bases
[17]
program
[6]
and def2-QZVPP basis sets and RI-C auxiliary
for all atoms. CCSD(T)/def2-TZVPP structure optimization of tBu
[18]
+
was done with the CFOUR
. Ab-initio calculations with correlation-consistent basis sets were done with Gaussian 03
[19]
.
Gas Phase Thermodynamics:
t
Experimental vaporisation and sublimation enthalpies / Gibbs energies were used for BuBr
[20]
21
and Al2Br6. .
The gas phase reaction energy was calculated at the CCSD(T)/double-ζ level plus MP2 extrapolation to
quadruple-ζ.using correlation-consistent based on MP2/def2-QZVPP
[9]
structures.
∆Eextrapol. = ∆Eccsd(t)/A’VDZ -∆EMP2/A’VQZ +∆EMP2/A’VQZ.
[22]
[A’VXZ = cc-pVXZ for H
[23]
, aug-cc-pVXZ for C
, aug-cc-pV(X+d)Z for Al
[24]
, and aug-cc-pVXZ-PP
[25]
for Br (X =
D, Q)],
Thermal contributions were calculated with BP86/def-TZVP at 1 bar, 298.15 K
∆U° = ∆Eextrapol. + ∆Evrt
(∆Evrt = sum of translational, rotational, and vibrational energy incl. zero point vibrational energy)
∆H° = ∆U° + ∆n RT
(∆n = particle number change in reaction equation)
∆G° = ∆H° -298.15 K • ∆S°
15
Energetic contributions in the Gas Phase (Excerpts from Excel sheet):
CCSD(T) and MP2 single point energies on RI-MP2/def2-QZVPP structures in Hartree
Evrt = Thermal (vib.+rot.+trans.) contribution to energy incl. ZPE @BP86/def-TZVP in kJ mol
-1
S = Standard entropy @BP86/def-TZVP in kJ mol K
t
-1
-1
BuBr
CCSD(T)/A’VDZ MP2/A’VDZ
-573.049701
MP2/A’VQZ
-572.960405 -573.242728
Evrt
S
328.61
0.33223
Al2Br6
CCSD(T)/A’VDZ MP2/A’VDZ
-2978.20798
t
Bu
Evrt
S
-2978.12148 -2978.64159 56.97
0.5586
+
CCSD(T)/A’VDZ MP2/A’VDZ
-157.094445
Al2Br7
MP2/A’VQZ
-157.015351 -157.218262
Evrt
S
313.85
0.32696
-
CCSD(T)/A’VDZ MP2/A’VDZ
-3394.02564
i
MP2/A’VQZ
MP2/A’VQZ
Evrt
S
-3393.92672 -3394.52491 64.37
0.63522
C4H8
CCSD(T)/A’VDZ MP2/A’VDZ
-156.781355
Br
MP2/A’VQZ
Evrt
S
-156.706536 -156.909838 288.96
0.29173
-
CCSD(T)/A’VDZ
MP2/A’VDZ
MP2/A’VQZ
Evrt
-415.71035
-415.696489 -415.772881 3.72
S
0.163381
-
Additional RI-MP2/A’VTZ calculations for [Al3Br10] formation and BP86/def-TZVP thermal contributions
Al2Br6
Al2Br7
-
Al3Br10
-
MP2
Evrt
S
-2978,518741
56,97
0,55860
-3394,382603
64,37
0,63522
-4883,657617
96,52
0,86319
16
Condensed Phase Thermodynamics
t
The thermodynamics of solid Bu[Al2Br7] was calculated using semi-empirical correlations recently published by
t
our group (see below), of liquid Bu[Al2Br7] with the program package COSMO-RS from the Cosmologic GmbH.
Calculation of ∆lattH°
(Based on empirical correlations between calculated and experimental values
,calc
∆lattH° = -0.685 • ∆solvH°
,calc
Calculation of ∆solvH°
,calc
∆solvH°
,COSMO
∆solvG°
t
Bu
+
Al2Br7
-
,calc
+298.15 K • ∆solvS°
∆solvG*/H
∆solvG°/kJ mol
-0,09227644
-234,3
,COSMO
(ref 26, eq. 7)
calculation (COSMO, εr = ∞ @ BP86/def-TZVP):
-1
,COSMO
Sum = ∆solvG°
-391,8
-0,063035256 -157,5
∆solvG°
(ref. 26, eq. 11)
from
,COSMO
= ∆solvG°
-1
+ 172 kJ mol .
,COSMO
=∆solvG*
-1
+ 7.96 kJ mol )
17
Empirical correlation between calculated (BP86/def-TZVP) ion gas phase entropies and IL liquid entropy:
±
-1
-1
,±
Sl° = 0.9402 • Sg -0.256 kJ mol K with Sg° = Sg°(cation) + Sg°(anion)
, calc
-> ∆solvS°
, calc
∆solvS°
= Sl° - Sg
°,±
Bu
+
-1
±
0,32696
Al2Br7
-
-1
-1
,calc
Sg° /kJ mol K
Sl°/kJ mol K
∆solvS°
0.9622
0.6054
-0.3118
/kJ mol K
-1
0,63522
,calc
->∆solvH°
-1
-1
= -391.8 kJ mol + 298.15 K • (-0.3118 kJ mol K )
= -484.8 kJ mol
->
-1 -1
= (0.9402-1) • Sg° - 0.256 kJ mol K
calculation (@ BP86/def-TZVP, FREEH tool):
Sg°/kJ mol K
t
,±
(ref 27, eq. 8)
∆lattH°
-1
-1
-1
= -0.685 • -484.7 kJ mol  + 172 kJ mol .
-1
= +504.1 kJ mol
Note: ∆lattH° calculation with the frequently used approach of Jenkins for lattice energy[28]
 117.3nm mol −1

U L = z ⋅ z ⋅ n ⋅
+ 51.9  kJ ⋅ mol −1


3V
therm


+
−
+
-
Jenkins equation; UL = lattice energy; n = number of ions in the unit cell; z , z = cation and anion charges, Vtherm =
thermochemical volume; α,β = empirical constants.
∆lattH°= Ul + [nA/2+nB/2 – 4] RT
[28]
.
nA/B = 3 for monoatomic ions, 5 for linear polyatomic ions, 6 for nonlinear polyatomic ions
yields ∆lattH° = +422.6 kJ mol
-1
which is more than 80 kJ mol
–1
lower than our calculation and absolutely
inconsistent with our experimental findings: As lattice energy is a main driving force of the reaction, the reaction
would never occur with this value.
Calculation of ∆lattG°
[29]
Jenkins-Glasser relation for solid entropy
Ss
°
-1
K nm • Vm +0.015 kJ mol
= 1.36 kJ mol
-1
K nm • (Vcell/Z) +0.015 kJ mol
= 1.36 kJ mol
-1
K nm • (0.4175 nm ) +0.015 kJ mol
= 0.5828 kJ mol
±
-1
-3
-1
-3
-1
-3
:
= 1.36 kJ mol
-1
-1
K
3
-1
-1
-1
K
-1
K
-1
-1
K
∆lattS° = Sg° - Ss° = (0.9622-0.5828) kJ mol
-1 -1
= 0.3794 kJ mol K
-1
-1
K
∆lattG° =∆lattH° - 298.15 K • ∆lattS°
-1
-1 -1
= +504.1 kJ mol - 298.15 K • 0.3794 kJ mol K
-1
= 391.0 kJ mol
18
Calculation of ∆solvH° and ∆solvG° of all species considered in the BFHCs
Excerpt from COSMOTHERM (Version C2.1 Release 01.08) output:
-------------------------------------------------------Automatic computation of vapor pressures between
T = 298.15000 [K] and T = 298.15000 [K] Steps = 1
--------------------------------------------------------
Results for mixture 1
----------------------Temperature
:
Compound Nr.
298.150 K
:
1
-
Compound
:
Al2Br7
Mole Fraction
:
0.5000
2
3
4
tBu+ Al3Br100.5000
HBr
0.0000
0.0000
Compound: 1 (Al2Br7-)
Chemical potential of the compound in the mixture :
Log10(partial pressure [kPa ])
:
-51.16182 kJ/mol
-30.45471
Free energy of molecule in mix (E_COSMO+dE+Mu)
Total mean interaction energy in the mix (H_int) :
Misfit interaction energy in the mix (H_MF)
: -48581435.75245 kJ/mol
-70.49220 kJ/mol
:
24.23947 kJ/mol
H-Bond interaction energy in the mix (H_HB)
:
0.00000 kJ/mol
VdW interaction energy in the mix (H_vdW)
:
-94.73167 kJ/mol
Ring correction
:
0.00000 kJ/mol
Vapor pressure of compound over the mixture
: 0.17549193E-30 kPa
Chemical potential of compound in the gas phase :
Heat of vaporization
:
-134.08882 kJ/mol
228.84422 kJ/mol
Compound: 2 (tBu+)
Chemical potential of the compound in the mixture :
Log10(partial pressure [kPa ])
:
0.86470 kJ/mol
-34.92334
Free energy of molecule in mix (E_COSMO+dE+Mu)
Total mean interaction energy in the mix (H_int) :
Misfit interaction energy in the mix (H_MF)
:
-413958.53055 kJ/mol
-22.55980 kJ/mol
:
8.22586 kJ/mol
H-Bond interaction energy in the mix (H_HB)
:
0.00000 kJ/mol
VdW interaction energy in the mix (H_vdW)
:
-30.78566 kJ/mol
Ring correction
:
0.00000 kJ/mol
Vapor pressure of compound over the mixture
: 0.59653045E-35 kPa
Chemical potential of compound in the gas phase :
Heat of vaporization
:
-211.62214 kJ/mol
258.44514 kJ/mol
19
Compound: 3 (Al3Br10-)
Chemical potential of the compound in the mixture :
Log10(partial pressure [kPa ])
:
-73.20073 kJ/mol
-31.28571
Free energy of molecule in mix (E_COSMO+dE+Mu)
Total mean interaction energy in the mix (H_int) :
Misfit interaction energy in the mix (H_MF)
: -69492780.59777 kJ/mol
-100.55448 kJ/mol
:
30.72201 kJ/mol
H-Bond interaction energy in the mix (H_HB)
:
0.00000 kJ/mol
VdW interaction energy in the mix (H_vdW)
:
-131.27649 kJ/mol
Ring correction
:
0.00000 kJ/mol
Vapor pressure of compound over the mixture
:
Chemical potential of compound in the gas phase :
Heat of vaporization
:
0.00000 kPa
-116.79325 kJ/mol
241.61092 kJ/mol
Compound: 4 (HBr)
Chemical potential of the compound in the mixture :
Log10(partial pressure [kPa ])
:
-12.10202 kJ/mol
2.75312
Free energy of molecule in mix (E_COSMO+dE+Mu)
Total mean interaction energy in the mix (H_int) :
Misfit interaction energy in the mix (H_MF)
: -6759702.73109 kJ/mol
-15.13254 kJ/mol
:
5.32458 kJ/mol
H-Bond interaction energy in the mix (H_HB)
:
0.00000 kJ/mol
VdW interaction energy in the mix (H_vdW)
:
-20.45712 kJ/mol
Ring correction
:
0.00000 kJ/mol
Vapor pressure of compound over the mixture
:
Chemical potential of compound in the gas phase :
Heat of vaporization
:
0.00000 kPa
16.40083 kJ/mol
27.17807 kJ/mol
∆solvH° from single ion contributions to heat of vaporisation
∆solvG° from “single ion vapour pressures over the mixture” (see “Log10(partial
pressure [kPa ])” in Cosmotherm output) with the relation:
 pvap °(ion ) ⋅ x °(ion ) 
∆ solv G °(ion ) = R T ln 


1bar


with x°(ion) = 0.5 for tBu+ and Al2Br7- (pure IL as standard state), 0.265 (mole fraction
of an ideal one-molar solution as standard state) for HBr and Al3Br10-
20
Optimised Z-Matrix of tBu+ (CCSD(T)/def2-TZVPP, CFOUR format)
X
C 1 AAA
C 2 BBB* 1 CCC
C 2 DDD* 1 EEE* 3 FFF*
C 2 GGG* 1 HHH* 3 III*
H 3 JJJ* 2 KKK* 1 LLL
H 3 MMM* 2 NNN* 6 OOO*
H 3 PPP* 2 QQQ* 6 RRR*
H 5 SSS* 2 TTT* 1 UUU*
H 5 VVV* 2 WWW* 9 XXX*
H 5 YYY* 2 ZZZ* 9 AAB*
H 4 AAC* 2 AAD* 1 AAE*
H 4 AAF* 2 AAG* 12 AAH*
H 4 AAI* 2 AAJ* 12 AAK*
AAA =
1.000000000000000
BBB =
1.460966237755092
CCC =
90.000000000000000
DDD =
1.463303690408774
EEE =
90.923190354776224
FFF =
119.648918512467958
GGG =
1.463303690408773
HHH =
90.923190354776210
III = -119.648918512467958
JJJ =
1.108785977742639
KKK =
102.003573327346999
LLL =
0.000000000000000
MMM =
1.089045955615453
NNN =
113.410184320770938
OOO =
114.283877105480045
PPP =
1.089045955615453
QQQ =
113.410184320770938
RRR = -114.283877105480045
SSS =
1.107376482830644
TTT =
103.051188998309982
UUU =
179.338953563299356
VVV =
1.087658026753454
WWW =
113.629674602349468
XXX =
115.913419320918834
YYY =
1.089948720973745
ZZZ =
112.602317101029485
AAB = -113.714380927072227
AAC =
1.107376482830644
AAD =
103.051188998309968
AAE = -179.338953563290829
AAF =
1.089948720973744
AAG =
112.602317101029456
AAH =
113.714380927072114
AAI =
1.087658026753454
AAJ =
113.629674602349439
AAK = -115.913419320918777
21
References to Supporting Information
1
[ ] a) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kølmel, Chem. Phys. Lett. 1989, 162, 165-169; b) O.
Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346 – 354.
2
[ ] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297 – 3305.
3
[ ] K. Eichkorn, O. Treutler, H. Oehm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 242, 652 – 660.
4
[ ] a) P. Deglmann, F. Furche, R. Ahlrichs, Chem. Phys. Lett. 2002, 362, 511; b) P. Deglmann, F.
Furche, J. Chem. Phys. 2002, 117, 9535.
5
Density functional theory for excited states: equilibrium structure and electronic spectra. F. Furche
and D. Rappoport, Ch. III of ”Computational Photochemistry”, Ed. by M. Olivucci, Vol. 16 of
”Computational and Theoretical Chemistry”, Elsevier, Amsterdam, 2005.
6
[ ] a) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kølmel, Chem. Phys. Lett. 1989, 162, 165-169; b) O.
Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346 – 354.
7
[ ] a) A. D. Becke, Phys. Rev. A 1988, 38, 3098 – 3100; b) J. P. Perdew, Phys. Rev. B 1986, 33, 8822
– 8824; erratum: J. P. Perdew, Phys. Rev. B 1986, 34, 7406.
8
[ ] A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571.
9
[ ] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297 – 3305.
10
[ ] K. Eichkorn, O. Treutler, H. Oehm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 242, 652 – 660.
11
[ ] a) P. Deglmann, F. Furche, R. Ahlrichs, Chem. Phys. Lett. 2002, 362, 511; b) P. Deglmann, F.
Furche, J. Chem. Phys. 2002, 117, 9535.
12
[ ] By chance scaling factors for BP86/def-TZVP frequencies are very close to unity. Therefore we did
not scale the contributions to entropy/enthalpy.
13
[ ] A. Klamt, G. Schüürmann, J. Chem. Soc., Perkin Trans. 2 1993, 799–805
14
[ ] A. Schäfer, A. Klamt, D. Sattel, J. C. W. Lohrenz, F. Eckert, Phys. Chem. Chem Phys. 2000, 2,
2187-2193.
[15] A. Klamt, J. Phys. Chem. 1995, 99, 2224-2235.
[16] A. Klamt, COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design, Elsevier B.V., Amsterdam, 2005,
p. 234.
17
[ ] F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett.1998, 294, 143 - 152.
[18]CFOUR, a quantum chemical program package written by J.F. Stanton, J. Gauss, M.E. Harding, P.G. Szalay
with contributions from A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, Y.J. Bomble, O.
Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W.J. Lauderdale,
D.A. Matthews, T. Metzroth, D.P. O'Neill, D.R. Price, E. Prochnow, K. Ruud, F. Schiffmann, S. Stopkowicz, A.
Tajti, J. Vázquez, F. Wang, J.D. Watts and the integral packages MOLECULE (J. Almlöf and P.R. Taylor),
PROPS (P.R. Taylor), ABACUS (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by
A. V. Mitin and C. van Wüllen. For the current version, see http://www.cfour.de."
19
[ ] Gaussian 03, Revision D.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S.
S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H.
Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S.
Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B.
Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.
Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J.
A. Pople, Gaussian, Inc., Wallingford CT, 2004.
20
t
th
[ ] ∆vapH°( BuBr) from table 5-27 in Handbook of Chemistry and Physics, 76 EDITION 1995-1996,
t
CRC Press, Inc., Boca Raton, New York, London, Tokyo; ∆vapG°( BuBr) from D. Bryce-Smith, K. E.
Howlett, J. Chem. Soc. 1951, 1141; calculated via Antoine equation at
http://webbook.nist.gov/cgi/cbook.cgi?ID=C507197&Units=SI&Mask=4#Thermo-Phase
21
[ ] M. W. Chase Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data,
Monograph 9, 1998, 1-1951.
22
[ ] T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
23
[ ] R. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
24
[ ] D. E. Woon, T.H. Dunning, K. A. Peterson, A. K. Wilson, J. Chem. Phys. 2001, 114, 9244.
25
[ ] K. A. Peterson, D. Figgen, E. Goll, H. Stoll, M. Dolg, J. Chem. Phys. 2003, 119, 11113.
26
U. Preiss, S. P. Verevkin, T. Koslowski, I. Krossing, Chem. Eur. J. 2011, 17, 6508-6517.
27
U.Preiss, V. N. Emel’yanenko, S. P. Verevkin, D. Himmel, Y. U. Paulechka, I. Krossing,
ChemPhysChem 2010, 11(16), 3425-3431.
28
[ ] H. D. B. Jenkins, H. K. Roobottom, J. Passmore, L. Glasser, Inorg. Chem. 1999, 38, 3609.
22
29
[ ] H. D. B.Jenkins, L Glasser Inorg. Chem., 2003, 42, (26), 8702–8708.
23