Syst. Biol. 45(2):223-246, 1996 TESTING HYPOTHESES OF CHAETOGNATH ORIGINS: LONG BRANCHES REVEALED BY 18S RIBOSOMAL DNA KENNETH M. HALANYCH1 Department of Zoology, University of Texas, Austin, Texas 78712, USA; and Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa Abstract.—Many hypotheses regarding the phylogenetic position of the Chaetognatha (arrow worms) have been proposed; these organisms are problematic primarily because their morphology offers few unambiguous systematic characters that ally them with other taxa. Early researchers proposed a plethora of phylogenetic placements for the Chaetognatha, grouping them with such divergent taxa as acanthocephalans and mollusks, but more traditional hypotheses posit that chaetognaths are, in fact, deuterostomes. Recently, Telford and Holland (1993, Mol. Biol. Evol. 10: 660-676) and Wada and Satoh (1994, Proc. Natl. Acad. Sci. USA 91:1801-1804) disputed the deuterostome affinities of chaetognaths based on 18S nuclear ribosomal RNA (rDNA) gene sequence data. By employing published 18S rDNA gene sequence data, I extended these previous analyses by testing specific hypotheses of chaetognath affinities to nematodes, mollusks, acanthocephalans, and deuterostomes. Both parsimony and neighbor-joining analyses supported the monophyly of a chaetognath-nematode clade. Faith's T-PTP test and winning-sites analyses were employed to discriminate among competing hypotheses. The possibility of long-branch attraction accounting for the chaetognath-nematode relationship was explored by analyzing alternative four-taxon trees. An evolutionary scenario for the origin of the chaetognath lineage from a vermiform benthic organism is presented. [Chaetognatha; Nematoda; 18S rDNA; long branches; winning-sites test; phylogeny.] "I think ... that the relations of Chaetognaths remain obscure and buried; nor is any sign to be seen that they might be discovered in a short while". Let us hope that Grassi's pessimistic views may be dispelled in a shorter time than has passed since he expressed them. —Ghirardelli, 1968 Chaetognatha (arrow worms) is a marine phylum of vermiform predatory organisms. They are usually planktonic, are approximately 0.5-12 cm in length, and are characterized in part by the presence of chitinous spines around the mouth and peculiar ciliary organs located dorsally. This group of organisms has perplexed biologists since its discovery in 1768 because the unique morphology offers few clues to its evolutionary origins. Traditionally, chaetognaths have been considered a basal deuterostome lineage (Hyman, 1959:66; Willmer, 1990). This hypothesis emphasized the importance of the 1 Present address: Department of Biological Sciences, Southern Methodist University, 227 Fondren Science Building, Dallas, Texas 75275, USA. E-mail: [email protected]. tripartite coelomic arrangement and embryological characters. However, because of the lack of synapomorphies with other phyla, a myriad of hypotheses have been proposed concerning chaetognath origins. For example, Nielsen (1985) argued that the arrow worms are most closely related to the acoelomate acanthocephalans, and Giinther (1907) and Casanova (1987) proposed a protostome affinity by suggesting that chaetognaths are derived mollusks. An older hypothesis is that chaetognaths are pseudocoelomates closely related to the nematodes (Schneider, 1886, op. cit. Ghirardelli, 1968). This last proposal was originally supported by the apparent lack of circular muscle in the body wall in both taxa. Unfortunately, most of the morphological and embryological information is ambiguous or conflicting. For example, the coelomic condition of chaetognaths is still debated, and depending upon the interpretation of the arrangement of various cell and tissue layers, chaetognaths are either pseudocoelomate or eucoelomate. In the absence of unambiguous morphological information, DNA sequence data 223 224 VOL. 45 SYSTEMATIC BIOLOGY can be a very useful tool for determining the phylogenetic placement of a group of organisms. Both Telford and Holland (1993) and Wada and Satoh (1994) explored chaetognath origins using the 18S nuclear ribosomal RNA (rDNA) gene. This gene has been widely used to reconstruct ancient phylogenetic events (hundreds of millions of years ago) because of its slow rate of change and concerted evolution (Field et al v 1988; Hillis and Dixon, 1991). The 18S rDNA data suggest that chaetognaths are not deuterostomes, and Telford and Holland (1993) argued that the chaetognath lineage was established prior to the origin of coelomate metazoans. These previous molecular studies, however, focused largely on deuterostome taxa. Here, I used a greater representation of metazoan life to reanalyze various phylogenetic hypotheses. Four explicit hypotheses of the evolutionary origins of chaetognaths were tested to determine if chaetognaths are most closely related to nematodes, acanthocephalans, mollusks, or deuterostomes. These taxa were specifically chosen to represent each of the major types of coelomic formation in triploblastic metazoans (nematode = pseudocoelomate; acanthocephalan = acoelomate; mollusk = schizocoelomate; deuterostome = enterocoelomate). Recent ultrastructural and developmental observations (Welsch and Storch, 1982; Shinn and Roberts, 1994) corroborated the presence of a true coelom in arrow worms. In contrast, the 18S rDNA data suggest that chaetognaths are most closely related to a pseudocoelomate group, the nematodes. Clearly, the phylogenetic position of chaetognaths is important for understanding plasticity and constraints of coelom evolution. The goal of this study was to further our understanding of chaetognath origins by testing alternative hypotheses using 18S rDNA sequence data and standard phylogenetic reconstruction methods. Various statistical tests (bootstrap analyses, Faith's [1991] topology-dependent cladistic permutation tail probability [T-PTP] test, and winning-sites analyses) were used to de- termine the robustness of the results. Analyses of four-taxon trees suggest that the chaetognath-nematode association is not due to long-branch attraction. A speculative evolutionary scenario is proposed that illustrates the functional feasibility of the derivation of modern chaetognaths from a common benthic chaetognath-nematode ancestor. MATERIALS AND METHODS The phylogenetic analyses employed complete 18S rDNA sequence data obtained from GenBank for 21 taxa. Table 1 lists the species used, their GenBank accession numbers, and the taxa they represent. To polarize character states and root the resultant phylogeny, the sponge and anemone sequences were designated as outgroups. In situations when more than one complete 18S sequence was available for a given taxon, the more slowly evolving representative was used. For example, Tenebrio molitor sequence was used for the insect representative instead of Drosophila melanogaster because it is evolving at a "slower" pace. This criterion was used in an attempt to reduce homoplasy or erroneous results due to large divergence values/long-branch attraction. Furthermore, in practice, the use of more slowly evolving representatives allows a greater portion of the 18S molecule to be unambiguously aligned. The alignment of sequences was conducted with the multiple alignment program Clustal V (Higgins et al, 1992) and then corrected by hand for obvious alignment errors (Appendix). This correction employed a secondary structure model of the eukaryotic small ribosomal subunit (from Saccharomyces cerevisiae; De Rijk et al., 1992) to identify conserved regions and variable domains (Neefs and De Wachter, 1990). Regions that could not be unambiguously aligned were excluded from subsequent analyses. These regions differed in sequence length across taxa and were contained within the previously identified variable regions (except for one five-basepair region of ambiguity in helix 25, which was caused by a two-base-pair insert in 1996 225 HALANYCH—CHAETOGNATH ORIGINS TABLE 1. Metazoan taxa used in this study. Species GenBank no. Taxon designation Sagitta elegans Sagitta crassa forma naikaiensis Paraspadella gotoi Caenorhabditis elegans Haemonchus contortus Nematodirus battus Schistosoma haematobium Opisthorchis viverrini Artemia salina Tenebrio molitor Eurypelma californica Moniliformis moniliformis Limicolaria kambeul Placopecten magellanicus Acanthopleura japonica Phoronis vancouverensis Branchiostoma floridae Strongybcentrotus purpuratus Saccoglossus kowalevskii Ammonia sulcata Sq/pha ciliata Z19551 D14363 D14362 X03680 L04153 U01230 Z11976 X55357 X01723 X07801 X13457 Z19562 X66374 X53899 X70210 U12648 M97571 L28056 L28054 X53498 L10827 chaetognath 1 chaetognath 2 chaetognath 3 nematode 1 nematode 2 nematode 3 flatworm 1 flatworm 2 crustacean insect spider acanthocephalan snail bivalve chiton phoronid chordate echinoderm hemichordate anemone sponge Paraspadella). The boundaries of the exclud- 1, 3:1, 10:1, and 100:1 were arbitrarily choed regions were defined by pruning the se- sen. The ratio of 1.2:1 was determined emquences surrounding the ambiguous re- pirically with the "state changes and stagion back to the last character that was sis" option of MacClade by counting the uninformative among phyla. For example, average number of transition (Ti) and character 960 had the state G for 19 taxa transversion (Tv) events on 1,000 random and state T for 3 taxa, but these 3 taxa were trees. The range of the Ti/Tv ratios over all nematodes. Thus, character 960 was in- the 1,000 random trees was 1.13393:1 to cluded in the analyses (see Appendix). 1.25793:1, and the average ratio of 1.19049: However, character 337 was excluded be- 1 was rounded to 1.2:1 to reduce compucause it has a T for both Anemonia and Cae- tation time. This ratio is similar to that of tiorhabditis, whereas the other taxa had a C the most-parsimonious tree based on equal in this position (except Saccoglossus, which weighting (ratio = 1.24:1). was a G). (The aligned data set with secTesting Hypotheses ondary structure annotation and the PAUP file can be obtained from the Systematic BiA T-PTP test was used to examine the sigology World Wide Web site.) nificance of monophyly for certain clades PAUP 3.1.2d5 (Swofford, 1993) was used (Faith, 1991). By comparing the difference for parsimony analyses, and PHYLIP 3.5 in length of the shortest monophyletic and (Felsenstein, 1993) was used for neighbor shortest nonmonophyletic trees for ranjoining and maximum-likelihood esti- domized data, a random distribution can mates. Unfortunately, the size of the data be generated. The difference in length for set made a maximum-likelihood search for the observed data can be compared with the best tree computationally prohibitive. the random distribution, and the standard MacClade 3.0 (Maddison and Maddison, significance value of 0.05 can be applied. 1992) was also used to determine various For the T-PTP analysis conducted herein, character statistics and tree lengths. For the 100 random data sets were created using analysis, the ratios 1:1, 1.2:1, 2:1, 3:1, 10:1, the Seqboot program in PHYLIP 3.5. and 100:1 were used to weight transverTwo different winning-sites analyses sions over transitions. The ratios of 1:1, 2: (Prager and Wilson, 1988) were incorpo- 226 SYSTEMATIC BIOLOGY rated into the study. Both analyses used a sign-rank test with a one-tail binomial probability to determine significance among pairwise comparisons of alternative hypotheses. The "compare two trees" option of MacClade was used to determine the number of characters supporting alternative topologies. The first analysis examined the number of winning sites for each of the 21-taxon trees representing the shortest trees of the alternative hypotheses (i.e., nematode affinity, acanthocephalan affinity, mollusk affinity, and deuterostome affinity). The second analysis compared various combinations of four-taxon trees. Figure 1 shows the three four-taxon trees examined. Because there are only three possible topologies for a four-taxon tree, the mollusks and the acanthocephalan hypotheses were grouped together. Thus, when the four taxa included a chaetognath, a nematode, a mollusk or acanthocephalan, and a deuterostome, the three topologies represented mutually exclusive hypotheses (given that the trees were rooted along the center branch). All possible combinations of the three chaetognaths, three nematodes, three mollusks + the acanthocephalan, and three deuterostomes used in this study were tested (i.e., 108 different taxonomic combinations). (a) VOL. 45 Chaetognath Deuterostome Nematode Mollusk or Acanthocephalan Chaetognath-Nematode Hypothesis Chaetognath Deuterostome Nematode Mollusk or Acanthocephalan (b) Chaetognath-Deuterostome Hypothesis Chaetognath Deuterostome Mollusk or Acanthocephalan Nematode RESULTS The final alignment of the 21 taxa consisted of 2,072 nucleotide positions, of which 1,454 could be unambiguously aligned. Of these, 642 were variable and 456 were phylogenetically informative (i.e., parsimony sites). The gx statistic for 104 randomly generated trees (ga = —1.732) indicated that the data were significantly more structured than random (Hillis and Huelsenbeck, 1992). The nucleotide composition of the sequence data was examined as a possible source of bias in the phylogenetic signal. The base composition of the variable sites was determined for each taxon. A distance table was constructed by taking the absolute value of the difference in total GC content (merely the sum of the percentage of guanine and the percentage of cytosine) (c) Chaetognath-Mollusk Hypothesis or Chaetognath-Acanthocephalan Hypothesis FIGURE 1. The three possible topologies of the four-taxon statements used in the winning-sites tests. Each topology reflects a different hypothesis of chaetognath relationships. Depending on the taxonomic combination, the last tree is consistent with the hypothesis of molluscan affinities or acanthocephalan affinities. All possible combinations (108) of the three chaetognaths, three nematodes, three mollusks plus one acanthocephalan, and three deuterostomes used in study were examined. 1996 227 HALANYCH—CHAETOGNATH ORIGINS (a) (b) Chaetognath 1 Chaetognath 1 Chaetognath 3 Chaetognath 3 L L Chaetognath 2 Chaetognath 2 Nematode 1 Nematode 1 Nematode 2 Nematode 2 Nematode 3 Nematode 3 • — Flatworm 1 HI I — Flatworm 2 I Hemichordate I Chordate I Crustacean I"— Flatworm 2 I— Echinoderm _M Flatworm 1 Phoronid R J L Snail Chiton I— Bivalve Insect Crustacean I Spider j — Phoronid Spider fl Snail - Insect _J"— Bivalve — I— Chiton Sponge Chordate Hemichordate Acanthocephalan Anemone Acanthocephalan — Echinoderm Anemone Sponge FIGURE 2. The results of the parsimony analyses. Branch lengths are proportional to the relative amount of change along the branch, (a) One of two most-parsimonious trees generated by the general heuristic search with the TBR branch swapping algorithm of PAUP (Swofford, 1993). The tree was based on equal weighting (i.e., transitions: transversions = 1:1) and consisted of 1,509 steps. The CI was 0.628 (CI excluding uninformative characters = 0.566). The alternative tree differed only in that the bivalve clustered with the chiton, (b) The topology obtained when transversions are weighted 100 times greater than transitions. Weighting was achieved using a step matrix. for all possible pairs of taxa. The taxa were then clustered using both the Neighbor option and the UPGMA option of the "DNAdist" program in PHYLIP (R?lsenstein, 1993). In neither case did the chaetognaths and nematodes cluster, indicating that nucleotide composition was not a source of bias accounting for the repeated recovery of a chaetoganth-nematode clade. Using PAUP, a heuristic search employing the general setting and the tree bisection-reconnection branch-swapping algorithm produced two most-parsimonious trees with a length of 1,509 steps and a consistency index (CI) of 0.628 (CI excluding uniformative characters = 0.566). One of these trees is shown in Figure 2a. The other tree only differed in that the bivalve clustered with the chiton. Because the frequencies of transitions and transversions are not always equal over the course of evolutionary time, I employed step matrices to weight transversions more heavily than transitions. In addition to the ratio of 1:1 (i.e., equal weighting), the ratios of 1.2: 1, 2:1, 3:1, 10:1, and 100:1 weighting transversions over transitions were used to test the robustness of the equally weighted maximum parsimony results. All weighting ratios yielded topologies in which the chaetognaths and nematodes formed a monophyletic group. The flatworms were always the sister taxon to this clade. The deuterostomes were paraphyletic when ratios greater then 2:1 were used. With weighting schemes <3:1, the acanthoceph- 228 VOL. 45 SYSTEMATIC BIOLOGY 71 100 Chaetognath 1 Chaetognath 3 Chaetognath 2 81 Nematode 1 100 57 001 Nematode 2 Nematode 3 Flatworm 1 100 Flatworm 2 91 62 Crustacean Insect Spider 100 Phoronid 80 Bivalve Chiton Snail Acanthocephalan Echinoderm Hemichordate Chordate Anemone Sponge FIGURE 3. The results of the parsimony bootstrap analysis based on the weighting ratio of 1.2:1 empirically derived from the observed transition: transversion value. The topology shown is a majority-rule consensus tree generated by 200 iterations of the heuristic search algorithm. Branches supported <50% were collapsed, and values ^50% are shown. 1:1 ratio) for the chaetognath-nematode clade (see Hillis and Bull, 1993). Using the PHYLIP package, I obtained maximum-likelihood estimations of distances based on a Kimura two-parameter model and used these estimates to reconstruct the phylogeny by neighbor joining. The topologies obtained using weighting ratios of 1:1,1.2:1, 2:1, and 3:1 are identical. This topology is shown in Figure 4a with the branch lengths derived from the 1.2:1 weighting ratio. The 10:1 and 100:1 topologies differed in the arrangement of taxa within the mollusk-phoronid clade, and the 10:1 topology also showed the flatworm clade as being more derived. A neighbor-joining bootstrap analysis (weighting ratio 1.2:1 and 200 iterations) produced a topology (Fig. 4b) consistent with the parsimony bootstrap topology. The chaetognath-nematode clade was strongly supported by a high bootstrap value (91%). Additionally, modification of the Kimura two-parameter model, which accounted for site-to-site variation by employing a gamma distribution (Jin and Nei, 1990), produced similar results. Testing Hypotheses Table 2 shows the length of the mostparsimonious trees (based on equal weighting; i.e., ratio of 1:1), the number of most-parsimonious trees, and the CI for the alternative hypothesis of chaetognath alans and the arthropods were placed just affinities examined. The parsimony and outside of the chaetognath-nematode-flat- neighbor-joining analyses were consistent worm clade, but at 10:1 and 100:1 the ar- with the hypothesis of a nematode affinity. thropods clustered with the mollusks and However, to determine if alternative hypoththe phoronid. The 100:1 tree is shown in eses were significantly different, a T-PTP Figure 2b for comparison. A weighted par- test and winning-sites analyses were persimony analysis (Williams and Fitch, formed. 1990), which is accurate over a wider range The T-PTP test was used to determine if of parameters than is an equally weighted the chaetognath-nematode hypothesis was parsimony analysis, also clustered the significantly better supported than the chaetognaths and nematodes. other hypotheses, which imply that chaeA majority rule consensus tree of 200 tognaths and nematodes do not form a bootstrap iterations with a heuristic search monophyletic group. The random distriand the empirical weighting ratio of 1.2:1 bution ranged from —57 to +3 when the is shown in Figure 3. Branches with boot- length of the shortest monophyly tree was strap frequencies <50% were collapsed. subtracted from the length of the shortest The bootstrap results indicated strong nonmonophyly tree. For the observed data, support (81% with either the 1.2:1 or the this difference was +10. Thus, the T-PTP 1996 229 HALANYCH—CHAETOGNATH ORIGINS (a) (b) ^t0^' Chaetognath 1 J ^ 64 100 Chaetognath 3 Chaetognath 2 ^ /^""-•"^^ c Nematode 1 I— I 51 I— I Nematode 2 100 ^ Nematode 3 ^^0^- Flatworm 1 63 Flatwnrm ? ^ " ^ ^^^ ^*** Phoronid '*"*' 100 10 ° k ^ Chiton 93 96 Snail ^t00l00*f' Crustacean I— I I— I l^* 1 Echinoderm Hemichordate Flatworm 1 Flatworm 2 Crustacean Insect Phoronid 100 ""**"" Insect - Nematode 3 Spider 63 i ^ — « - Spider ^ Nematode 2 Chordate Acanthocephalan / ^ ^ ' Rivalvfi Chaetognath 3 Chaetognath 2 91 _ ^ — — Nematode 1 ^^^^j Chaetognath 1 Snail 86 Echinoderm Chordate c Bivalve Chiton Acanthocephalan Hemichordate Anemone Anemone Sponge Sponge FIGURE 4. The results of the neighbor-joining analysis based on a Kimura two-parameter model with a weighting ratio of 1.2:1. (a) Tree derived when the PHYLIP (Felsenstein, 1993) software package was used. Branch lengths are proportional to the relative amount of change along a branch, (b) Bootstrap analysis using likelihood estimates of Kimura distances. The majority-rule consensus tree generated by 200 iterations is shown. Branches supported <50% were collapsed, and values ^50% are shown. test supported monophyly of the chaetognath-nematode clade at a level of P ^ 0.01. The winning-sites test, which employed all 21 taxa, significantly supported the chaetognath-nematode hypothesis over TABLE 2. A comparison of alternative phylogenetic hypotheses of chaetognath origins. The results were obtained from parsimony analyses based on equal weighting (Ti/Tv ratio = 1:1). Hypothesis Nematode Acanthocephalan Deuterostome Mollusk Tree length" No. trees 1,509 1,521 1,527 1,540 CP 0.628 0.623 0.620 0.615 ' Length of the shortest tree(s) in which chaetognaths and the taxa in question (i.e., nematodes, acanthocephalans, deuterostomes, or mollusks) were monophyletic. b CI = consistency index. both the chaetognath-mollusk and the chaetognath-deuterostome hypotheses (Table 3). Even though the nematode hypothesis was significantly supported over the deuterostome hypothesis in only 10 out of 16 comparisons, the other 6 comparisons all had P values of <0.06. The chaetognath-acanthocephalan hypothesis, however, was not significantly rejected for any of the three most-parsimonious trees in which these taxa form an exclusive clade. The results of the winning-sites tests for the four-taxon combinations are shown in Table 4. The chaetognath-nematode hypothesis is clearly the most strongly supported, and the chaetognath-mollusk hypothesis was significantly rejected in all of the combinations for which it was tested. Furthermore, the chaetognath-nematode 230 VOL. 4 5 SYSTEMATIC BIOLOGY TABLE 3. The results of the winning-sites tests for 21-taxon trees. A sign-rank test with a one-tail binomial probability was used to determine significance among pairwise comparisons of alternative hypotheses. Versus nematode tree 1 Versus nematode tree 2 Tree Alternative hypothesis" Nematode hypothesis Probability1' Alternative hypothesis Nematode hypothesis Probability Acanthocephalan tree 1 Acanthocephalan tree 2 Acanthocephalan tree 3 Deuterostome tree 1 Deuterostome tree 2 Deuterostome tree 3 Deuterostome tree 4 Deuterostome tree 5 Deuterostome tree 6 Deuterostome tree 7 Deuterostome tree 8 Mollusk tree 1 Mollusk tree 2 39 40 39 32 33 36 34 37 38 33 37 37 40 52 52 51 47 47 51 49 51 53 47 51 64 68 0.071 0.087 0.085 0.036* 0.046* 0.043* 0.039* 0.055 0.046* 0.046* 0.055 0.003* 0.003* 38 38 38 32 33 37 33 37 37 34 38 36 39 50 50 50 47 47 51 47 51 51 48 52 63 67 0.083 0.083 0.083 0.036* 0.046* 0.055 0.046* 0.055 0.055 0.049* 0.057 0.002* 0.002* " Numbers are the numbers of more parsimonious characters (i.e., winning sites) versus the competing hypothesis. P < 0.05 considered statistically significant. b tree lost only 19 out of 216 comparisons, and none of these losses were significantly supported. Long Branch Length The results of analyses presented here strongly support a chaetognath-nematode clade. One concern raised by both the parsimony and the neighbor-joining analyses is that of long branch lengths. Felsenstein (1978) showed that parsimony methods can be misled by branch attraction when two or more taxa exhibit relatively long branch lengths. In this study, several taxa, including chaetognaths and nematodes, have long branches relative to those of other taxa. Previous studies in which longbranch attraction has been examined h^ve used four-taxon cases for which the real phylogeny was well known or where there was strong support for a topology in which the two long branches failed to group (Felsenstein, 1978; Allard and Miyamoto, 1992; Huelsenbeck and Hillis, 1993). Unfortunately, neither of these situations is true here, and some of the methods previously applied to data sets to reveal long-branch attraction cannot be used. Chaetognaths and nematodes do, however, cluster under a wide variety of parameters, including situations in which their branch lengths are not much longer than those of other taxa. Figure 5 shows three groups of four-taxon trees in which branch lengths were determined by calculating likelihood estimates (Felsenstein, 1981) assuming a Jukes-Cantor model of evolution and equal nucleotide frequencies (Huelsenbeck and Hillis, 1993). Although this approach will underestimate branch length, it is nonetheless a standard estimation procedure. In group 1, both the chaetognath and the nematode have long branch lengths relative to the remaining three branches, and parsimony highly favored the chaetognath-nematode tree (bootstrap value = 100%). Thus, group 1 matches the prediction of long-branch attraction. Groups 2 and 3 represent cases in which the chaetognath and nematode branches are not very long relative to the other taxa. In the case of group 2, parsimony favored the chaetognath-deuterostome tree. The acanthocephalan and the nematode are the longest two branches and yet they did not cluster when the entire data set was considered. Group 3 includes a flatworm sequence roughly the same length as the chaetognath sequence used, and yet parsimony still favored the chaetognath-nematode tree. Moreover, maximum-likelihood 1996 231 HALANYCH—CHAETOGNATH ORIGINS TABLE 4. The results of the winning-sites test for four-taxon trees. A sign-rank test with a one-tail binomial probability was used to determine significance among pairwise comparisons of alternative hypotheses. There were 108 taxonomic combinations and 216 comparisons. Hypotheses compared No. comparisons No. won Nematode over deuterostome Deuterostome over nematode Nematode over acanthocephalan Acanthocephalan over nematode Nematode over mollusk Mollusk over nematode Nematode over other three hypotheses Other three hypotheses over nematode 108 108 27 27 81 81 216 216 89 19 27 0 81 0 197 19 1 Significant results" significantly 27 0 23 25 81 100 131 0 61 85 The number of comparisons that were significant (P s 0.05) using a one-tail binomial probability test. reconstructions, which employed the weighting ratio of 1.2:1 empirically derived from the observed Ti/Tv value, supported the chaetognath-nematode clade for all three groups. The chaetognath-nematode tree also consistently scored the greatest number of invariants when Lake's method (1987) was used, but the results were not Treel Tree 2 Chaetognath 1 Tree 3 Nematode 3 Echinoderm Chaetognath 1 Chaetognath 1 3.0/3.7 Group 1 Bivalve 3.6/ \29 Echinoderm ML 100 Bivalve Echinoderm 0 Nematode 1 Chaetognath 3 Hemichordate 7.4 Bivalve 0 Chaetognath 3 Chaetognath 3 4.6 Group 2 4.6 Acanthocephalan Hemichordate Nematode 1 Acanthocephalan M L 20.5 Chaetognath 2 Hemichordate Acanthocephalan 79.5 0.5 Nematode 1 Nematode 1 Hemichordate Chaetognath 2 V 8.2 Chaetognath 2 .8.1 Group 3 4.6 Flatworm 2 Nematode 1 ML 73.3 Hemichordate Flatworm 2 1.3 FIGURE 5. Four-taxon statements examining the possibility of long-branch attraction. The three possible topologies for three different four-taxon combinations are shown. The values along the branches represent the percentage of expected internodal change along the branch as calculated from estimates based on a JukesCantor model. The numbers under the tree indicate the bootstrap support for the internal branch (out of 100 iterations); ML values indicate which topology in each group was supported by maximum likelihood. Branch lengths shown are properly proportioned. 232 SYSTEMATIC BIOLOGY significantly supported. Both likelihood and Lake's method are considered less prone to long-branch attraction and problems of inconsistency (Felsenstein, 1978; Huelsenbeck and Hillis, 1993), although these methods may also become inconsistent in extreme situations (Allard and Miyamoto, 1992). Because the three deuterostome taxa employed in the analysis were relatively slowly evolving, I also explored the four-taxon situations using sequence from the urochordate Herdmandia momus (GenBank no. X53538). Although the branch length of Herdmandia was considerably longer than that of other deuterostomes, the chaetognath and nematode representatives still clustered together. When all nine topologies shown in Figure 5 were plotted against the results of Huelsenbeck and Hillis (1993), they fell within the region of graph space where parsimony is consistent, i.e., they were not in the Felsenstein zone. However, they fell in the lower left of the graph space, and others (Allard and Miyamoto, 1992; Huelsenbeck and Hillis, 1993) have shown that even in the "consistent" graph space longbranch attraction can occur. Also, the three groups shown in Figure 5 were representative of particular situations. Several other groupings of taxa were examined with similar results. Evolutionary history, and not longbranch attraction, may account for the repeated recovery of the chaetognath-nematode clade. Not only do methods of reconstruction that more reliably (than parsimony) handle long branches support the chaetognath-nematode hypothesis, but this clade was well supported even when the branch lengths of the chaetognaths and nematodes were not significantly longer than those of the other taxa. DISCUSSION In a review of chaetognath affinities, Ghirardelli (1968) argued that chaetognaths are not closely related to any extant metazoan phylum. This idea was reminiscent of Darwin's (1844) statement that species within the chaetognath genus Sagitta VOL. 45 will be remembered for the "obscurity of their affinities." Because of this obscurity, researchers have tried to relate chaetognaths to a variety of different metazoan phyla. In this study, I examined four hypotheses of chaetognath affinities, using independent data and more rigor than previously possible. The results of all of the phylogenetic analyses conducted herein support the hypothesis of a chaetognath-nematode relationship. Various weighting schemes, reconstruction methods, and statistical tests (i.e., bootstrap analyses, Faith's T-PTP test, and winning-sites tests) indicate that this finding is robust. Schneider (1886, op. cit. Ghirardelli, 1968) recognized a chaetognath-nematode taxon and placed both in the phylum Nemathelminthes based on the presumed similar arrangement of their muscular bands. However, since Schneider, the term Nemathelminthes has been used to represent several different assemblages of aschelminth or "pseudocoelomate" taxa, including nematodes, nematomorphs, gastrotrichs, priapulids, rotifers, acanthocephalans (usually considered an acoelomate), kinorhynchs, and loriciferans. Thus, to avoid ambiguity inherent in the term Nemathelminthes, this term is not used here. However, the node defined by the last common ancestor of chaetognaths and nematodes may include other metazoan taxa that were not examined in this study (e.g., Nematomorpha and Gastrotricha). Based on the 18S rDNA sequence data, the relative position of the chaetognathnematode clade within the Metazoa is ambiguous and depends upon the method of reconstruction and the weighting scheme used during analysis. The lack of resolution of more ancient phylogenetic events is presumably due to the short internal branch lengths that resulted from the rapid divergence of major metazoan lineages in the Precambrian era (Turbeville et al, 1994; Halanych, 1995). Although additional data are needed to resolve the deep internal branches, my findings are consistent with those of Telford and Holland (1993) and Wada and Satoh (1994). A general comparison between the topologies found 1996 HALANYCH—CHAETOGNATH ORIGINS 233 Thus, based on these recent ultrastructural studies, chaetognaths can clearly be considered eucoelomate. If chaetognaths are eucoelomate, then either eucoely arose at least twice in metazoan evolution or the pseudocoel of nematodes is a derived eucoel. The discrepancy between morphology and phylogeny suggests that the conditions of acoely, pseudocoely, and eucoely are ecological in nature, not historical. Furthermore, there are Controversial Characters several examples of metazoans that do not The disagreement among researchers on fit the standard coelomic pattern of their chaetognath affinities has resulted primar- ancestors. For example, phoronids, enterily from controversy over four characters; opneusts, and cephalochordates often the coelomic condition, the absence of cir- demonstrate both schizocoely and enterocular muscle, a tripartite Bauplan, and the coely in the same organism (Davis, 1908; fate of the blastopore. Of these four, the Heath, 1917; Zimmer, 1964). actual states, conditions, and importance Scenario of Early Evolution of the first three have never been satisfacThe putative relationship between nemtorily resolved. Hyman (1959) used embryological characters, including blastopore atodes and chaetognaths is not unreasonfate, as the primary reason for the desig- able from a functional morphology standnation of chaetognaths as deuterostomes. point, and the evolution of a chaetognath In chaetognaths, the blastopore is located lineage from a marine benthic vermiform posteriorly before it is lost, and the anus organism is plausible. Before considering forms de novo (Hyman, 1959:32). The re- one of many possible evolutionary scenarcent 18S rDNA findings suggest that the ios, a common origin of chaetognaths and fate of the blastopore has been more vari- nematodes, a few possible misconceptions able across animal phyla than traditional need to be addressed. Although nematodes are arguably the most ubiquitous dogma contends. Debate continues over whether chaetog- metazoan on the planet, "there are no gennaths are coelomates or pseudocoelomates. uine pelagic marine nematodes" (Hyman, The fact that chaetognaths do not satisfy 1951b:391). Most marine nematodes are Hyman's (1951a:23) classical definition of a benthic infauna, and their presence in the coelom as both "bounded on all sides by water column is limited. Thus, the mosttissue of entomesodermal origin and lined parsimonious assumption is that the chaeby peritoneum" accounts for much of the tognath-nematode ancestor was a benthic continued skepticism over the interpreta- organism (there are benthic chaetognaths, tion of chaetognaths as coelomates (Shinn e.g., Spadella). Second, the common perception of nemand Roberts, 1994). Additionally, Shinn and Roberts argued that Hyman's defini- atodes as a cigar-shaped organism with a tion is irrelevant because the coelomic lin- smooth cuticle has largely been shaped by ing of chaetognaths is ultrastructurally the extensive study of Caenorhabditis elevery similar to the coelomic lining in other gans. Many marine groups of nematodes coelomates (e.g., in many small poly- are considerably different. The Epsilonechaetes, pterobranchs, and enteropneusts matidae and the Draconematidae both and in the tentacular region of lophophor- have several free-living species that are ates). Welsch and Storch (1982) described covered with a combination of spines, stilt the body cavity of the chaetognath Sagitta bristles, cuticular folds, and/or annuli. elegans as coelomate, based on the presence Assuming that the common ancestor of of a thin epithelium lining the body cavity. chaetognaths and nematodes was benthic, in these previous works (which focused mainly on deuterostome taxa) and the study here (which includes a wide range of metazoans) is not feasible because the taxonomic representation is too different. However, I did not find convincing evidence either for or against the interpretation that the chaetognath lineage arose prior to coelomate metazoans (Telford and Holland, 1994). 234 SYSTEMATIC BIOLOGY VOL. 45 several morphological modifications but recent molecular analyses suggest that would ensure a more successful invasion this hypothesis is incorrect. The findings of a pelagic environment. Modifications herein, based on 18S rDNA sequence data, that allow more efficient swimming or indicate that the chaetognaths are most buoyancy control would be strongly fa- closely related to the nematodes. The long vored. One simple way to increase buoy- branch length of the chaetognaths and ancy is to increase surface area without in- nematodes, relative to other metazoan creasing volume. With the increasing branches, was one possible source of error surface area, drag also increases, slowing in my phylogenetic reconstructions. Howthe rate of negative vertical displacement ever, four-taxon analyses suggest that the in the water column due to gravity. If this clustering of chaetognaths and nematodes increase in surface area were properly was not merely due to long-branch attracshaped, it could also serve as a fin and tion. Assuming that the chaetognath-nemcould increase the efficiency of locomotion. atode ancestor was a benthic organism, seChaetognaths have well-developed fins, lective pressures may have acted to and some nematodes have caudal alae and increase the surface area of the structures bursae. A structure similar to an ala or similar to alae and to modify the hardness bursa could have served as a rudimentary and size of anterior spines, resulting in a fin upon which selection acted to increase chaetognath lineage. the surface area. ACKNOWLEDGMENTS Modified feeding structures would allow food to be more easily captured. In an The following people provided helpful comments open pelagic environment, prey organisms and valuable criticism of this manuscript: T. J. Robinson, J. E. Husti, J. P. Huelsenbeck, K. Crandall, C. often use locomotion to escape predators. Simon, and anonymous reviewers. This work was parThus, in addition to improved swimming tially funded through a bursary from the FRD of The abilities, ancestral chaetognaths needed Republic of South Africa. some type of modification to allow prey to REFERENCES be captured and quickly subdued. Throughout organismal evolution this problem has ALLARD, M. W., AND M. M. MIYAMOTO. 1992. Testing been repeatedly solved with enlarged phylogenetic approaches with empirical data, as illustrated with the parsimony method. Mol. Biol. and/or hardened mouth parts. Because Evol. 9:778-786. both the cuticle of nematodes and the Q., K. P. RYAN, AND A. L. PULSFORD. 1983. The spines of chaetognaths are composed of BONE, structure and composition of the teeth and grasping chitin (Bone et al., 1983), it is easy to enspines of chaetognaths. J. Mar. Biol. Assoc. U.K. 63: 929-939. vision the modification of anterior spines similar to those observed in modern nem- CASANOVA, J.-P. 1987. Deux Chaetognaths benthiques nouveaux du genre Spadella de parages de atodes (e.g., the Draconematidae, see HyGibraltar. Remarques phylogenetiques. Bull. Mus. man, 1951b: fig. 138). Similar to arrow Natl. Hist. Nat. Paris Ser. 4e Vol. 9 Sec. A 2:375-390. worms, some nematodes possess head DARWIN, C. 1844. Observations on the structure and shields or cuticular folds into which the propagation of the genus Sagitta. Ann. Mag. Nat. Hist. Ser. 1 13:1-6. anterior end and associated structures can be withdrawn. Furthermore, the presence DAVIS, B. M. 1908. The early life history of Dolichogbssus pusillus, Ritter. Univ. Calif. Publ. Zool. 4:187of teeth (e.g., oncholaims, mononchs) and 226. hardened spinelike or spearlike structures DE RIJK, P., J.-M. NEEFS, Y. VAN DE PEER, AND R. DE (e.g., tylenchoids, dorylaims) are common WACHTER. 1992. Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res. in predatory nematodes. Conclusions The phylogenetic affinities of the chaetognaths have been debated since the discovery of these organisms. Traditionally, they have been considered deuterostomes, 20(suppl.):2075-2089. FAITH, D. P. 1991. Cladistic permutation tests for monophyly and nonmonophyly. Syst. Zool. 40:366375. FELSENSTEIN, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27:401-410. FELSENSTEIN, J. 1981. Evolutionary trees from DNA 1996 HALANYCH—CHAETOGNATH ORIGINS sequences: A maximum likelihood approach. J. Mol. Evol. 17:368-376. FELSENSTEIN, J. 1993. PHYLIP: Phylogeny inference package, version 3.5c. Department of Genetics, Univ. Washington, Seattle. FIELD, K .G., G. J. OLSEN, D. J. LANE, S. J. GIOVANNONI, M. T. GHISELIN, E. C. RAFF, N. R. PACE, AND R. A. 235 DNA and amino acid sequences. J. Mol. Evol. 27: 326-335. SHINN, G. L., AND M. E. ROBERTS. 1994. Ultrastructure of hatchling chaetognaths (Ferosagitta hispida): Epithelial arrangement of mesoderm and its phylogenetic implications. J. Morphol. 219:143-163. SWOFFORD, D. L. 1993. PAUP: Phylogenetic analysis using parsimony, version 3.1.2d5. Illinois Natural History Survey, Champaign. RAFF. 1988. Molecular phylogeny of the animal kingdom. Science 239:748-753. GHIRARDELLI, E. 1968. Some aspects of the biology of TELFORD, M. J., AND P. W. H. HOLLAND. 1993. The the chaetognaths. Adv. Mar. Biol. 6:271-375. phylogenetic affinities of the chaetognaths: A moGUNTHER, R. T. 1907. The Chaetognatha, or primitive lecular analysis. Mol. Biol. Evol. 10:660-676. Mollusca. Q. J. Microsc. Sci. 51:357-394. TURBEVILLE, J. M., J. R. SCHULZ, AND R. A. RAFF. 1994. HALANYCH, K. M. 1995. The phylogenetic position of Deuterostome phylogeny and the sister group of the the pterobranch hemichordates based on 18S rDNA chordates: Evidence from molecules and morpholsequence data. Mol. Phylogenet. Evol. 4:72-76. ogy. Mol. Biol. Evol. 11:648-655. HEATH, H. 1917. The early development of Pateria WADA, H., AND N. SATOH. 1994. Details of the evo(Asterina) mineata. J. Morphol. 29:461-469. lutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc. HIGGINS, D. G., A. J. BLEASBY, AND R. FUCHS. 1992. Natl. Acad. Sci. USA 91:1801-1804. CLUSTAL V: Improved software for multiple sequence alignment. Comput. Appl. Biosci. 8:189-191. WELSCH, U., AND V. STORCH. 1982. Fine structure of HILLIS, D. M., AND J. J. BULL. 1993. An empirical test the coelomic epithelium of Sagitta elegans (Chaetogof bootstrapping as a method for assessing confinatha). Zoomorphology 100:217-222. dence in phylogenetic analysis. Syst. Biol. 42:182- WILLIAMS, P. L., AND W. M. FITCH. 1990. Phylogeny 192. determination using dynamically weighted parsimony. Methods Enzymol. 183:615-626. HILLIS, D. M., AND M. T. DIXON. 1991. Ribosomal DNA: Molecular evolution and phylogenetic infer- WILLMER, P. 1990. Invertebrate relationships: Patterns ence. Q. Rev. Biol. 66:411-453. in animal evolution. Cambridge Univ. Press, New York. HILLIS, D. M., AND J. P. HUELSENBECK. 1992. Signal, noise, and reliability in molecular phylogenetic ZIMMER, R. L. 1964. Reproductive biology and develanalysis. J. Hered. 83:189-195. opment of the Phoronida. Ph.D. Dissertation, Univ. Washington, Seattle. HUELSENBECK, J. P., AND D. M. HILLIS. 1993. Success of phylogenetic methods in the four-taxon case. Received 27 January 1995; accepted 20 December 1995 Syst. Biol. 42:247-264. Associate Editor: Chris Simon HYMAN, L. H. 1951a. The invertebrates: Platyhelminthes and Rhynchocoela. The acoelomate Bilateria, Note added in proof.—While this manuscript was in Volume II. McGraw-Hill, New York. press, the phoronid sequence (U12648) was updated HYMAN, L. H. 1951b. The invertebrates: Acanthoin GenBank. The changes to this sequence do not incephala, Aschelminthes, and Entoprocta. The pseufluence any of the conclusions herein. docoelomate Bilateria, Volume III. McGraw-Hill, New York. APPENDIX HYMAN, L. H. 1959. The invertebrates: Smaller coelomic groups, Volume V. McGraw-Hill, New York. The 18S rDNA sequence data of the 21 taxa used in JIN, L., AND M. NEI. 1990. Limitations of the evolu- this study were aligned with Clustal V and corrected tionary parsimony method of phylogenetic analysis. by hand. The regions excluded from the analyses, due Mol. Biol. Evol. 7:82-102. to ambiguous alignment, are indicated by the heavy LAKE, J. A. 1987. A rate-independent technique for bar at the top of the sequence (positions 71-84, 130analysis of nucleic acid sequences: Evolutionary par155, 191-290, 310-337, 554-558, 700-899, 935-959, simony. Mol. Biol. Evol. 4:167-191. 1005-1014, 1178-1181, 1228-1235, 1525-1618, 16391663, 1729-1747, 1941-2000.) The secondary structure MADDISON, W. P., AND D. R. MADDISON. 1992. MacClade: Analysis of phylogeny and character of the rDNA is based on the Saccharomyces cerevisiae evolution, version 3. Sinauer, Sunderland, Massa- model of De Rijk et al. (1992). The helical domains are denoted at the bottom of the alignment by the bars chusetts. and the corresponding number. The open boxes under NEEFS, J.-M., AND R. DE WACHTER. 1990. A proposal for the secondary structure of a variable area of eu- the alignment denote the variable regions (V) of the karyotic small ribosomal subunit RNA involving eukaryotic small ribosomal subunit as defined by the existence of a psuedoknot. Nucleic Acids Res. Neefs and De Wachter (1990). Positions for which the exact nucleic acid is unknown are scored as question 18:5695-5704. marks. The N's in the extreme 5' and 3' regions repNIELSEN, C. 1985. Animal phylogeny in the light of resent conserved positions for which the exact nucleic the trochaea theory. Biol. J. Linn. Soc. 25:243-299. acids were not available in GenBank. N's, question PRAGER, E. M., AND A. C. WILSON. 1988. Ancient ormarks, and gaps were all treated as missing data. igin of lactalbumin from lysozyme: Analysis of 20 30 40 70 80 90 100] •] CAATGAAATTGCGTACGGCTC 120 130 ; ; 140 ATTAAATCAGTTATGGTTCCTTAGATCGTACAATCC—TAC ATTAAATCAGCTATGGTTCCTTAGATCTTCGGCCGGGCCTTCGC AATAAATCAGTTATGGTTCCTTAGATCGTACTATATCCTAC ATTAAATCAGCTATGGTTCCTTAGATCGTAAATGC TAC 110 I 8 V2 ~ ATTAAATCAGTTATGGTTCATTGGATCGAGTCCCCCC-GAC ATTAAATCAGTTATGGTTCCTTTGATCGTCACATCCT—AC ATTAAATCAGTTATGGTTCCTTTGATCGTTACCCCTT—AC ATTAGAGCAGATGTCATTTATTCGGAAAATCCTTT V2 TAC ATTAAATCAGTTATAGTTTATTTGAT-GTTGACTTAC-TAC ATTAAATCAGTTATGATTTCTTAGATCGTACACT-CC-TAC ATTAAATCAGTCGAGGTTCCTTAGATGACACGAT-CC-TAC ATTAGAGCAGATGTCATTTATTCGGAACGTCCTTT 160 170 180 190 ; 200] CTCAGTGAAACTGCGAATGGCTC GAAGAGAAACTGCGAACGGCTC GAGAGAAACTGCGAACGGCTC 9 V2 10 V2 I ATGGATAACTGTGGTAATTCTAGAGCTAATACATGCGTCC-AAGCG ATGGATAACTGTGGTAATTCTAGAGCTAATACATGCGGAAGAAGCG TTGGATAACTGTGGCAATTCTAOAGCTAATACATGCCTAC-CTCGG TTGGATAACTGCGGCAATTCTGGAGCTAATACATGCGTTT-AGGCC TTGGATAACCGTGGTAATTCTAGAGCTAATACATGCGTTA-AAGTC TTGGATAACTGTGGTAATTCTAGAGCTAATACATGACGTT—CAGC TTGGATAACTGTGGCAATTCTAGAGCTAATACATGCTTAC-CAAGC TGGATAACTGCGGTAATTCTGGAGCTAATACATGCAAAT-AAACC ATGaATAACTGTATTAATTCTAGAGCTAATACATGCCACT-ATGCC ATGGATAACTGTGGCAAATCTAGAGCTAATACATGTTTAC-AAGCT TTGGATAACCGTGGTAATTCTAGAGCTAATACATGCGA-A-GAGTC ATGGATAACTGCGGAAATACTGGAGCTAATACATGCAACT-ATACC TTGGATAACTGTGGTAATTCTAGAGCTAATACATGCATCA—GAGC TTGGATAACTGTGGCAATTCTAGAGCTAATACATGCAAAA—AGGC TTGGATAACTGTGGTAATTCTAGAGCTAATACATGCAAAC-AGAGC TTGGATAACTGTAGTAATTCTAGAGCTAATACATCGAAAC—AAGC GGCTTTGGATAACTGTGGTAATTCTAGAGCTAATACATGCCTGA-CGGCG TTGGATAACTGTGGTAATTCTAGAGCTAATACATGCACAA-TAGCC ATGGATAACTGTAGTAATTCTAGAGCTAATACATGCCTTG-AATCC 150 V1 NNCCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCACGTGCAAGTTTAAACT-GT TACCTGATTGATTCTGTCAGC-GCTATATGCTCAGTTTAAAGATTAAGCCATGCATGTC-GAGTTCATCTTT TACCTGATTGATTCTGTCAGC-GCTATATGCTCAGTTTAAAGATTAAGCCATGCATGTC-GAGTTCATCTTT TACCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTCTAAGTACAGACTTTC—ACATAGTGAAACCGCAAATGGCTC ATTAAATCAGCTATGSTTCCTTGGATCGTACATAC Haemonchus Nematodirus Strongylocentrot Branchioatoma Saccogloaaua 60 TACCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTCTAAGTACATGCCTCC—TTAAGGCGAAACCGCGAATGGCTC AACCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTCTAAGTACATACTTTT—TGATGGTGAAACCGCGAATGGCTC TCCCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTCTCAGTACAAGCCGAA—TTAAGGTGAAACCGCGAAAGGCTC AATCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAGAGATTAAGCCATGCATGTCTAAGTACAAACCTTC—AAACGGTGAAACCGCGAATGGCTC Opiathorchia Scypha Acanthopleura Limicolaria Placopecten Tenebrio 50 TACCTGATTGATTCTGTCAGC-GCGATATGCTCAAGTAAAAGATTAAGCCATGCATGCTTTGATTCAT ATTACATCAGTTGTGGTTCATTAGATCATATGTTTAA ATTAAATCAGTTATCGTTTATTTGATTGTACGTTTAC-TAC ATTAGAGCAGATATCACCTTATCCGGGATCCGGATCCTCAT ATTAAATCAGTTATGGTTCCTTAGATCGTACCTT-AC-TAC ATTAAATCAGTTATGGTTCCTTAGATCGTACGATCC—TAC ATTAAATCAGTTATGGTTCCTTAGATCGTACCCACATTTAC us 10 NNNNNNNNNNNNNNNNNNNNNAGTCATATGCTTOTCTCAAAC5ATTAAOCCATGCATATCTAAGTACACACTTTC—ACACGGTGAAACCGCGAATGGCTC NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNAGCACATGCCGCC—AAATGGCTAAGC-GCGAACGGCTC NNNNiniNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNNNNiraNNNNNNNMNAGCACATGCCGCC—AAATGGCTAAGC-GCGAACGGCTC TACCTGGTTGATCCTGCCAGTAG-CATATGCTTGTCTCAAAGATTAAGCCATGCATGTCTAAGTACAAGCCCCC—AGTGGGCQAAACCGCGAATGGCTC V—AAACGGTGAAACCGCGAATGGCTC :—AAATGGCTAAGCCGCGAACGGCTC NUNNNNNNNNNNNNNNNNiraNNNNNNNNNNNNNNNNNNAAAGATTAAGCCATGCATGCGTAAGTACATACTTTT—TATGGTGTAAACCGCGAATGGCTC Moniliform Anemonia Caenorhabditia Eurypelma I Phoronia Paraspadella Sagitta crassa Artamia Schiatoaoma Sagitta elegana Caenorhabditia Eurypelma Placopeoten Tenebrio Opisthorchis Scypha Acanthopleura Limicolaria Haemonchua Nematodirua Strongylocentrot us Branchioatoma Saccogloaaua Sagitta elegana Moniliform Anemonia [ Ph oron is Paraspadella Sagitta crassa Artamia Schistosoma Phoronis Paraapadella Sagltta craaaa Artemia Schistosoma Sagltta elegans Moniliform Anemonia Caenorhabditis Eurypelma Placopecten Tenebrio Opisthorchis Scypha Acanthopleura Limicolaria Haemonchas Nematodlrus Strongylocentrotua Branchioatoma Saccogloaaus I Ph oron is Paraapadella Sagltta craaaa Artemia Schistosoma Sagltta elegans Moniliform Anemonia Caenorhabditis Burypelma Placopecten Tenebrio Opisthorchis Scypha Acanthopleura Limicolaria Haemonchus Nematodlrus Strongylocentrot us Branchioatoma Saccogloaaus 230 240 OGGAAOAQCQCTTTTATTAGATCAAAACCAATCO 220 250 260 270 290 300] •] 310 10 320 330 11 V2 340 350 360 11 V2 370 380 390 11 V2 10 V2 11 V2 8 12 400] •] TGGATAACTTTGGGCTGATCGCATGGCCTT—GCGCCGGCGACGTATCTTTCAAATGTCTGCCCTA-TCAACTTTCGATGGTACGTGACATGCCTACCAT TGGATAACTCCACT-TGAC-GCACGGCC—TTTGGCCGGCGGCTGATCTAATAAATGTCTGCCTTA-TCAACTGTCGACGGTAGGTGCCCGGCCTACCGT TGGATAACTCCACT-TGACCGCATGGCC—TTG-GCCGGCGGCTGATCTAATAAATGTCTGCCTTA-TCAACTGTCGACGGTAGGAGCCCGGCCTACCGT TGAATAACTATA-GCCGATCGCACGGTCTC—GCACCGGCGACGTGTCTTTCAAATGTCTGCCTTA-TCAACTTTCGATGGTAGGCTATGCGCCTACCAT TGGATAACTTTA—CTGATCGCAGTCGGCCTTGTGTCGGCGACGGATCTTTCAAATGTCTGCCCTA-TCAA-TTT-GTTGGTAGGTGATTTGCCTACCAT TGGATAACTCCACT-TGACCGCACGGCC—TTGCGCCGGCGGCTGATCTAATAAATGTCTGCCTTA-TCAACTGTCGACGGTAGGAGCCCGGCCTACCGT TGAATAAATTTG—CAGATTGCAGCGGTCTTCGTACCGGCGACGTATCTTTCAAGTGTCTGCCCTA-TCAACTGGCGATGGTAGTTTATGTGCCTACCAT ATAGTAACT—GATCGAATCGCATGGCCT—TGCGCTQGCGATGTTTCATTCAAATTTCTGCCCTA-TCAACTGTCGATGGTAAGGTGTTGGCTTACCAT TGAATAAAGCAGTTTAC TGTCAGTTTCGACTGACTCTATCCGGAAAGGGTGTCTGCCCTT-TCAACTA—GATGGTAGTTTATTGGACTACCAT TGTATAACTTTGGGCTGATCGCACGGGCTT—GTCCCGGCGACGCATCTTTCAAGTGTCTGCCTTA-TCAACTGTCGATGGTAGGCTTATGCGCCTACCA TGGATAACTTTGTGCTGATCGCACGGCCCTA-GTGCCGGCGACGTATCTTTCAAATGTCTGACCTA-TCAACTTTCGATGGTACGTGCTATGCCTACCAT TGAATAACTTTACGCTGATCGCACGGTCT—TGCACCGGCGACGCATCTTTCAAATGTCTGCCTTA-TCAACTGTCGATGGTAGGTTCTGCGCCTACCAT TGGATAACTTTA—CTGATCGCAGTCGGCCTTGTGTCGGCGACGG-TCTTTCAAATGTCTGCCCTA-TCAATTTTCGATGGTAGGTGACCTGCCTACCAT ATGATAACT—GAACGG?TCGCATGGTCT—TGCGCCGGCGATGACTCATACAAATATCTGCCCTA-TCAACTTTCGATGGTAAGGTAGTGGCTTACCAT TGAATAACTTTGTGCTGATCGCATGGCCAC—GCGCCGGCGACGTATCTTTCAAGTGTCTGCCCTA-TCAACTTTCGATGGTACGTGATATGCCTACCAT TGGATAACTTTGTGCTGATCGCATGGCCTTCTGTGCCGGCGACGCATCTTTCAAATGTCTGCCCTA-TCAAATGTCGATGGTACGTGACATGCCTACCAT TGAATAACGCAGCATAT CGGCGGCTT-GTTCGCCGATATTCCGAAAAAGTGTCTGCCCTA-TCAACCT—GATGGTAGTCTATTAGTCTACCAT TGAATAATGCAGCATAT CGGCGGCTT-GACCGCTGATAATCCGAAAAAGTGTCTGCCCTA-TCAACCT—GATGGTAGTCTATTAGTCTACCAT TGGATAACACAGCC—GATCGCACGGT-CTTTGCACCGGCGACGGATCCTTCGAATGTCTGCCCTAATCAACTTTCGATGGTACGTTATGCGCCTACCAT TGGATAACCCAGCC—GATCGCACGGT-CTTCGCACCGGCGACAGATCATTCGAATGTCTGCCCTA-TCAACTTTCGATGGTAGGTTCTGTGCCTACCAT TGGATAACTTGGCG—GATCG-ACGGC-CTCTGC—GGGCGAC-GAACTTTCGAGTGTCTGCCCTA-TCAACTTTCGACGGTACGTTATGCGCCTACCGT V2 GGCTCGTCTCTTGGTGA-CTC CCAACTTCAC GGAAGGGGTGCTTTTATTAGATCAAGACCAATCGGGGCTTC ATTCTGTGATGA-CTC CTGACC CGCAAGGGAACGGGTGCATTTATTAGAACAGAACCAATCGGGCGCGGCTTCGGCTGTGCCTGCTAC CTTTGATGAACTC TCGGG CCCGCGAGGTCGCGACGTCTTTATGCCGTCAAGACCAGCCGGCGCACGCGTCTTC-GGA—CGTGGCGGCCGACCT GATTTCATCCGAAATCACTTAATGCTGA-GTC CCGACTTCT GGAAAGAGCGCTTTTGTTAGATCAAACCAAT GCCCGGTGCTTTGGTGA-TTC CCGACTTCT GGAAGGGATGTATTTATTAGATTCAAAACCAATGCGGGTTCT CGTTTTCGGACGTTGTTTGTTGA-CTC CCAACGCAA GGCGGGGTGCAATTATTAGAACAGACCAAA GACTCGTTCCGTATCCCATGGTGA-CTC TCCGACCCTCTGG GGACGAGCGCTTTTATTAGACCAAAACCAATCG GTCGCAAGGCCGTCACTCTGGTGA-ATC ACCGACT CACGGAGGTGCGATTTTATCAGTCCAAAACCAATCG ATCGTACAACTTGGTGA-CTC TCCAACC—GGAAACGGAAGGAGCGCTTTTATTAGATCAAAACCAATCGGTGGCGGTCTCCGTC ATTCTGTGATGA-CTC CTGACC CGCAAGGGAACGGGTGGATTTATTAGAACAGAACCAACCGGCGGTGACTTCGGTTGCCGTCGTTGC AGGCTGGTTATTGGTGA-TTC CTGACCTCTCGG GGAAGGGATGTATTTATTAGATCCAAAACCGATGCAGTCGAA GGCCTCGGCCCGTCCTGTTGGTGA-TTC TCCGACCTTTTTGCAGGGAAGAGCGCTTTTATTAGATCAAGATCAATCG TCCGACCCTCGCGGA AAGAGCGCTTTTATTAGTTCAAAACCAATCGTCGTTGCCCTTCAGCGGGCGCGAGCGGGCGCGGCGTCCAACTGGTGA-CTC CACTTTCGGGTGCAGTTTGCTGA-CTC CTGACTTTT GAAAGGGTGCAATTATTAGAGCAAATCAAT CTCCTTCGGGTGCTGTTTGCTGA-CTC CTGACTTTT GAAAGGGTGCAATTATTAGAGCAAATCAAT GCCCGGTCTCGGCCGGCCACACTGGTGAACTC CCGACTTTC CAGAAGGCGTGCTTTTATTAGGAACAAGACCA ACCCGGGGTTCGCCCCGGTCCCTTTGGTGA-CTC CCGACCTCAC GGTCTGGCGTGCATTTATCAG-ACCAAGACCA G CGCTGACCTC CCTTGATGAACTC CCTTGATGAACTC OGCTCGTCCCCQTCACATTGGTQA-CTC 280 TCGGGGCCCGCGAGGGTCGCGACGCTTTTATCCCTTCAAGAACCAGCCGGGCAGCGCGGTCTC-CGGACCGTGGCGGCCGACCT TCGGGGCCCGCGA—GTCGCGACGTGCTTTATCCCGTCAAGACCAGCCGACGCACGCGGTTCCTCGGACCGTGGCGGTCGACCT TCCGACTCGC 210 . 420 . 430 . 440 . 450 . 520 530 540 550 600] 16 4 l~ V3 17 V3 18_ ACGGTCATTTCAATGAGTTGATCATAAACCTTTTTTCGAGGATCA ACGGTCATTTCAATGAGTTGAGCTTAAACCTTTTTTCGAGGATCA TTCCCQACACOQQ-AGGTAQTQACOAAAAATAACQATACQOQACTCTTTQOAGGCCC-OTAATCOOAATQAOCACAOTCCAAATCCTTTAOCGAQOATCC 16 500] Saccoglossus 590 490 ] CTCC-< ATCTTGAACAGATGAGATAGTGACTAAAAATAAAAAGAC-CATTCCTATGGA ATCTTGAATAGATGAGATAGTGACTAAAAATAAAAAGAC-CATTCCTATGGA . Placopecten Tenebrio Opisthorchis Scypha Acanthopleura Limicolaria Haemonchus Nematodirus 580 5 480 TGAGTTATTTCAATGAGTTGAATACAAATGATTCTTCGAGTAGCA . CTGTTGAGTA—TGAGATAGTGACTAAAAATATAAAGACTCATCCTTTTGGA 570 15 470 Caenorhabditis . ATCCTAGATCGGGGAGGTAGTGACGAAAAATAACAATGCCGCAGTCGAAT-AGACTCGGCAATTGGAATGAGTACAATCTAAATCCTTTAACGAGGAACA V;XV^'l\»V>UAi;UUUttAW»"X'AV>jreAi;WAAAAAXAAbUA'l"AUUUVMlUUX:XX"±\;W^ 510 560 460 . (MTGMAACs«MTaA(5<M(MAAnYiAa(MTTe<MTTceeGASAsaaAewr!Ta»eA»Ae«^ 410 . Artemia Schistosoma Sagitta elegans Moniliform PhOrOniS t [ Branchiostoma Saccoglossus [ [ Phoronis Paraspadella Sagitta crassa Artemia Schistosoma Sagitta elegans Moniliform Anemonia Caenorhabditis Burypelma Placopecten Tenebrio Opisthorchis Scypha Acanthopleura Limicolaria Haemonchus Nematodirus O O /-\ W n lis 00 00 620 630 640 650 660 670 680 690 720 730 740 750 760 770 780 790 ATCT 800] AGATGATTGACGGACTTCTCAATGGAGCAACCGTGTTTTC V4 ] GTTCTG TCGCGGCGGCTACTTCCCGCTCCTGACCT TCGCGCCGTTCACTGCCCGTTGTCCTCCT TAACGGTGGTTACTGCCTGGCCTGAACAG CCTTGGTGGCTACTGCTCGTCCTGACCTA GCCGCGGGACGTCCTGCCGGTGGGCTTAGC GGGCCG GCTCCTCTTTGTACCGT TTCTGCG—TTTCGGCGTCGGAGTT-GTGGCAGGTCGTCGGCCCTGTCGGCGAGGT E21 - 1 , E21 -2, and E21 -5 Helical domains V4 V4 GCGGAGCTCACGGTCCGCCTTTTCGGGTGTGCACTGTGCT TTCAGGCTGGAGGTCCGCC CGCAGGCGGGC6GTCCGGC TACATGCAGTGATTCGCCTTT CACATGCAGTGGTTCGCCTTT CCCAGGCCTGCGGTCCGCCGT ACCGGGCTTGCGGTCCGCCGC CCGCGGGCGGGCGGAAGTTCTCCGTAC Scypha Acanthopleura Limicolaria Baemonchua Nematodirus Strongylocentrotua Branchioatoma Saccogloaaua V4 TACGTGCCGCAGTTCGCAATT TCCAGACGGGCGGTCCGCC TCCAGGCTTGCGGTCCACT CCCGCGCCGCCGGTTCATCGTTCGCGGTGTTAACTGGCGT Caenorhabditia Burypelma Placopecten TenebrlO I GTGGCACGGCCGGTCCGCCG Anemonia CAAGTGTGTCACTGGCC ATCGTGTCGGCGTCTTTGTTGCTTC Monillform TTTAGGCTAGCGGTCCGCC TCGCGC—GTTACTGCTCGTCCTGACCTA ATCGTGTCGGGAGTTCCGTGGCGTG CTCTGCGOCTTACGCCGTTGGGGTGCGTTGCGGGGTCTCGGCCCTGTCGGCGAGGT ATCGTGTCG-CGTTCTCGTGGTTTC TCCTGCGGCTCTGCCGTTTGGGAGTTTCCGCGGGTCGTCGGCCCTGCCGGCCTAGG CTCGGTCGGGTGGTGCCGCC TCACGGTGGTCACTGCCTCGATCGGACAA CGTGCGGTCGCATGCCGCTGCTTGT-TCACGGTTTTGGTTACGATCAGGACGTGTTCAGC—TCGGTGTAGTGGCTGTGCAGCCTTTCAGCCGTGTCTGT 710 A TGGAGGGCAAGT-CTGGOXKCA^TTGCCCWGTAATTCCAGCTCCAATA^GTATATTAAAGCTGCTGCAGTTAAAAAGCTC ACTGGAGGGCAAGT-CTGGTGCCAGCAGCCGCG-TAATTCCAGCTCCAGTAGCGTATATTAAAGCTGTTGCAGTTAAAAAGCTCGTAGTTGGATCTTGGG 610 Sagitta elegana Phoronis Paraapadella Sagitta craaaa Artemia Schiatoaoma [ accog oaaua Pa ra apa del la Sagitta craaaa Artemla Schiatoaoma Sagitta elegana Monillform Anemonia Caenorhabditia Burypelma Placopecten Tenebrio Opiathorchia Scypha Acanthopleura Limicolaria Baemonchua Nematodirus Strongylocentrotua [ NJ Q 3 g H Q m ^ Strongylocentrot us Branchiostoma Saccoglossus Baemonchus Nematodirus Schistosoma Sagitta elegans Moniliform Anemonia Caenorhabditis Burypelma Placopecten Tenebrio Opisthorchis Scypha Acanthopleura Limicolaria [ Phoronis Paraspadella Sagitta crassa Artemia nematodirus Strongylocentrot us Branchiostoma Saccoglossus Acanthopleura Limlcolaria Baemonchus [ Phoronis Paraspadella Sagitta crassa Artemia Schistosoma Sagitta elegans Moniliform Anemonia Caenorhabditis Burypelma Placopecten Tenebrio Opisthorchia Scypha : 820 : 830 : 840 850 : 860 : : 870 : 880 ; 890 900] •] 910 V4 920 930 940 950 960 970 E21 -1, E21 -2, and E21 -5 Helical domains V4 V4 980 990 V4 1000] E21 -2 ~| I E21-6 V4 V4 E21-7 V4 E21-8 E21-9 V4 E21-8 I TTACTTTGAAAAAATTAGAGTGCTCAAAGCAGGCGACTCGC CT-GAATA—ATGGTGCATGGAATAATGGAATAGGACCTCGGTTCT-ATTTTGTTG TTACCTTGAACAAATCGGAGTGCTCAAAGCAGGCTCTTCGCTG-CTCGAA-CG-GTAGCGCATGGAATAATGGAAGAGGACC-CGCTTCCCCTTCTGTTG TTACCTTGAACAAATCGTAGTGCTCAAAGCAGGCTCTACGCT—CT-GAATCGCTATTAGCATGGAATAATGGAAGAGGACCTCGGTCCGCATTCTGTTG TTACTTTGAACAAATTAGAGTGCTTAAAGCAGGTGCACCGCG-CCT-GAATA—TCACAGCA-GGAATGATGGAATAGGACCTCGGTCTT-ATTATGTTG TTACTTTGAACAAATTTGAGTGCTCAAAGCAGGCCTGTGC—GCCT-GAAAA—TTCTTGCATGGAATAATGAAATAGGACTTCGGTTCT-ATTTTGTTG TTACCTTGAACAAATCGGAGTGCTCAAAGCAGGCTCTTCATCGC-TCGAA-CG-GTAGCGCATGGAATAATGGAAGAGGACC-GGCTTCCGCTTCTGTTG TTGTATA—GTGTTGCATGGAATAATGAAATAGGACCTCGGTTCT-GTTTTGTTG TTACTTTGAGAAAATTAGCGTGCTTAACGCAGGCGTTACAGC TTACTTTGAAAAAATTAGAGTGTTCAAAGCAGGCCAGCGC TTGAATA—CATAAGCATGGAATAATGGAATAGGACTTGGGTTCT-ATTTTGTTG TTACCTTGAATAAATCAGAGTGCTCAATACAAGCGCTTGC TTGAATA—GCTCATCATGGAATAATGAAACAGGACTTCGGTTCT-TTTTGTTGG TTACTTTGAAAAAATTAGAGTGCTCAAAGCAGGCGTGTA GCCT-GAATA—ATGGTGCATGGAATAATGGAATAGGACTTCGTTTCT-ATTTTGTTG TTACTTTGAAAAA-TTAGAGTGTTCAAAGCAGGCAAT TC GCCT-GAATA—ATGGTGCATGGAATAATGGAATAGGACCTCGGTTCT-ATTTTGTTG TTACTTTGAACAAATTAGAGTGCTTAAAGCAGGCTAAAACTTCGCCTGAATA-CTGTGTGCATGGAATAATGGAATAGGACCTCGGTTCT-ATTTTGTTG TTACTTTGAACAAATTTGAGTGCTCAAAGCAGGCCCGTGT GCCTGAAAA—TTCTTGCATGGAATAATGGAATAGGACTTCGGTTCT-ATTTTGTTG GAAT?—CATTAGCATGGAATAATGAAATAGGACTTTGGTTCT-ATTTTGTTG TTACTTTGAAAAAATTAGAGTGTTCAAAGCAGGCCTTGGCTT TTACTTTGAAAAAATTAGAGTGTTCAAAGCAGGCCCC-G—TCGCCTGAATA—ATGGTGCATGGAATAATGGAAGAGGACCTCGGTTCT-ATTTTGTTG TTACTTTGAAAAAATTAGAGTGTTCAAAGCAGGCCCCAG—CTGCCTGAATA—ATGGTGCATGGAATAATGGAATAGGACCTCGGTTCT-ATTTTGTTG GAATG—GTCGATCATGGAATAATAAAAGAGGACTTCGGTTCT-ATTTATTGG TTACTTTGAATAAATTAGAGTGCTCAGAACAAGCGTTTGCTT TTACTTTGAATAAATTAGAGTGCTCAGAACAAGCGTTTGCTT GAATG—GTCGATCATGGAATAATAAAAGAGGACTTCGGTTCT-ATTTATTGG GAACA—GCAGAGCATGGAATAATGGAATAGGACCTCGGTTCT-ATTGCGTTG TTACTTTGAAAAAATTGGAGTGTTCAAAGCA-GCCTCGCGCCT TTACTTTGAAAAAATTAGAGTGTTCAAAGCAGGCCTGGCGCCT GAATA—GTGGTGCATGGAATAATGGAATAGGACCTCGGTTCT-ATTTCGTTG GGATA—GTCCAGCATGGAATAATGGAATAGGACCTCGGTCC—ATTGCGTTG TTACTTTGAAGAAATTAGAGTGTTCAAAGCAGGCCGCCACGCCT I GAGTGGGTCTTCGCTGCCCGTCCCGGAC-TCTCCTCCGGTCCTCTCCCG-GTGCTCTTGGTTGA-GTGTCGGGGGCGGCCGGAACGT G—GTGCTCTTGATTGA-GTGTCTCGGGTGGCTGGAACGT CCTCCCGG-TTTT CCCTT CCTCGGCTGTTGCCGGGOTTCCAACCTTGCTTGTGCAGCCCGCCGTTGCGTCT-GGACGGGTGCCCTTACC-GGATG-CCCGTTTTTGGACGTGACCCGT CATAGCCCGT —TCCCTACCTGATGGCGTTCTCAACTGGCTTCTGCAGCCCGCCGTCGCGTTTTGGGCGGGTGTCCTTATTT TTCATTGGATCGTT CGGGGTGCTCTTAACCGA-GTGTCCTGGGTGGCCGATACGT GTTAAACGGGTGCTGGTGGGTTGACGAGTTCGTC—TTGTTGACCTGTCGGCATGCTTCCGGATGCCTTTAAACGGG-T-GTCGGGAGCGGACGGCATCT CC CACCTTTGGTGGGTTCCACCTCGCTCGTGCAGCCCGCCGTCGCGTTT-GGGCGGGTGTCCTTAATTGGATG-CCCGCTCTCGAACGTGGCCCGT TTCATCGTTGATGCACTTTATTGT-GTGTCACGTTTGAACGGCCTTT CTC TTCTTCGCAAAGACCGCGTGTGCTCTTGACTGA-GTGTGCGCGGGAGTTGCGACGT TGCGTCAACTGTGGTCGTGACTTCTAATTTGCTGGTTTGAGGTTGGGTT-CGCCCTTCAACTGCCAGCAGGT G—ATGATCTTCACCGG-TTGTCCTGGGTGACCGGCACGT CCCAGCCGGTTT CCCTA G—GTGCTCTTGATTGA-GTGTCTCGGGTGGCCGGAACAT CCTCCCGGTTTTA CCCTT TCGTGAGGGCGGC CCAACTCAATCCCGCCGCGGTGCTCTTCGTTGA-GTGTCGAGGTGGGCCGGCACGT TTCGACAGGTGTTAGCATGATTGGTGGGTTCGTCCCTGCCTGATCTGTTGACATGCTTCCCAGGTGCCTTAACCGGG-TCGTCGGGGGCGGACGGCACGT TTC TTCTTCTCGTGGAGCGTGTGTGCTCTTCATTGA-GTGTGCACGTAACTCGGGACTT G—GTGCTCTTGACTGA-GTGTCTCGGGGGGCCAGAACGT ACCATCGGGTTTT CCCTT GCCCTACCGTCTG CCGGCTCTCTCCCGCGG—GTGCTCTTCGCTGA-GCGTCC7GGGTGGCCGGCGCGT GGCGTTAATCGCTGTTGTAACTATTTGCTGGTTTTCTATTGAGGTTTCG-GCTTCTTTAGTGGCTAGCGAGT GGCGTTAATCGCTGTTGTGACTATTTGCTGGTTTTCTATTGAGGTTTCG-ATCTCTTTAGTGGCTAGCGAGT GAGGCGTGT-ACTGCA-GTCCTGGCCTTCCTCTC-GGTTTTCGCCCG-GTGCCCTTAATTGATGTGCCAGGAGAGGCCGGAACGT : 810 Saccoglossus Branchlostoma Oplsthorohls Scypha Acanthopleura Llmlcolaria Haemonchua Sematodirua Strongylocentrotus Placopeoten Tenebrlo Phoronls Paraapadella Sagltta crassa Art end. a Schlstosoma Sagltta elegans Moniliform Anemonla Caenorhabdltis Eurypelma I I [ Phoron Is Paraspadella Sagltta crasaa Artemla Schlatosoma Sagltta el egans Moniliform Anemonla Caenorhabdltis Burypelma Placopacten Tenebrlo Opiathorchla Scypha Acanthopleura Llmlcolaria Haemonchua Namatodlrua Strongylocentrot us Bran ohlostoma Saccoglossus 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100] •] 1120 1130 1140 1150 1160 1170 1180 1190 1200] ACG 24 22 21 25 GCTGCGAAA-CG-TTTGCCAAGAGCGTTTT-CATTAGTCAAGAACGAAAGTCAGAGGTTCGAAGACGATCAGATACC- —GTCCTAGTTCTGACCATAAAC AGAGCGAAAGCA-TCTGCCAAGGATGTTTC-CATTGATCAAGAACGAAAGTCGCGGGATCGAAGAGGATTAGAGACCt !TGACGTAGTCGCGACCGTAAAC AGAGCGAAAGCA-TCTGCCAAGGATGTTTC-CATTGATCAAGAACGAAAGTCGCGGGATCGAACGGGATTAGATACC- —CCGGTAGTCGCGACCGTAAAC ACTGCGAACAAG-TTTGCCAAGAATGTTTT-CATTAATCAAGAACGAAA-TTAGAGGTTCGAAGGCGATCAGATACC —GCCCTAGTTCTAACCATAAAC ACAGCGAAAGCA-TTTGCCAAGAATGTTTT-CATTGATCAGGAGCGAAAGTCAGAGTTTCGAAGACGATCAGATACC' —GTCGTAGTTCT8ACCATAAAC AGAGCGAAAGCA-TCTGCCAAAGATGTTTC-CATT9ATCAAGAACGAAAGTCGCGGGATCGAACGGGATTAGATACC' —CCGGTAGTCGCGACCGTAAAC ACTGCGAAAGCA-TTTGCCAAGAATGTTTT-CATTAATCAAGAACGAAAGTTAGAGGTTCGAAGACGATTAGATACC —GTCCTAQTTCTAAC TATAAAC ACTGCGAAAGCA-TTTGCCAAGAATGTTTT-CATTAATCAAGAACGAAAGTTAGAGGCTCGAAGACGATCAGATACC —GTCCTAGTTATAACCATAAAC ACAGCGAAAGCA-TTTGCCAAGAATGTCTT-CATTAATCAAGAACGAAAGTCAGAGGTTCGAAGGCGATTAGATACC' —GCCCTAGTTCTGACCGTAAAC ACTGCGAAAGCA-TTTGCCAAGAATGTTTT-CATTAATCAAGAACGAAAGTTAGAGGTTCGAAGGCGATCAGATACC' —GCCCTAGTTCTAACCATAAAC ACTGCGAAAGCA-TTTGCCAAGAATGTTTT-CATTAATCAAGATCGAAAGTCAGAGGTTCGAAGACGATCAGATACC' —GTCGTAGTTCTGACCATAAAC GAAGCGAAAGCA-TTTGCCAAAAACGCTTT-CATTGATCAAGAACGAAAGTTAGAGGTTCGAAGGCOATCAGATACC' - -GCCCTAGTTCTAACCATAAAC ACAGCGAAAGCA-TTTGCCAAGGATGTTTT-CATTGATCTGGAGCGAAAGTCAGAGGTTCGAAGACGATCAGATACC' • -GTCCTAGTTCTGACCATAAAC ACTGCGAAAGCA-TTTGCCAAGGATGTTTT-CATTAATCAAGAACGAAAGTTGGAGGTTCGAAGACGATCAGATACC' • -GTCGTAGTTCCAACCATAAAC ACTGCGAAAGCA-TTTGCCAAGAATGTTTT-CATTAATCAAGAACGAAAGTCAGAGGTTCGAAGACGATCAGATACC —GTCGTAGTTCTGACCATAAAC ACTGCGAAAGCA-TTTGTCAAGAATGTTTT-CATTAATCAAGAACGAAAGTCAGAGGCGCGAAGACGATCAGATACC —GTCGTAGTTCTGACCATAAAC AAAGCGAAAGCA-TTTGCCAAGAATGTCTT-CATTAATCAAGAACGAAAGTCAGAGGTTCGAAGGCGATTAGATACC —GCCCTAGTTCTGACCGTAAAC AAAGCGAAAGCA-TTTGCCAAGAATGTCTT-CATTAATCAAGAACGAAAGTCAGAGGTTCGAAGGCGATTAGATACC —GCCCTAGTTCTGACCGTAAAC AC-GCGAAAGCAATTTGCCAAGAATGTTTTTCATTAATCAAGAACGAAAGTTAGAGGTTCGAAGGCGATCAGATACC —GCCCTAGTTCTAACCATAAAC ACTGCGAAAGCA-TTTGCCAAGAATGTTTT-CATTGATCAAGAACGAAAGTTGTGGGCGCGAAGGCGATCAGATACC —GCCCTAGTCACAACCATAAAC TTTGCCAAGAATGTTTT-CATTGATCAAGAACGAAAGTCGGAGGTTCGAAGACGATCAGATAC- -—GTCTAGTTCCGACCGTAAAC ACTGCGAACG 1110 V4 GTCTTAGGAACGC-GAGGTAA-TGATCGAGAGGGACTGA-CGGGGGCATTCGTATTGCGGCG-TTAGAGGTGAAATTCTTGGATCGTCGCAAGA E21-9 22 23 GTTTTCaGAATAC-GAGGTAA-TGATTAAGAGGGACAGA-CGGGGGCATTCGTATTGCGACG-CTAOAGGTGAAATTCTTGGACCGTCGCAAGACGAACT GTTTTCOGAACTT-GAGGTAA-TgATTATGAGQGACAGA-CGGGGGCATTCGTATTACGGTG-TTAGAGGTGAAATTCTTGGATCGCCGTAAGACGAACT GTTTTC6GAATTTTGAGGTAA-TGATTAATAGGAACGGAT-GGGGGCATTC0TATTGCGACG-TTAGAGGTGAAATTCTTGGATCGTCGCAAGACGGACA GTTTTCGGA—TCCGAAGTAA-TG9TTAAAAGGGACAGA-CGGGGGCATTTGTATGGCGGTG-TTAGAGGTGAAATTCTTGGATCACCGCCAGACAAACT GTTTTCGGAAC—CAAGGTAA-TGAC7AATAGGGACAGTT-GGGGGCATTCOTATTCAATTG-TCAOAGGTGAAATTCTTGGATTTATGGAAGACGAACA GTTTTCGGAAGTC-GAGGTAA-TGATTAAGAGGGACAGA-CGGGGGCATTCGTATTACGGTG-TTAGAGGTGAAATTCTTGGATCGCCGTAAGACGAACT -TTTTCGGAACTG-GAGGTAA-a TTCA—GGAACT—GAAATAA-1 TTCA—GGAAC T—GAAATAA-3 CGACCG GTTTTCGGAACTC-GAGGTAAGTGATTAAGAGGGACTGA-CGGGGGCATTCGTATTGCGGTGGTGAGAGGTGAAATTCTTGGTCGCCGCAG GTTTCCGGAAG-CTGAGGTAA-TGATTAATAGGGACAGA-CGGGG—ATTCGTATTGTGGTG-TTAGAGGTGAAATTCTTGGATCACCGCCAGACGAACA GTTTCTGGAAC-CTGAAGTAA-TGATTAAGAGGGACAGTT-QGGGGCATTCGTATTCG-TTG-TCAGAGGTGAAATTCTTGGATTTACGAAAGACGAACT GTTTTCGGAACTT-GAGGTAA-TGATTAATAGGGACGGC-CGGGGGCATTGCTATTACGGTG-TTAGAGGTGAAATTCTTGGATCGCCGTAAGACGGACA QTCTCAC—GGAAGCAGGTAA-TGATCAAGAGGGACGGA-CGGGGGCAGAGGTATGGCCCQG-CGAQAGGTGAAATTCTTGGACCCCGGCCAGACCCTCG GTCTTCCTAGGAGCCAAGTAA-TGATTAAGAGGGACAGTT-GGGGQCATACGTATGGCTCGG-CGAGAGGTGAAATTCTTGGACCCTAGCCAGACCCTCG aTTTTCTGGACT-TOAGGTAA-TGGT-AACAGAGACAGA-CGGGGGCATTCGTACTGCGACG-CTAGAGGTGAAATTCTTGGACCGT-GCAAGACGAACA OTTTTCGGA—TCCGAAGTAA-TGGTTAAGAGGGACAGA-CGGGGGCATTTaTATGGCGGTG-TTAGAGGTGAAATTCTGGGATCGCCGCCAGACAAACT Phoronia Paraapadella Sagltta craaaa Artemla Schlatoaoma Sagltta el egana Monlllform Anemonia Caenorhabdltla Burypelma Placopecten Tenebrio Oplathorchla Scypha Acanthopleura Llmicolaria Baemonchua Nematodlrua Strongylocentrotua BranchIoatoma Sacoogloaaua I I [ PhoronIs Paraapadella Sagltta craaaa Artemla Schlatoaoma sagltta elegana Monlllform Anemonia Caenorhabdltla Burypelma Placopecten Tenebrio Opiathorchis Scypha Acanthopleura Llmicolaria Baemonchua Vematodlrua Strongylocentrotua Branchioatoma Saocogloaaua 1310 1320 27 1330 V5 1340 1350 1360 28 1370 26 1380 20 1390 29 29 30 31 32 33 34 35 AGCTGAAACTTAAAGGAATTGACOGAAGGGCACCACCAGGAGTO-AGC-TGCG-CTTAATTTGACTCAACACGGGAAAACTCACCCGGCCCGGACACOGC AGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGOAGTOGAOCCTOCG-CTTAATTTGACTCAACACGGGAAAACTCACCCGGCCCGGACACAGT AGCTGAAACTTAAAOGAATTOACGOAAGGGCACCACCAGGAGTaGCAG-TOCGGCTTAATTCGACTCAACACGGGAAATCTCACCCGGCCCGGACACTGT AATCGAAACTTAAAGGAATTGACGGAGGGGCAC-ACCAGAAGTGGAGCCTGCGGCTCAATTTGACTCAACGCACGAAAACTTACCCGGCCCGAACACCGT AGCTGAAACTTAAAGGAATTGACGGAAGGGCACC-CCAGGAGTGGAGCCTOCGGCTTAATTTGACTCAACACGGGAAACCTCACCAGGCCCGGA-ACTGG 26 TATOCCAACTaOQOATCCQTCOOTTOCCATTTQTAOOCTCOOCOaOCACCC-TACOOOAAACCA- -AAGTGAACAGGTTCCGGGGGGAGTATGGTTGCAA OATOCCOACTAOOOATCAOAOAOTOTTA-TTGOATaACCTCTTTOOCACCT-TAOQOOAAACCA- -AAGTTTTTGGGTTTCGGGGGGAGTATGGTTGCAA QATOCCATCTCQCOATTCQOAOO-OTT TTTSCCCTaCCSAOaAOCT-ATCCOOAAACSA--AAGTCTTTCGGTTCCGGGGGTAOTATGOTTGCAA OATOCCAACCAOCOATCCaCCTOAOTTCCTCAAATGACTCQOCOOOCAOCT-TCCaOQAAACCA- -AAGTGTTTGGGTTCCGGGGGAAGTATGGTTOCAA OATOCCAACTAOCOATCCaCCaOAOTTOCTTCAATOACTCOOCOOOCAOCT-TACOOOAAACCA- -AAGTTTTTGGGTTCCGGGGGAAGTATGGTTGCAA OATOCCAQCTAQCQATCCOCCQACQTTCCTCCSATOACTCOOCOOQCAQCT-TCCOOOAAACCA- -AAGCTTTTGGGTTCCGGGGGAAGTATGGTTGCAA OATOCCAACTOACGATCCOTOaTOaCOCOATTATTOaCCCCOCOGOCAOCC-CCCOOOAAACCT: TAAGTCTTTGGGCTCCGGGGGAAGTATGGTTGCAA OATQCCOACTAQQOATCQOTOQATOTTA-TTAAATOACTCCATCQOCACCT-TATOAOAAATCA- -AAGTTTTTGGGTTCCGGGGGGAGTATAATCGCAA OATOCCAACTAOCQATCCQCCQOAOTTQTTTCAATOACTCOOCOGQCAOCT-TCCOOQAAACCA- -AAGTTTOTGGGTTCCGGGGGAAGTATGGTTGCAA QATSCCOACTAOCOATCCOCAQOAOTTOCTTCOATQACTCTOCOOQCAGCT-TCCQaOAAACCA- -AAGTTTTTGGGTTCCGGGGGAAGTATGGTTGCAA TATOCCATCTAQCOATCCOATOOOOT ATAOTTOCCTTOTCOAOOAOCT-TCCCOOAAACOA- -AAGTCTTTCGGTTCCTGGGGTAGTATGGTTGCAA TATOCCATCTAGCOATCCOATOGaOT ATATTTOCCTTOTCOAOOAOCT-TCCCaOAAACSA- -AAGTCTTTCGGTTCCTGGGGTAGTATGGTTGCAA OATOCCOACTOACOATCCOCCOGCOTTACTCCCATOACOCOOC-OOCAOTC-TAAQOOAAACCA- -AAGTCTTTGGGTTCCGGGGGAAGTATGGTTGCAA OATGCCAACCAOCGATCCOCCGOCGTTACTTCOATOACCCOATOGOCAOCT-CCCOGGAAACCT- -GAGTTTTCGGGTTCCGGGGGAAGTATGGTTGCAA GATGCCGACT—CGATCTOC-QOCGTTACTCTCTAOACCCOGC—GCAOCT—CC-OGAAACCA- -AAOTCTTTGOQTTCCGGOOQAAQTATQOTTGCAA OATOCCAACCA-COATCCQCQQACQTTACTTOAATOACTCCOCQGQCAQCT-TCCOOQAAACCA—AAGTGTTT-GGTTCCGGGGGAAGTATGGTTGCAA 1220 1230 1240 1250 1260 1270 1280 1290 1300] .] . . . . . . . GATGCCAACTGAGCATCCGCCGGAGTTGCTTCAATGACTCGGCGAGCAGCT-TCCGGGAAACCA—AAGTCTTTGGGTTCCGGGGGAAGTATGGTTGCAA 1210 4 4 1420 . 1430 . 1440 . 1450 . 1460 . 1470 . 1480 . 1490 . 1530 1540 1550 1570 1580 CACCGGTCCCGA—TGTGCCGGTGC • 1560 1600] GGCTTCT GGCG AGCTTCTCCTGCCG 1590 37 40 I V7 V7 41 V7 V7 ~| GTTG TGCTTCT ACGAGACCCCAACCTGCTAACTAGCCCTCGGGTCC GTGCCGATTCA ACGAGACTCTAGCCTATTAATTAGG TTACGCC ACOAGACCTTAACCTOCTAAATAG GCGAGACTCTAOCCTGCTAAATAOTTGGCGAATCTTC GTCCCGATCAC—TTCTGTCGGGCG ACOAGACTCTAGCCTACTAAATAGGC CACCGATCCGCTCTGCGTCGGTGC ACOAGACTCTAGCCTGCTAAATAGTT GCCCGCTGGTCCCGGGTTCGCTCGGTGACCGTGCGCGGTTTTTAC ACGAGACTCTAGCCTGCTAAATAGGCGTATTTCGACATCCCAAAG ACGAGACTTTGGCCTGCTAAATAGTACGCCTGTCCTCTGTGCTCGTGCAGGTGGCGGTGCTCATTGCCTCTC—TGGGGTGATGGTGCCGTTCGCCGGCG TTACGCG ACGAGACCTTAACCTGCTAAATAG CGCCGATCCCTGATGCGTCGGCGCC ACOAGACTCTAGCCTATTAAATAOTT CGCCGGTTCCTCGATCGCCGGCGC ACGAGACTCTAOCCTATTAAATAGTT GCGAOACTCTAGCCTGCTAAATAGTGGCTGGATTTTT GCGAGACTCTAGCCTGCTAAATAGTGCCTGGATTTTT ACGAGACTCTOGCTTGCTAAATAGTTGCGCCACCCCG ACGAGACTCTGGCATGCTAACTAGTTGCGGCGATCCCG T ACGAGACTCTGGCTTQCTAAATAQTCGTG-COACCCT 1520 Sagltta elegana Monlllform Anemonla Caenorhabdltla Eurypelma Placopecten Tenebrlo Oplathorchla Scypha Acanthopleura Llmlcolarla Haemonchus Nematodirua Strongyl ocen trot us Branchloatoma Saccogloaaua 1510 OAGGATTGACAGACTGAGAGCTCTTTCTCGATTCGGTGGGTGGTGGTGCATGGCCGTTCTTAGTTGGTGGA-CGATCTGTCTGGTTAATTCCGATAACGA ACGAGACTCTAGCCTGCTAAATAGTT ACOAGACCCCGACCTGCTAACTAGCCCTCGGGTCC ACGAGACCCCAACCTGCTAACTAGCCCTCGGGTCT ACGAGACTCTAGCC-GCTAAATAaACGATGGATCCTA us . GAG-J AAGGATTGACAGATTGAGAGCTCTTTCTTGATTCAGTGGGTaGTGGTGCATGGC-GTTCTTAGTTGGTGGAGCGATTTGTCTGGTTAATTCCGATAACGA 1410 Phoronls Paraapadella Sagltta craaaa Artemla [ Llmlcolarla Haemonchua nematodirua Strongylocentrot Acanthopleura Sagltta elegana Monlllform Anemonla Caenorhabdltla Eurypelma Placopecten Tenebrlo Oplathorchla Scypha [ [ Phoronla Paraapadella Sagltta craaaa Artemla H fi Caenorhabditis Eurypelma Placopecten Tenebrio Opiathorchia Scypha Acanthopleura Limicolaria Haamonchua Nematodirus strongylocentrot us Branchioatoma Saccogloaaua Schiatoaoma Sagitta elegana Moniliform Anemonia Phoronla Paraspadella Sagitta craaaa Artemla Saccogloaaua Branchioatoma Nematodirus Strongylocentrotus Acanthopleura Limicolaria Baemonchua Placopecten Tenebrlo Opiathorchia Scypha Caenorhabditis Eurypelma Phoronls Paraapadella Sagitta crassa Artend a Schiatoaoma Sagltta elegana Monlllform Anemonia 1620 1630 1640 1650 1660 1670 1680 1690 •] 1700] 41 1710 V7 1720 1730 V7 1740 42 1750 V7 I 1760 40 1770 36 1780 1790 34 1800] 32 I 43^ V8 CTGCACGCGCGCTACAATGGAGGGCTCAG-AAAGCGT CCGCACGCGCGCTACACTGACGATGTCAA-CGAGT CTGCACGCGTGCTACACTGGTGGAGTCAG-CGGGTTT CCGCACGCGCGCTACACTGAAGGAATCAG-CGTGTGC CCGCACGCGCGCTACACTGAAGGAATCAA-CGTGCTC CCGCACOCGCGCTACACTGAAGGAATCAG-CGTG CCGCACGTGCGCTACAATGACGGTTTCAA-CGAGTTT CCGCACGCGCGCTACACTGATGAAGTCAG-CGAOT CCGCACGCGCGCTACACTGAAGGAATCAG-CGTGTGT CCGCACACACGCTACACTGAAGGAATCAG-CGTGGAT CTGCACGCGCGCTACAATGGAAGAATCAG-CTGGCCT CTGCACGCGCGCTACAATGGAAOAATCAG-CTGGCCT CCGCACGCGCCGTACACTGGCGGAATCCA-GCGGGTA CCGCACGCGCGCTACAATGAAGGCATCAG-CGAGTCT CCACOCQCGCO-TACACTOAAGGOATCAG-CQQQTQT V8 44 V8 43 ~1 45 AA-CGATTTCGACAGAAATCGG-CAATCA TAAATAGCCTTCTTGATTGGGATC CT-CTCCTTGGCCGAAAGGTCT-GGGTAATCTTCTCAAACATCGTCGTGCTGGGGATA TTCCTATGCCGAAAGGTATC-GGTAAACCGTTGAAATTCTTCCATGTCCGGGATA TT-TCCCT-GTCCGGTAGGACT-GGGTAACCCGTTCAACCTCCTTCGTGATAGGGATA TT-ATCCTTGCCCGGAAGGGTT-GGGTAACCCGTTGAACCTCCTTCGTGCTAGGGATT TC-CTCCCTGGCCGAGCGGCCC-GGGTAACCCGCTGAACCTCCTTCOTGCTAGGGATT GGGATCCTAGCCCGAAAGGTTT-GGGTAAACTGAACCATAACCGTCGTGACTGGGATC TC-TTCCTTCACCGATAGGTGT-GGGTAATCTTGTGAAACTTCATCGTGCTGGGGATA CG-TTCCTGGCCCGGAAGGGCT-GGGTAACCCGTTGAACCTCCTTCGTGCTAGGGATT GC-CTCCCTQGCCCGAAAGGTT-OGGAAACCCGTTGAATCTCCTTCGTGCTAGGGATT ATCCATTGCCGAAAGGCATT-GGTAAACCGTTGAAACTCTTCCGTGACCGGGATA ATCCATTACCGAAAGGTATT-GGTAAACCGTTGAAACTCTTCCGTGACCGGGATA CACTGCCCTTGGCCGGAAGGTCT-GGGTAATCCGCTGAACCTCCTCCGTGATGGGGATA TTCGCCTTCGCCGAAAGGTGC-GGGTAACCTGCTGAACCGCCTTCGTGCTAGGGATC COCCTCCCTQGCCQACAQGACCCAGGCAATCCOATQAGCCCCCTTCOTQCTAOQQATA _ ; CCGCACGTGCGCTACACTGAAGGGATCAGGCGTGCG TC-TACCCTGGCCTGGAAGGTT-GGGTAACCCGTTGAACCCCCTTCGTGCTAGGGATT CTGCACGCGCGCTACACTGAAGGCATCAG—GTGCGCTTTGTCGGTTCCCTGCCTGAAAAGGCT-GGGTAACCCGCTGAACCGCCTTCGTGCCTGGGATA CCGCAC-CGCGCTACACTGGAAGAATCAG-CGCGTC CTCCCTGTCCGAGAGGACC-GGGTAACC-GCT-GACCTCTTCCGTGGTTGGGATT CCACACGTGCGCTACAATGACGGTGCCAG-CGAGTCT GGGAACCTGGCCCGAAAGGGTT-GGGCAAACTGTTTCATCACCGTCGTGACTGGGATC I GGG-GATAACAGGTCTGTGATGCCCTTAGATGTTCGGGG GGCCCGAOGGAATGATTCGCTTCTTAGAGGGACTCGCGGCGC-TAGCCGCACGAAGGG GGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCGGGG ATTAGTCGGCATTGTTAAACTTCTTAGAGG-ACAGGTGCTTCTTAAGCACACGAAGA AGGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGG CATCGCGATGGGCAACTAACTTCTTAGAGGGACTGTTGGTGTTTAACCAAAGTCAGGA GATTGAGCGATAACAGGTCTGTGATGCCCTTAGATGTCCGGGG GGGTTCGTATAACTTCTTAGAGGGATAAGCGGTGTTTAGCCGCACGA TTCTTCTTAGAGGGACAAATGGCGTTTAGCCGCACGA—GA-CAGAGCAATAACAGGTCTGAGATGCCCTTAGATGTCCGGGG AACTTCTTAGAGGGACAAGTGGCGTTTAGCCACACGA—GA-TTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTAGGGG TGTCGGCGTACAAACAATTCTTCTTAGAGGGACAGGCGGCTTCTAGCCGAACGA—GA-TTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGG GGTGCGGC-CAGGTGTCTACTTCTTAGAGGGACAAGCGGCGTGC—CAGTCGCACGAAATTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTCCGGGG ATTCTCGAATCGCGGCCAACTTCTTAGAGGGACTATTGGTGTTTAACCGATGGAAGTT-TGAGGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGG AACTTCTTAGAGGGACAAGTGGCGTTTAGCCACACGA—AA-TTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCGGGG AACTTCTTAGAGGGACGAGTGGCGTTTAGCCA-ACGA—GA-TTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTCCGGGG GATTGAGCGATAACAGGTCTGTGATGCCCTTAGATGTCCGGGG GAGTCCAGTCTACTTCTTAGAGGGATAAGCGGTGTTTAGCCGCACGA GATTGAGCGATAACAGGTCTGTGATGCCCTTAGATGTCCGGGG ACGTCCAGTCTACTTCTTAGAGGGATAAGCGGTGTTTAGCCGCACGA CGGTGCGCGTCAACTTCTTAGAGGGACAAGTGGCGTTTAG-AG ATTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCGGGG ATGGAGCAATAACAGGTCTGTGATGCCCTTAGATGTCCGGGG CGCGATCGGCCGCAACTTCTTAGAGGGACAGCCGGCAGTAAGCCGGACGAG ATTOAGCAATAACAQQTCTQTGATGCCCTTAQATQTCCGGGG AACQTTGTCOGCGACCGAACTTCTTAGAOGOACAAQCQGCGTTCCCQAQ AACTTCTTAGAGG-ACAAGCGCG—ATAGCCGCACGA—GA-TTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTTCGGGG GGGCGATAACAGGTCTGTGATGCCCTTAGATGTTCGGGG GGCCCGACGGAATTATTCGCTTCTTAGAGGGACTCGCGGCGCCTAGCCGCACAAGGGG GGGCGATAACAGGTCTGTGATGCCCTTAGATGTTCGGGG GGCCCGACGAACTGATTCGCTTCTTAGAGGGACTGCGCGGCCCTAGCCGCACGAAGGG GTGGTGGATCGCTCTTCTTAGAGGGACAAGTGGCGT-CAGCC ATATGAGAGTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTCCTGGG 1610 Acanthopleura Limicolarla Baemonchua sematodlrua Strongylocentrotua Branchioatoma Saccogloaaua caenorhabditia Eurypelma Placopecten Tenebrio Opiathorchla Scypha Phoronia Paraspadella Sagitta craaaa Artemia Schlatoaoma Sagltta elegana Moniliform Anemonla [ Caenorhabditia Eurypelma Placopecten Tenebrio Opiathorchla Scypha Acanthopleura Limicolarla Baemonchua Nematodlrua Strongylocentrot us Branchioatoma Saccogloaaua Schlatosoma Sagltta elegans Moniliform Anemonla [ Phoron Is Paraapadella Sagltta craaaa Artemia 1840 1850 1860 1870 1880 1890 1920 1930 1940 1950 46 1960 1970 1980 30 1990 2000] V9 V9 CTG-TCCGGGACTGAGCTGTCTCGAGAGGACTGCGGACTGCT CTG-TCCGGGACTGAGCTGTCTCGAGAGGACTGCGGACTGCT CTA-CTACCGATTGAATGGTTTAOTGAGATCCTCGGATCGTC CTA-CTACCGATTGAATGGTTTAGTGAGGTCAGTCGATCGGC CTA-CTACCGATTGAACGGTTTAGTGAGATCTTCGGATCGC 47 V9 GTATCGAGGCCTTCGGGTCGCGGTA GTATCGAGGCTTTCGGGTCGCGGTA GGCGTCGGGCTTGCGCCTCGCTCGCA CCCTCTCGGGCCGGCAACGGTCTGGAG ACGCGCGGGGACTGGTTCTCGGCCCTCG V9 TGGCGGGAAACAGTT TGGCGGGAAACAGTT TGTACGAGAAGACGAT GAGCGCCGAGAAGCCGAT TGTGTCCGAGAAGACGAT C6TOGTOT 9OTTOAAA6OTT6TT CTA-CTACCOATTOAATOATTTAOT6AOAACTTCOQACaACTC6CCAGOGCAOCTCC6OOCQCT CGTTGCC-GCTCGACTGA TGCTGAGAAGATGAC CTA-CTACCGATTGAATGGTTTAGTGAGGTCGTTGGATTGGTGTCGTTGTAGTGG CTA-CTACCGATCGAACGATGTAGTGAGGTCCTCGGACTGGCATGTACTCGGAAGCCGGG—TTCGCTCGGTAGAAGAGCTTGTTTGCCGGGAAGAGAAC GTTGTAT TACCTAAAAGTTGGC CTA-CTACCGATTGAATGGCTTAGTGAGGTCTACGGATAGGCTACAAGGTAGCCATCAGCTCT GCCACGGAGCAGCGGAC TGCCGAGAAGTTGTT CTA-CTACCGATTGAATGGTTTAGTGAGGACTCCTGATTGGCGCCGCGCCCCG CTA-TCCGGGACTGAACTGATTCGAGAAGAGTGGGGACTGTC GCTTCGAGGTTTAACGACTTCGTTG TTGCGGAAACCATTT CGGAAAGCGATTGAC CTA-CTACCGATTGAATGATTTAGTGAGGTCTTCGGATTGGCGCTCGGAGCGGCCGCAAGG-TCGCGCCGGCGTGC CG AGAAGACGAG CTACCTACCGATTGATTGGTTTGGTGAGCTCCTCGGATTGGTCCCGACACGGGGGGCAACCCTCGAGTCGGTGCGC GG AAGATGAC CTA-CTACCGATTGAATGATTTAGTGAGGTCTTCGGACCGGTACGCGGTGGCGTTTCGGCGTCGCCGATGTTGCTG CTTCGGCAGCTCGACCGG TGCTGAAAAGACGAC CTA-CTACCGATTGAATGGTTTAGCAAGGTCCTCGGATTGGTGCCATTGTAGTTG CTTGTGTTGCCGGACAC AGC-GAGAAGTTGAT CTA-CTACCGATTGAATGGTTTAGTGAGATCTTCGGATTGCTGGCCCGGCGGC GCCGGTGCGC CG AGAAGTTGTT CTA-CTACCGATTGAATGGTTTAOTGAGAGCCCCGGATTGGTCCCGGCATGGGGG7AACCTCC CGAGAAGC TOCT CTA-CTACCGATTGAACGGTTTAGTGAGAGCCTCGGATTGGTCCTG-CATGGTGGGCAACCATCGCGCCGGTGTGC CTA-CTACCOATCGAACOATOTAOTOAOOTCCTCOOACTQaCCACTACTCaOAACCCCaC—TCCOGTOOGOAOAAOAOCTTOCTTOCCOaOAAOAOOAT 1910 45 GGGGACTGCAAGGAT-CCCCATGAACCAGGAATCCCTAG-AGGCGCAAGTCATTAGCTTGCGTCGATTACGTCCCTGCCCTTTGTACACACCGCCCGTC- 1830 ON 47 V9 I 48 CAAACTTOATCCTTTAOAOOAAOTAAAAOTCO-AACAAOOTTTCCOTAOOTOAACCTQCOOAAQOATCATTA CTAATTTOACTATTTAOAOOAAOTAAAAOTCOTAACAAOOTTTCCOTAOOTOAAiniNNiniNMNNiniHNMNlIM CAAACTQAATCQTTTAOA<WAAGTAAAAQTCQTAACAA<WTTTCCQTAGQTQAACCTQCQGAAQOATCATTA COAACTTTACCATTTAOAOOAAOTAAAAOTCOTAACAAOOTTTCCOTAOOTOAACCTQCOOAAOOATCATTA CAAACTTQATCATTTAQAaOAAOTAAAAOTCOTAACAAOOTTTCCOTAQQTOAACCTOCQOAAOOATCATTA TTATCOCATTQOTTTOAACCOQOTAAAAQTCQTAACAAQQTAQCTOTAOOTOAACCTOCAOCTOOATCATCO CAAACTTSATCATTTASAOSAAQTAAAAOTCQTAACAAOOTTTCCOTAOOTOAACCTQCOOAAGOATCATTA CAAACTTOATTATTTAOAQQAAGTAAAAOTCQTAACAAOQTTTCCOTAOOTOAACCTOCAOAAOOATCAAQC CAAACTTOATCATTTAOAaOAAQTAAAAOTCQTAACAAOOTTTCCOTAQOTOAACCTOCQOAAOOATCATTA CAAACTTaATCATTTAQAQOAAOTAAAAOTCOTAACAAOQTTTCCaTAOQTOAACCTaCOOAAOOATCATTQ CAAACTTOATCATTTAaAaOAAOTAAAAOTCOTAACAAaOTTTCCOTAaGTOAACCTOCAOAAOOATCANNN COAACTTOATCATTTAQAOOAAOTAAAAOTCOTAACAAOOTTTCCOTAOQTSAACCTOCQOAAOOATCANira CaAACTCOATCOCTTOOAOAAAOTAAAAOTCGTAACAAOOTTTCCaTAOOTOAACCTaCOOAAaOATCAinra CAATCOCAATOOCTTOAACCOGOTAAAAQTCaTAACAAQQTATCTOTAOOTOAACCTOCAOATOOATCATCO CAATCOCAATGOCTTOAACCOOOTAAAAOTCOTAACAAaOTATCTOTAOOTOAACCTOCAOATOOATCATCO CAAACTTOATCATTTAOAOOAAOTAAAAOTCGTAACAAOQTTTCCQTAOOTOAACCTOCAOAAOOATCNiraN CAAACTTOACCATTTAOAQGAAOTAAAAOTCQTNBinnnnnnnnnnnmiraNNim COAACTTOATCOTTTAQAQOAAGTAAAAOTCqTAACAAOQTTTC-OTAOGTOAACCTgCAOATOOATCMllNM Paraapadalla Sagltta craaaa Artemla Schlatoaoma Sagitta alagana Monlllform Anemonla Camnorhabdltla Burypmlma Plaoopacten Tmnabrio Oplathorchia Soypha Acanthoplaura Limloolarla Bammonchua Samatodlrua Strongylocantrotua Branchloatoma Saccogloaaua I 2030 2040 2050 2060 2070] 2020 ] . . . . . . . CAAACTTOATCOTTTAaAOOAAOTAAAAaTCQTAACAAQQTTTCCQTNNNNNNNNNiniNNNNNNiraNNNNNN 2010 [ [ Phoronla
© Copyright 2026 Paperzz