10/8/2013 PHY 113 C General Physics I 11 AM - 12:15 PM MWF Olin 101 Plan for Lecture 12: Chapters 10 & 11 – Rotational motion, torque, and angular momentum 1. Torque 2. Angular momentum 10/08/2013 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 1 PHY 113 C Fall 2013-- Lecture 12 2 Angular motion angular “displacement” q(t) dq angular “velocity” w(t) dt dw angular “acceleration” a(t) dt s “natural” unit == 1 radian r di ns 3.14159 r di ns 180o Relation to linear variables: sq = r (qf-qi) vq = r w aq = r a 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 3 1 10/8/2013 Rotational motion q(t) w(t) angular “displacement” q(t) dq angular “velocity” w(t) dt dw angular “acceleration” a(t) dt Special case of constant angular acceleration: a = a0: w(t) = wi + a0 t q(t) = qi + wi t + ½ a0 t2 ( w(t))2 wi2 + 2 a0 (q(t) - qi ) 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 4 Webassign Assignment #10: A centrifuge in a medical laboratory rotates at an angular speed of 3800 rev/min. When switched off, it rotates 48.0 times before coming to rest. Find the constant angular acceleration of the centrifuge. Recall: Special case of constant angular acceleration: a = a0: w(t) = wi + a0 t q(t) = qi + wi t + ½ a0 t2 ( w(t))2 wi2 + 2 a0 (q(t) - qi ) For w(t) 0 a 10/08/2013 (3800 rev/min )2 1 min 2 2 r d 2(q (t ) q i ) 2 (48 rev) rev 60 s wi2 PHY 113 C Fall 2013-- Lecture 12 5 Review of rotational energy associated with a rigid body Rot tion l energy : K rot 1 1 2 mi vi2 mi (wri ) 2 i 2 i 1 1 mi ri 2w 2 Iw 2 2 i 2 here I mi ri 2 i 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 6 2 10/8/2013 Note that for a given center of rotation, any solid object has 3 moments of inertia; some times two or more can be equal j m d d m i k iclicker exercise: Which moment of inertia is the smallest? (A) i (B) j (C) k IA=0 IB=2md2 10/08/2013 IC=2md2 PHY 113 C Fall 2013-- Lecture 12 7 From Webassign: ( ) I yy mi xi2 (3)(2 ) (2 )(2 ) (2 )(2 ) (4 )(2 ) kg m 2 2 2 2 2 i 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 8 Digression – use of rotational energy in energy storage http://www.beaconpower.com/products/about-flywheels.asp 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 9 3 10/8/2013 Beacon Power company (went bankrupt in 2011) Continuing efforts – http://www.scientificamerican.com/article.cfm?id=energy-storage-role-in-electric-grid 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 10 Physics of rolling -- Tot l kinetic energy of rolling object : CM CM K total K rot K CM 1 2 1 2 Iw MvCM 2 2 Note th t : w K total K rot K CM dq dt 1 I (Rw )2 1 MvCM 2 2 R2 2 1 I 2 2 M vCM 2R ds dq R Rw vCM dt dt 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 11 Rolling motion reconsidered: Kinetic energy associated with rotation: I mi ri 2 K rot 12 Iw 2 i Distance to axis of rotation K tot K com K rot Rolling: If there is no slipping : vcom Rw I 2 K tot M 1 v 2 com MR 1 2 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 12 4 10/8/2013 Three round balls, each having a mass M and radius R, start from rest at the top of the incline. After they are released, they roll without slipping down the incline. Which ball will reach the bottom first? 2 2 B A I A MR 1.0 MR 1 I B MR 2 0.5MR 2 2 2 I C MR 2 0.4 MR 2 5 C Ki Ui K f U f 10/08/2013 0 Mgh 1 I 2 M 1 vCM 0 2 MR 2 vCM 2 gh 1 I / MR 2 PHY 113 C Fall 2013-- Lecture 12 How can you make objects rotate? ) 13 q r sin q Define torque: ( r t=rxF q t = rF sin q F Fm r F t r m Ia 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 14 Another example of torque: 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 15 5 10/8/2013 Tor ue from T1 : t 1 R1T1 (clock ise) Tor ue from T2 : t 2 R2T2 Ex mple : (counter clock ise) R1 1m, T1 5N R2 0.5m, T2 15N Tot l tor ue : t R2T2 R1T1 ((0.5)(15) (1)(5))Nm 2.5 Nm (counter clock ise) 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 16 Example form Webassign #11 t3 X iclicker exercise When the pivot point is O, which torque is zero? A. t1? B. t2? C. t3? t2 t1 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 17 Newton’s second law applied to center-of-mass motion Fi mi i i dv i dv Ftotal M CM dt dt Newton’s second law applied to rotational motion Fi mi dv i dv ri Fi ri mi i dt dt I mi d i2 t i ri Fi i v i w ri ri d (w ri ) dt i dm Fi i dw I Ia (for rot ting bout princip l xis) dt t i mi ri t total 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 18 6 10/8/2013 An example: A horizontal 800 N merry-go-round is a solid disc of radius 1.50 m and is started from rest by a constant horizontal force of 50 N applied tangentially to the cylinder. Find the kinetic energy of solid cylinder after 3 s. R F t Ia K = ½ I w2 In this case I = ½ m R2 and FR Ia w at FR t I I w wi at = at t = FR 1 mg 2 R 2 g (50 N ) (3s) 2 275.625J 1 2 1 FR 1 F 2t 2 F 2t 2 Iw I t g 9.8m/s 2 2 2 I 2 I / R2 mg 800 N 2 K 10/08/2013 2 PHY 113 C Fall 2013-- Lecture 12 19 Re-examination of “Atwood’s” machine R T1 T1-m1g = m1a I T2-m2g = -m2a T2 t =T2R – T1R = I a = I a/R T1 m2 m1 g 2 m2 m1 I/R T2 10/08/2013 Ig m2 m1 R m2 m1 I/R 2 PHY 113 C Fall 2013-- Lecture 12 20 Another example: Two masses connect by a frictionless pulley having moment of inertia I and radius R, are initially separated by h=3m. What is the velocity v=v2= -v1 when the masses are at the same height? m1=2kg; m2=1kg; I=1kg m2 ; R=0.2m . Conserv tion of energy : Ki U i K f U f 0 m1 gh 12 m1v 2 12 m2 v 2 12 m1 g ( 12 h ) m2 g ( 12 h ) v h 10/08/2013 v1 m1 I R2 v2 m1 m2 m1 m2 I / R 2 (2) (1) m2 0.19m / s h/2 v2 (2) (1) (1 / (0.2)2 ) PHY 113 C Fall 2013-- Lecture 12 21 7 10/8/2013 Example from Webassign #10 Tu r Tl r Ia I Tl 10/08/2013 1 MR 2 2 PHY 113 C Fall 2013-- Lecture 12 22 Note that rolling motion is caused by the torque of friction: Newton’s law for torque: t total I dw Ia dt F f s MaCM F f s R Ia IaCM / R aCM 1 f s F 2 1 MR / I For solid cylinder, I 12 MR 2 ( fs 10/08/2013 f s R2 I ) f s 13 F PHY 113 C Fall 2013-- Lecture 12 23 Bicycle or automobile wheel: f s MaCM - Rf s Ia IaCM / R t fs fs 10/08/2013 /R (1 I/MR ) 2 For I MR 2 1 f s /R 2 PHY 113 C Fall 2013-- Lecture 12 24 8 10/8/2013 iclicker exercise: What happens when the bicycle skids? A. Too much torque is applied B. Too little torque is applied C. The coefficient of kinetic friction is too small D. The coefficient of static friction is too small E. More than one of these 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 25 Vector cross product; right hand rule C AB C A B sin q iˆ ˆi ˆj ˆj kˆ kˆ 0 iˆ ˆj ˆj ˆi kˆ ˆj kˆ kˆ ˆj ˆi kˆ iˆ ˆi kˆ ˆj 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 26 For unit vectors: ˆi ˆi ˆj ˆj kˆ kˆ 0 ˆi ˆj ˆj ˆi kˆ k ˆj kˆ kˆ ˆj ˆi kˆ ˆi ˆi kˆ ˆj j i 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 27 9 10/8/2013 More details of vector cross products: ˆi A B Ax Ay ˆj Az kˆ Bx By Bz Ay Az By Bz ˆi Ax Bx Az ˆ Ax j Bx Bz Ay By kˆ A B ( Ay Bz Az By ) ˆi ( Ax Bz Az Bx ) ˆj ( Ax By Ay Bx ) kˆ 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 28 iclicker exercise: What is the point of vector products A. To terrify physics students B. To exercise your right hand C. To define an axial vector D. To keep track of the direction of rotation 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 29 From Newton’s second law: Fm rF t rm rm iclicker exercise: Consider r d (mv ) d (r p ) dt dt 10/08/2013 dv d (mv ) d r (r p ) dt dt dt Is this A. Wrong? B. Approximately right? C. Exactly right? PHY 113 C Fall 2013-- Lecture 12 30 10 10/8/2013 From Newton’s second law – continued – conservation of angular momentum: d (r p ) dt Define : L rp dL If t 0 0 dt L (const nt) rF t 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 31 Torque and angular momentum Define angular momentum: L r p For composite object: L = Iw Newton’s law for torque: t total I dw dL dt dt If t total 0 then dL 0 dt L const nt In the absence of a net torque on a system, angular momentum is conserved. 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 32 iclicker exercise: A student sits on a rotatable stool holding a spinning bicycle wheel with angular momentum Li. What happens when the wheel is inverted? ( ) The student ill rem in t rest. (b) The student ill rot te counterclock ise. (c) The student ill rot te clock ise. 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 33 11 10/8/2013 More details: Lbf Lwheelf Lbi Lwheeli Lbf Lwheel 0 Lwheel Lbf 2 Lwheel 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 34 Other examples of conservation of angular momentum w1 m w2 m m d1 d2 d1 m d2 I2=2md22 I1=2md12 I1w1=I2w2 w2=w1 I1/I2 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 35 What about centripetal acceleration? w ar = v2/R = w2 R 10/08/2013 PHY 113 C Fall 2013-- Lecture 12 36 12 10/8/2013 Webassign problem: A disk with moment of inertia I1 is initially rotating at angular velocity wi. A second disk having angular momentum I2, initially is not rotating, but suddenly drops and sticks to the second disk. Assuming angular moment to be conserved, what would be the final angular velocity wf? I1wi (I1 I 2 )w f w f wi 10/08/2013 I1 I1 I 2 PHY 113 C Fall 2013-- Lecture 12 37 Summary – conservation laws we have studied so far Conserved quantity Linear momentum p Angular momentum L Mechanical energy E 10/08/2013 Necessary condition Fnet = 0 tnet = 0 No dissipative forces PHY 113 C Fall 2013-- Lecture 12 38 13
© Copyright 2026 Paperzz