Review Vector Functions - (9.1) 1. Vector-Valued Functions A vector-valued function in 2-D: r t ft , gt ft i gt j, a t t t b. xt ft and yt gt are called parametric equations. The set of points x, y ft , gt ; a t t t b describe a curve C in the xy "plane. A vector-valued function in 3-D: rt ft , gt , ht ft i gt j ht k. a t t t b. xt ft , yt gt and zt ht are called parametric equations. The set of points x, y, z ft , gt , hs , a t t t b describes a space curve C. Example r 1 t t, t 2 , for "1 t t t 1; r 2 t t, t 2 , 1 , for "1 t t t 1; r 3 t t, t 2 , t , for "1 t t t 1 1 2 1 -1 t 0 1 -1 0 1 y 1 -1 0 1 -1 t y 1 -1 r t ¡t, t 2 ¢, "1 t t t 1 r 2 t t, t 2 , 1 r 3 t t, t 2 , t y x2, " 1 t x t 1 y x2, z 1 y x2, z x Example r t 1 1 2 sint , 2 sint , 2 cost , for 0 t t t = ; for = t t t =. 2 2 2 1 1.4 1.2 1 0.8 t 0.6 0.2 0.4 0 -1 r t y x, z 2 sint , y 1 2 sint , 2 cost , solid - 0, =/2 , dash - =/2, = 2 2 " x 2 , solid - 0 t x t 1 y x, z " 2 2 " x 2 , dash - "1 t x t 1; Example r t 2 cost , 3 sint , t , 0 t t t 2= 8 6 4 -3 2 -2 0 -1 y t 1 1 2 -2 -1 2 3 1 x2 1 y2 1 9 4 solid - 0 t x t 2=, dash - 2= t x t 3= r t 2 cost , 3 sint , t , Vector-valued functions for special curves: a. A line segment from the point P 1 x 1 , y 1 , z 1 to the point P 2 x 2 , y 2 , z 2 : rt x 1 , y 1 , z 1 t x 2 " x 1 , y 2 " y 1 , z 2 " z 1 , 0 t t t 1 2 A line passes through the points P 1 x 1 , y 1 , z 1 and P 2 x 2 , y 2 , z 2 : rt x 1 , y 1 , z 1 t x 2 " x 1 , y 2 " y 1 , z 2 " z 1 , " . t . b. A circle with center h, k and radius r, x " h 2 y " k 2 r 2 in the plane z z 0 rt h r cos t, k r sin t, z 0 , 0 t t t 2= c. An ellipse x " h 2 y " k 2 1 in the plane z z 0 : a2 b2 rt h a cos t, k b sin t, z 0 , 0 t t t 2= 2 y2 d. hyperbola x 2 " 2 1 in the plane z z 0 : a b rt h a cosh t, k b sinh t, z 0 Example Find two vector functions r t for each given the curve C: a. 4x 2 y 2 9z 2 1 b. y 2x x 2 y 2 25 z 25 " x 2 a. i x t, y 2t, z o 1 " 4t 2 4t 2 o 1 " 8t 2 C1 : r 1 t t, 2t, 1 " 8t 2 ; and C 2 : r 2 t t, 2t, " 1 " 8t 2 ii x 1 cost , y cost , z 13 sint 2 1 cost , 1 cost , 1 sint C: rt 3 2 2 2 b. i x t, z 25 " t 2 , y o 25 " t 2 C1 : r 1 t t, 25 " t 2 , 25 " t 2 ; and C 2 : r 2 t t, " 25 " t 2 , 25 " t 2 ii x 5 sint , y 5 cost , z 25 " 25 sin 2 t 25 cos 2 t C: rt 5 sint , 5 cost , 25 cos 2 t 2. Derivative of a Vector Function: Let ft , gt , and ht be differentiable. If r t ft , gt , ht , then U U U U r t f t , g t , h t . Chain Rule: if r is a differentiable vector function and s ut is differentiable scalar function, then dr dr ds r U s u U t . ds dt dt Tangent line: the parametric equations of the tangent line to the curve rt at the time t t 0 U t L rt 0 t r t 0 . U UU Example Let r t t 2 , lnt , tan "1 t . Find r t , r t and the tangent line at the point where t 1. 3 UU 2t 1 2t, 1 , , r t 2, " 12 , " t 1 t2 t 1 t 2 r U 1 2, 1, 1 , r0 1, 0, = 4 2 U tangent line: Lt r1 t r 1 1, 0, = t 2, 1, 1 1 2t, t, = 1 t 2 2 4 4 r U t Example Let r s t 1. r U s s cos2s , s sin2s , tan2s and st t 2 " t 1. Find dr and dr when dt dt 1 cos2s " 2 s sin2s , sin2s 2s cos2s , 2 sec 2 2s , s U t 2t " 1 2 s dr r U s s U t 2t " 1 dt 1 cos2s " 2 s sin2s , sin2s 2s cos2s , 2 sec 2 2s 2 s When t 1, s1 1. dr | t1 1 1 cos2 " 2 sin2 , sin2 2 cos2 , 2 sec 2 2 2 dt 3. Integrals of Vector Functions: Let ft , gt , and ht be integrable. Then ; rt dt ; ft dt , ; gt dt , ; ht dt b b b , b ; a rt dt ; a ft dt , ; a gt dt , ; a ht dt Length L of a space curve C : r t ft , gt , ht , a t t t b : L b ;a 2 2 2 ¡f U t ¢ ¡g U t ¢ ¡h U t ¢ dt 1 UU 1 1 t2 Example Let r t t 2 , r U t r U t dt 1 i tj t 2 k dt 1 t2 i tj t 2 k dt tan "1 t | 10 i 1 ln1 t 2 | 10j t " tan "1 t | 10 | 2 = 1 , ln2 , 1 " = 4 2 4 Example Evaluate the integral ; ;0 b ;a 1 0 t 1 , e "2t , r 0 U r t 1 i 2 U " 2k and r 0 i j k. Find r t . ; r UU t dt ; t 2 dt, ; t 1 dt, ; e "2t dt 1 t 3 , 2 t 1 3/2 , " 1 e "2t C 1 3 3 2 1 1, 1 , 3 1 ¡1, 1, 1¢, C r U 0 0, 2 , " 1 C 3 2 3 2 U rt ; r t dt ; 1 t 3 dt, ; 2 t 1 3/2 dt, ; " 1 e "2t dt 1, 1 , 3 t 2 3 3 3 2 5/2 1 2 2 1 1 3 4 "2t t , e , t C2 1, t 1 , 12 3 5 4 3 2 4 r0 0, rt 4 , 1 2 1 , " 4 , " 9 2 1 , 0, " 2 , C 0C 15 4 2 2 15 4 1 t 4 t 1 , 4 t 1 5/2 1 t " 4 , 1 e "2t 3 t " 9 2 15 3 2 12 15 4 4 Example Find the length of the curve C: r t t, t cost , t sint , 0 t t t =. U r t 1, cost " t sint , sint t cost , r Ur 1 cost " t sint 2 sint t cost 2 2 t 2 L 5 = ;0 r t Urt dt = ;0 2 t 2 1 = 2 = 2 " 1 ln 2 ln = 2 = 2 2 2
© Copyright 2025 Paperzz